

WHO AM I?
Dan Kimmel
e /FS Committer
e Filesystem Team Manager

dan@delphix.com
@dankimmel on GitHub

DE[F’I—II)-(

the leader in database
virtualization, and a
leading contributor to
OpenZFS

mailto:dan@delphix.com?Subject=SCALE%2015x%20ZFS%20talk
https://github.com/dankimmel

SHOW OF HANDS!

HOW MANY PEOPLE HAVE USED ZFS?

HISTORY LESSON

2013
2005 2008 Native port!
Source code Ported to 0

released in C)

2006 \ 2010 2016
Ported to illumos Available in
FUSE on forked from ubuntu®

Linux OpenSolaris

16.04 LTS

ZFS...

Is a local filesystem

Includes logical volume management

Does snapshots and clones

Can compress data on disk

Checksums data end-to-end, ensuring integrity
Has many other awesome features

= .. which are not relevant to this talk :-)

Create a pool named "tank", a mirror of two disks.
zpool create tank mirror diskl disk2
tank

mirror-0

diskl

disk?2

Create an LZ4-compressed filesystem on the pool.

zfs create -o compress=1z4 tank/my-fs

Write some data into it.
cp hamlet.txt /tank/my-£fs

Take a snapshot of that filesystem.
zfs snapshot tank/my-fs@monday

Make a clone based on that snapshot.
zfs clone tank/my-fs@monday tank/my-new-fs

HOW SNAPSHOTS WORK

Old version of data Current

("snapshot") version of data
Root block I i

o

Indirect blocks

Data blocks . .

\
L

ZFS REPLICATION

A.K.A. SEND AND RECEIVE

e Take a snapshot of the filesystem you want to send
e Serialize the snapshot using "zfs send"
e Recreate filesystem elsewhere using "zfs receive"

Take a snapshot of your filesystem.
zfs snapshot tank/my-fs@monday

Serialize that snapshot to a file.
zfs send tank/my-fs@monday >monday.zstream

(same as piping

Recreate that snapshot. | |
zfs receive tank/new-fs <monday.zstream sencilrecv)

Now look at what you've done.

zfs list -t all -r tank
NAME USED AVAIL MOUNTPOINT
tank 2.00G 21.1G /tank
tank/mds 111M 23.0G /mds
tank/my-£fs 23K 21.1G /tank/my-fs
tank/my-£fs@6pm 0 - -
tank/new-fs 23K 21.1G /tank/new-fs
tank/new-fs@6pm 0 - -

Take a snapshot of your filesystem.
zfs snapshot tank/my-fs@monday

Send the snapshot over SSH and receive
it on the other side.
zfs send tank/my-fs@monday | \
ssh dan@my.backup.system \
"zfs receive otherpool/new-fs"

On my.backup.system:

zfs list -t all -r otherpool/new-fs
NAME USED

otherpool/new-£fs 36K

otherpool/new-fs@monday 13K

Ta®dQ a second snapshot of the filesystem.
shot tank/my-fs@tuesday

Send the inwgemental changes over SSH.
zfs send -i @monday tank/my-fs@tuesday | \

ssh dan@my.backup.system \
"zfs receive otherpool/new-fs"

On my.backup.system: "to snap
zfs list -t all -r otherpool/new-fs

NAME USED

otherpool/new-fs 36K

otherpool/new-fs@monday 13K

otherpool/new-fs@tuesday 0

COMPARISON TO OTHER TOOLS

e Communicates in only one direction (send = receive)
= Not latency sensitive, can use full net throughput

e Uses prefetching, can use full disk throughput
e Read / send minimal amount of data, even for incremental
changes to the data

= Only changed blocks are read / sent (using birth times)
= Maintain block-sharing relationships between snapshots

e Completeness of data sent

= Preserves all POSIX layer state
= No special-purpose code for permissions

ONLY TRAVERSE CHANGED DATA

EVEN FOR INCREMENTAL DATA UPDATES

zfs send -i @1 tank/my—is@Z | zfs receive ...

* I'm fibbing slightly for explanatory purposes. ZFS actually uses transaction

group number (rather than snapshot name) to track birth times.

COMPLETENESS OF DATA SENT

e /FS send operates exclusively on DMU objects
e Doesn't try to interpret data being sent
e All esoteric POSIX-layer features preserved by design

= Files, directories, permissions metadata
= SID (Windows) users

Full NFSv4 ACLs

Sparse files

= Extended attributes

NEW ZFS SEND FEATURES

1. RESUMABLE REPLICATION
2. COMPRESSED SEND STREAMS

1. RESUMABLE REPLICATION

PROBLEM STATEMENT

e Your replication will take ~10 days
e There's a network outage ~once a week

m (or sender / receiver reboot)

e Partial progress is destroyed because there's
no way to pick up a partial send or receive
e Your replication may never complete!

