Who is Leslie?

Operations Engineer

- @lesliegeek
- Google
- Craigslist
- Twitter
- Wikimedia Foundation (Wikipedia)
Who is Leslie?

Cumulus Networks®
What is Cumulus Linux?

Cumulus® Linux®
- Debian based distribution for Network switches

Cumulus Philosophy
- Manage your network switch as a server
- Use existing Linux tools to configure network switches
- Current release — Based on Debian wheezy
Cumulus® Linux® Hardware Compatibility List

Cumulus Networks certifies Cumulus Linux operation for all products on the Hardware Compatibility List (HCL). Cumulus Networks supports all products on the HCL, which may include RMA support for hardware under warranty. All platforms on the HCL must come with ONIE, the open install environment for bare metal network switches. See support policy for more details. The HCL table provides the manufacturer, model number, description, and the associated supported Cumulus Linux release number.

<table>
<thead>
<tr>
<th>40G Portfolio</th>
<th>Model number</th>
<th>Description</th>
<th>Switch Silicon</th>
<th>CPU Type</th>
<th>Minimum Cumulus Linux Release</th>
</tr>
</thead>
<tbody>
<tr>
<td>DELL</td>
<td>S6000-ON (S6000 with ONIE)</td>
<td>32 x 40G-QSFP+</td>
<td>Broadcom Trident II</td>
<td>x86</td>
<td>Cumulus Linux 2.1</td>
</tr>
<tr>
<td></td>
<td>AS6701-32X (AS6700-32X with ONIE)</td>
<td>32 x 40G-QSFP+</td>
<td>Broadcom Trident II</td>
<td>PowerPC</td>
<td>Cumulus Linux 2.0.1</td>
</tr>
</tbody>
</table>
Installation and Configuration
Traditional Network Gear Process

- Comes preinstalled with (old) software
- Telnet or serial into box
- TFTP new image
- Enable SSH (sometimes with passwords!)
- Copy/paste configuration
- Automation usually restricted to Perl, TCL, and expect scripts
Normal Server Installation

- Reboot and bios with PXE automatically catches
- TFTP boot image
- New image pulled over via normal means (usually webserver, sometimes TFTP)
- Pre/post installation scripts runs
- Automation software manages configuration and administration
Network OS installer discovery and execution

- Like a pre-installed BIOS, PXE, and kickstarter in one
- Implemented through Linux kernel with BusyBox

Donated to the Open Compute Project (OCP)

http://www.onie.org
1. Look for installer ("discover")
 - Locally, e.g. USB if available
 - Over the network on eth0
 DHCP, IPv6 neighbor, TFTP

2. Search for file name and execute
 - onie-installer-*
During the DHCP process over eth0 (management interface), Cumulus Linux will request DHCP option 239. This option is used to specify the custom provisioning script. It will also send the following headers:

<table>
<thead>
<tr>
<th>Header</th>
<th>Value</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>User-Agent</td>
<td></td>
<td>CumulusLinux-AutoProvision/0.4</td>
</tr>
<tr>
<td>CUMULUS-ARCH</td>
<td></td>
<td>powerpc</td>
</tr>
<tr>
<td>CUMULUS-BUILD</td>
<td></td>
<td>1.5.1-5c6829a-201309251712-final</td>
</tr>
<tr>
<td>CUMULUS-LICENSE-INSTALLED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CUMULUS-MANUFACTURER</td>
<td></td>
<td>dni</td>
</tr>
<tr>
<td>CUMULUS-PRODUCTNAME</td>
<td></td>
<td>et-7448bf</td>
</tr>
<tr>
<td>CUMULUS-SERIAL</td>
<td></td>
<td>XYZ123004</td>
</tr>
<tr>
<td>CUMULUS-VERSION</td>
<td></td>
<td>1.5.1</td>
</tr>
<tr>
<td>CUMULUS-PROV-COUNT</td>
<td>Either 0 or 1</td>
<td></td>
</tr>
<tr>
<td>CUMULUS-PROV-MAX</td>
<td></td>
<td>32</td>
</tr>
</tbody>
</table>
ZTP Execution

Script must contain **CUMULUS-AUTOPROVISIONING**

Can be in the following languages:

