
ZFS: NEW FEATURES IN
REPLICATION

WHO AM I?
Dan Kimmel

ZFS Committer
Filesystem Team Manager

dan@delphix.com

@dankimmel on GitHub
the leader in database

virtualization, and a
leading contributor to

OpenZFS

mailto:dan@delphix.com?Subject=SCALE%2015x%20ZFS%20talk
https://github.com/dankimmel

SHOW OF HANDS!

HOW MANY PEOPLE HAVE USED ZFS?

HISTORY LESSON

2005

Source code
released in

2006

Ported to
FUSE on

Linux

2008

Ported to

2010

forked from
OpenSolaris

2013

Native port!

2016

Available in

16.04 LTS

ZFS...
Is a local filesystem
Includes logical volume management
Does snapshots and clones
Can compress data on disk
Checksums data end-to-end, ensuring integrity
Has many other awesome features

... which are not relevant to this talk :-)

CLI CRASH COURSE
Create a pool named "tank", a mirror of two disks.
zpool create tank mirror disk1 disk2
tank
mirror-0
disk1
disk2

Create an LZ4-compressed filesystem on the pool.
zfs create -o compress=lz4 tank/my-fs

Write some data into it.
cp hamlet.txt /tank/my-fs

Take a snapshot of that filesystem.
zfs snapshot tank/my-fs@monday

Make a clone based on that snapshot.
zfs clone tank/my-fs@monday tank/my-new-fs

HOW SNAPSHOTS WORK

Z F S ? !

Old version of data
("snapshot")

Current
version of data

Root block

Indirect blocks

Data blocks

ZFS REPLICATION
A.K.A. SEND AND RECEIVE

Take a snapshot of the filesystem you want to send
Serialize the snapshot using "zfs send"
Recreate filesystem elsewhere using "zfs receive"

EXAMPLE
Take a snapshot of your filesystem.
zfs snapshot tank/my-fs@monday

Serialize that snapshot to a file.
zfs send tank/my-fs@monday >monday.zstream

Recreate that snapshot.
zfs receive tank/new-fs <monday.zstream

Now look at what you've done.
zfs list -t all -r tank
NAME USED AVAIL REFER MOUNTPOINT
tank 2.00G 21.1G 23K /tank
tank/mds 111M 23.0G 111M /mds
tank/my-fs 23K 21.1G 23K /tank/my-fs
tank/my-fs@6pm 0 - 23K -
tank/new-fs 23K 21.1G 23K /tank/new-fs
tank/new-fs@6pm 0 - 23K -

(same as piping
"send | recv")

OVER THE NETWORK
Take a snapshot of your filesystem.
zfs snapshot tank/my-fs@monday

Send the snapshot over SSH and receive
it on the other side.
zfs send tank/my-fs@monday | \
 ssh dan@my.backup.system \
 "zfs receive otherpool/new-fs"

On my.backup.system:
zfs list -t all -r otherpool/new-fs
NAME USED ...
otherpool/new-fs 36K ...
otherpool/new-fs@monday 13K ...

INCREMENTAL SEND
Take a second snapshot of the filesystem.
zfs snapshot tank/my-fs@tuesday

Send the incremental changes over SSH.
zfs send -i @monday tank/my-fs@tuesday | \
 ssh dan@my.backup.system \
 "zfs receive otherpool/new-fs"

On my.backup.system:
zfs list -t all -r otherpool/new-fs
NAME USED ...
otherpool/new-fs 36K ...
otherpool/new-fs@monday 13K ...
otherpool/new-fs@tuesday 0 ...

"from snap"

"to snap"

COMPARISON TO OTHER TOOLS
Communicates in only one direction (send ➡ receive)

Not latency sensitive, can use full net throughput

Uses prefetching, can use full disk throughput
Read / send minimal amount of data, even for incremental
changes to the data

Only changed blocks are read / sent (using birth times)
Maintain block-sharing relationships between snapshots

Completeness of data sent

Preserves all POSIX layer state
No special-purpose code for permissions

ONLY TRAVERSE CHANGED DATA
EVEN FOR INCREMENTAL DATA UPDATES

Z F S !

1 1

1 2

1 2

zfs send -i @1 tank/my-fs@2 | zfs receive ...

* I'm fibbing slightly for explanatory purposes. ZFS actually uses transaction

group number (rather than snapshot name) to track birth times.

COMPLETENESS OF DATA SENT
ZFS send operates exclusively on DMU objects
Doesn't try to interpret data being sent
All esoteric POSIX-layer features preserved by design

Files, directories, permissions metadata
SID (Windows) users
Full NFSv4 ACLs
Sparse files
Extended attributes

NEW ZFS SEND FEATURES
1. RESUMABLE REPLICATION

2. COMPRESSED SEND STREAMS

1. RESUMABLE REPLICATION
PROBLEM STATEMENT

Your replication will take ~10 days
There's a network outage ~once a week

(or sender / receiver reboot)

Partial progress is destroyed because there's
no way to pick up a partial send or receive
Your replication may never complete!