®

SOLUTION

Remember where you left off.

SENDING SIDE RECEIVING SIDE

e Always send stuff in order

of increasing <DMU object e Record the <DMU object #,

#, offset> offset> you're at as you
receive the stream
e Allow user to pull that
information out after a
failure with new property

receive_resume_token
e Allow someone to start a

send from a particular
<DMU object #, offset>

Repeat for each failure during a send

WHAT'S IN THE TOKEN?

"From snap" snapshot GUID

"To snap" snapshot name

List of stream features used during the original send
Last <DMU object #, offset> successfully received

SHOW ME HOW!

zfs send ... | <ne orﬁ> | zfs receive -s otherpool/new-fs

First fix the cord, then...

On the receiving side, get the opaque token with
the <DMU object #, offset> stored in it

zfs get receive resume token otherpool/new-fs

Re-start sending from the <DMU object #, offset> stored in the token

zfs send -t 1-e604eadbf-e0-789c63a2... | \
<network> | zfs receive -s otherpool/new-fs

Does this violate the "only communicate in one direction" rule?
Kind of — but presumably you'd hide the scissors after the first time.

ANOTHER PROBLEM EXPOSED

e To ensure data integrity, sends add a
checksum as the last thing in the stream

e |f the stream is corrupted early, we waste a
lot of effort and have to retry from scratch

= The token doesn't help us figure out when
the corruption occurred, just if it ended
prematurely

SOLUTION: CHECKSUM AT THE END
OF EVERY RECORD

e Now we know as soon as a record is corrupted, and fail receive
e We can resume sending right where the corruption happened

FINAL DETAILS
e |f you don't want to resume the send, abort to
remove the partial state on the receiving system:
zfs receive -A otherpool/new-fs
e All ZFS CLI operations, including these new ones,
can be called programmatically as well
m [ibzfs, libzfs_core

2. COMPRESSED SEND STREAMS

PROBLEM STATEMENT

You're replicating between data centers
You have 200GB to transfer

And a 2Mbps network connection
That's ~10 days of waiting for data!

©®

SOLUTION

Send the data compressed.

FINE, COMPRESSION

WHAT'S THE BIG DEAL?

zfs send ... | gzip | <network> | \
gunzip | zfs recv otherpool/new-fs

e Read the data from disk
e Compress it

e Send less data!

e Decompress it

e Write the stream to disk

MORE PROBLEMS...
e gzipis slow (for the compression ratio)
= OK, let's use LZ4
e gzipis single threaded

= OK, let's split up the stream, compress,
reconstitute

e Now all the CPUs are pegged! It would be nice if
we didn't have to do all this computation...

= Use the filesystem's on-disk compression?

A BETTER SOLUTION

SENDING SIDE RECEIVING SIDE

e Read the data asit's
compressed on disk
e Put it directly into the send

stream with no additional
processing e Bypass any compression

settings the system has set
e Write the compressed data
directly to disk

No extra CPU time needed!

HOW CAN | USE IT?

On the sending system

zfs send --compressed tank/my-fs@today | ...

That's it!

RESULTS

Send of 200GB logical / 75GB physical snapshot:

e Compression ratio of 2.67x
= Logical send speedup of ~2.5x over constrained network!

e When sending data from cache with no network, 2.7x
reduction in CPU cost compared to old sending code*

* 2.7 looks related to the compression ratio 2.67, but it actually isn’t.

It’s the ratio: (CPU cost of decompressing plus sending) / (CPU cost of sending)

WRAPPING UP

e Resumable sends are available in ZFS on Linux 0.7.0-rc
e Compressed send streams are in ZFS on Linux 0.7.0-rc2
e 0.7.0 is shaping up to be a huge release!

= Compressed ARC (RAM cache) can store 3x larger data

= New cryptographic checksums: SHA-512, Skein, Edon-R

= Hardware-accelerated RAID-Z parity, checksums

= Big performance wins in block allocation on near-full pools
= Greatly improved interaction with Linux memory mgmt

= Automated (and scriptable) fault management

= And much more...

THANK YOU!

ANY QUESTIONS?

DE[F’I—II)-(

For more information:

/

(including yearly Developer Summits)

/ /
(3/16-3/17 — tickets still available!)

http://open-zfs.org/wiki/Main_Page
https://github.com/openzfs/openzfs
https://www.youtube.com/channel/UC0IK6Y4Go2KtRueHDiQcxow
http://zfsonlinux.org/
https://github.com/zfsonlinux/zfs/
https://github.com/zfsonlinux/zfs/releases
http://zfs.datto.com/