- Perl
- Python
- Ruby
- Shell
ZTP Example with Puppet

```bash
#!/bin/bash

function error()
{
  echo -e \"\e[0;33mERROR: Provisioning failed running $BASH_COMMAND at line $BASH_LINENO of $(basename $0) \e[0m\" >&2
  exit 1
}

trap error ERR

# Allow Cumulus testing repo
sed -i /etc/apt/sources.list -e 's/^#\s*\(deb.*testing.*\)$/\1/g'

# Upgrade and install Puppet
apt-get upgrade -y
apt-get install puppet -y

echo "Configuring puppet" | wall -n
sed -i /etc/default/puppet -e 's/START=no/START=yes/'

service puppet restart

exit 0
```
Comparison

Similar to installing a server OS using PXE

- **Server OS**
 - BIOS and PXE
 - bare metal server

- **Network OS**
 - Boot Loader and ONIE

ONIE looks for and installs network OS image

- boot into
 - Boot Loader and ONIE

- boot into
 - Network OS
Video
Because Debian based, we can do everything via puppet

- users
- interface configuration
- routing software (Quagga) configuration
How can we make your life better?
Warning - small hard drive and limited processing power – not recommended for long term

Scenario - installing new rack with limited connectivity

* make switch puppetmaster
Video
Transition
Existing Network Interface Managers

- Optimized for desktop and hypervisor environments
- Complexity increases with interface configuration scale
- Burden of network interface configuration dependency ordering is on the user
- Lack of support for incremental changes to network interfaces: minimal disruption
- Lack of tools to query and validate running interface configuration
Switch networking characteristics:

- Large number of interfaces
- Switch ports, bridges, bonds, vlans
- Large number of interface attributes
- Addresses, bridge stp, mstp and igmp attributes
- Mostly static configuration
ifupdown

Benefits

- Pluggable architecture
- Uses native Linux tools, enabling faster development
- Good user documentation, well known tool

Challenges

- No knowledge of interface configuration dependency (burden on the user)
- Large scale configuration results in large files or too many files
- No support for incremental configurations
- No support to query/validate running interface configuration
- literate program
- Bugs
New implementation of ifupdown in Python

- Backward compatible with ifupdown interfaces format and commands
- Continues to use existing Linux native tools to configure network interfaces.
- Large number of interface attributes
- Pluggable architecture add-on python modules for interface configuration
- Meets some shortcomings seen with existing network interface managers on network switches
- ifreload acts like HUP instead of restart
ifupdown2 compare cli?

ifupdown
auto swp19
iface swp19 inet manual
 up link set $IFACE up
 down link set $IFACE down
 pre-up /sbin/ethtool -s $IFACE speed 1000

auto swp19.100
iface swp19.100 inet manual
 up link set $IFACE up
 down link set $IFACE down

auto vlan100
iface vlan100 inet manual
 bridge_ports swp19.100
 mstpctl_stp on

ifupdown2
auto swp19
iface swp19
 link-speed 1000

auto vlan100
iface vlan100
 bridge-ports swp19.100
 bridge-stp on
Network Interface Dependency

- Handles network interface dependency using dependency graphs
- Uses topological sort to order network interface configurations
- Provides options and tools to query and execute interface configuration in dependency order
- Built-in devices support

`ifupdown2` implicitly recognizes vlan and physical interfaces that appear as dependents and does the required minimal configuration to get them up: No need to specify `\`iface swp1.1000 \` in the example
Note that the "range" ends with '4'
But will iterate only from 1 to 3
See [Python range() for more details](https://docs.python.org/3/library/functions.html#range)

% for i in range(1, 4):
 auto swp${i}
 iface swp${i}
% endfor

```python
<%def name="interface_defaults()">
    mtu 9000
    link-speed 10000
    link-duplex full
    link-autoneg off
</%def>

% for i in range(3, 7):
    auto swp${i}
    iface swp${i} ${interface_defaults()}
% endfor

auto default_bridge
iface default_bridge
    bridge_ports glob swp3-6
    bridge-stp on
Find out more!

Ifupdown2
- https://github.com/CumulusNetworks/ifupdown2

PTM
- https://github.com/CumulusNetworks/ptm

Example Code
- https://github.com/LeslieCarr/puppet-presentation

Cumulus Open Source
- http://oss.cumulusnetworks.com

Twitter
- @lesliegeek
Bringing the Linux Revolution to Networking

Thank You!

© 2014 Cumulus Networks. Cumulus Networks, the Cumulus Networks Logo, and Cumulus Linux are trademarks or registered trademarks of Cumulus Networks, Inc. or its affiliates in the U.S. and other countries. Other names may be trademarks of their respective owners. The registered trademark Linux® is used pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a world-wide basis.