SOLUTION
Remember where you left off.

SENDING SIDE

Always send stuff in order
of increasing <DMU object
#, offset>

Allow someone to start a
send from a particular
<DMU object #, offset>

RECEIVING SIDE

Record the <DMU object #,
offset> you're at as you
receive the stream
Allow user to pull that
information out after a
failure with new property
receive_resume_token

Repeat for each failure during a send

WHAT'S IN THE TOKEN?
"From snap" snapshot GUID
"To snap" snapshot name
List of stream features used during the original send
Last <DMU object #, offset> successfully received

SHOW ME HOW!
zfs send ... | <network> | zfs receive -s otherpool/new-fs

zfs get receive_resume_token otherpool/new-fs
1-e604ea4bf-e0-789c63a2...

On the receiving side, get the opaque token with
the <DMU object #, offset> stored in it

zfs send -t 1-e604ea4bf-e0-789c63a2... | \
 <network> | zfs receive -s otherpool/new-fs

Re-start sending from the <DMU object #, offset> stored in the token

First fix the cord, then...

Does this violate the "only communicate in one direction" rule?

Kind of — but presumably you'd hide the scissors after the first time.

ANOTHER PROBLEM EXPOSED

To ensure data integrity, sends add a
checksum as the last thing in the stream
If the stream is corrupted early, we waste a
lot of effort and have to retry from scratch

The token doesn't help us figure out when
the corruption occurred, just if it ended
prematurely

SOLUTION: CHECKSUM AT THE END
OF EVERY RECORD

Now we know as soon as a record is corrupted, and fail receive
We can resume sending right where the corruption happened

FINAL DETAILS

If you don't want to resume the send, abort to
remove the partial state on the receiving system:

All ZFS CLI operations, including these new ones,
can be called programmatically as well

libzfs, libzfs_core

zfs receive -A otherpool/new-fs

2. COMPRESSED SEND STREAMS
PROBLEM STATEMENT

You're replicating between data centers
You have 200GB to transfer
And a 2Mbps network connection
That's ~10 days of waiting for data!

SOLUTION
Send the data compressed.

FINE, COMPRESSION
WHAT'S THE BIG DEAL?

zfs send ... | gzip | <network> | \
 gunzip | zfs recv otherpool/new-fs

Read the data from disk
Compress it
Send less data!
Decompress it
Write the stream to disk

MORE PROBLEMS...
gzip is slow (for the compression ratio)

OK, let's use LZ4

gzip is single threaded

OK, let's split up the stream, compress,
reconstitute

Now all the CPUs are pegged! It would be nice if
we didn't have to do all this computation...

Use the filesystem's on-disk compression?

SENDING SIDE

Read the data as it's
compressed on disk
Put it directly into the send
stream with no additional
processing

RECEIVING SIDE

Bypass any compression
settings the system has set
Write the compressed data
directly to disk

A BETTER SOLUTION

No extra CPU time needed!

HOW CAN I USE IT?
On the sending system

zfs send --compressed tank/my-fs@today | ...

That's it!

RESULTS
Send of 200GB logical / 75GB physical snapshot:

Compression ratio of 2.67x

Logical send speedup of ~2.5x over constrained network!

When sending data from cache with no network, 2.7x
reduction in CPU cost compared to old sending code*

* 2.7 looks related to the compression ratio 2.67, but it actually isn’t.

It’s the ratio: (CPU cost of decompressing plus sending) / (CPU cost of sending)

WRAPPING UP
Resumable sends are available in ZFS on Linux 0.7.0-rc1
Compressed send streams are in ZFS on Linux 0.7.0-rc2
0.7.0 is shaping up to be a huge release!

Compressed ARC (RAM cache) can store 3x larger data
New cryptographic checksums: SHA-512, Skein, Edon-R
Hardware-accelerated RAID-Z parity, checksums
Big performance wins in block allocation on near-full pools
Greatly improved interaction with Linux memory mgmt
Automated (and scriptable) fault management
And much more...

THANK YOU!
ANY QUESTIONS?

For more information:

 /
 (including yearly Developer Summits)

 / /
 (3/16-3/17 — tickets still available!)

OpenZFS homepage GitHub
OpenZFS talks
ZFS on Linux homepage GitHub release notes
ZFS User Conference

http://open-zfs.org/wiki/Main_Page
https://github.com/openzfs/openzfs
https://www.youtube.com/channel/UC0IK6Y4Go2KtRueHDiQcxow
http://zfsonlinux.org/
https://github.com/zfsonlinux/zfs/
https://github.com/zfsonlinux/zfs/releases
http://zfs.datto.com/

