'The State of Partitioning

Where Partitioning Has Been
Where ltIs
Where It's Going

Keith Fiske
http://www.keithf4.com

http://www.crunchydata.com @ c r u n c hy d O tO

'Who Am |

e Senior Database Engineer at Crunchy Data
e Working with PostgreSQL since 8.3

e Author of several popular third party PostgreSQL extensions including

o pg_partman - https://qgithub.com/pgpartman/pg partman
o pgMonitor - https://github.com/CrunchyData/pgmonitor
o pg_jobmon - https://github.com/omniti-labs/pg jobmon

e Provide PostgreSQL training and develop solutions to make PostgreSQL
easier to use

2 €\ crunchydata

https://github.com/pgpartman/pg_partman
https://github.com/CrunchyData/pgmonitor
https://github.com/omniti-labs/pg_jobmon

'What is Partitioning?

e Organization of data into logical "chunks" or partitions
e FEach partition is generally its own table

e Rules dictate where data goes and constrain data within a partition

3 €\ crunchydata

'Why Partition Tables?

e Easier to manage data and space
Deletion of large amounts of data in PostgreSQL can be expensive and often does not

return disk space to the OS. Dropping a table is quick and almost immediately returns
disk space. Data retention is the primary reason for partitioning in PostgreSQL

e Improves table maintenance

The VACUUM process in PostgreSQL grows in expense as table size grows. Smaller
tables are easier for VACUUM to manage and can potentially be skipped

e Query Performance
As tables grow in size, read and write performance may be impacted. On extremely
large tables, partition pruning in the query plan can be a noticeable benefit. Avoids
larger index & tables scans.

4 €\ crunchydata

¥ The Old Way

e Table Inheritance
o Child tables that inherit their properties from a parent table
e Triggers
o Triggers on the parent that route the data to the proper child
e (Constraints
o Constraints on the child tables that limit data that can exist inside them
e All this had to be manually managed (or custom automation written) and was
extremely inefficient outside of retention management.

e May still be needed in some very narrow use-cases

5 €\ crunchydata

'The New Way

e Declarative Partitioning (aka native)
e SQL syntax commands
e Range, List, & Hash

e Internal tuple routing and partition pruning are far more efficient than triggers
and constraint exclusion

6 €\ crunchydata

'Range Partitioning

e Partitioned into ranges by one or more columns with no overlap between partitions. Ex:
Time/Integer

CREATE TABLE measurement (
city_id int not null,
logdate date not null,
peaktemp int,
unitsales int

) PARTITION BY RANGE (logdate);

CREATE TABLE measurement_y2006m@2 PARTITION OF measurement
FOR VALUES FROM ('2006-02-01') TO ('2006-03-01');

CREATE TABLE measurement_y2006m@3 PARTITION OF measurement
FOR VALUES FROM ('2006-03-01') TO ('2006-04-01');

=# \d+ measurement
Table "public.measurement"
Column | Nullable | Default | Storage
+ __________
integer not null
logdate not null
peaktemp | integer
unitsales | integer
Partition key: RANGE (logdate)
Partitions: measurement_y2006m@2 FOR VALUES FROM ('2006-02-01") ('2006-03-01")
measurement_y2006m@3 FOR VALUES FROM ('2006-03-81") ('2006-04-01")

7 €\ crunchydata

List Partitioning

e Partitioned by explicitly listing which key value(s) appear(s) in each partition

CREATE TABLE cities (
city_id bigserial not null,
name text not null,
population int

) PARTITION BY LIST (initcap(name));

CREATE TABLE cities_west

PARTITION OF cities (

CONSTRAINT city_id_nonzero CHECK (city_id !'= 0)
) FOR VALUES IN ('Los Angeles', 'San Francisco');

=# \d+ cities
Table "public.cities"
Column Type | Collation | Nullable | Default | Storage | Stats target
Description
+ R T T T R L

city_id | bigint | | not null | nextval('cities_city_id_seq'::regclass) | plain |
name | text | | not null | | extended |
population | integer | | | | plain |
Partition key: LIST (initcap(name))

Partitions: cities_west FOR VALUES IN ('Los Angeles', 'San Francisco')

'Hash Partitioning

Used when you want to partition a randomized, growing data set evenly or don't know
data distribution in advance

CREATE TABLE users (
username text not null,
password text,

created_on timestamptz not null default now(),
id_admin bool not null default false
) PARTITION BY HASH (username);

MODULUS is the number of partitions, and REMAINDER is a number, 0 or more, but
less than MODULUS.

CREATE TABLE users_p©@ PARTITION primary (username) VALUES (MODULUS
CREATE TABLE users_p1 PARTITION primary (username) VALUES (MoDULUS
CREATE TABLE users_p2 PARTITION primary (username) VALUES (MODULUS
CREATE TABLE users_p3 PARTITION primary (username) VALUES (MoDULUS

REMAINDER
REMAINDER
REMAINDER
REMAINDER
REMAINDER
REMAINDER
REMAINDER
REMAINDER

CREATE TABLE users_p4 PARTITION primary (username) VALUES (MODULUS
CREATE TABLE users_p5 PARTITION primary (username) VALUES (MoDULUS
CREATE TABLE users_p6 PARTITION primary (username) VALUES (MODULUS
CREATE TABLE users_p7 PARTITION primary (username) VALUES (MoDULUS

00 0O 0O 0O 0O 0O 0O 0O

@ crunchydata

Hash Partitioning

\d+ users
Table "public.users”
Collation Nullable | Default Storage Stats target
username extended
password extended
created_on | timestamp with time zone not null | now() plain
id_admin boolean not null false plain

Partition key: HASH (username)

Partitions: users_p@ FOR VALUES WITH (modulus
users_p1 FOR VALUES WITH (modulus
users_p2 FOR VALUES WITH (modulus
users_p3 FOR VALUES WITH (modulus
users_p4 FOR VALUES WITH (modulus
users_p5 FOR VALUES WITH (modulus
users_p6 FOR VALUES WITH (modulus
users_p7 FOR VALUES WITH (modulus

[
__ L

I

I

I

I

remainder
remainder
remainder
remainder
remainder
remainder
remainder
remainder

00 00 0O 00 O 0O O

\d+ users_p1
Table "public.users_p1"

Collation | Nullable | Default Storage Stats target
username extended
password extended
created_on | timestamp with time zone not null plain
id_admin boolean not null false plain

Partition of: users FOR VALUES WITH (modulus 8, remainder 1)
Partition constraint: satisfies_hash_partition('1161847'::0id, 8, 1, username)
Indexes:

"users_p1_pkey" PRIMARY KEY, btree (username)

Description

I
L
I
I
I
I

Description

~\crunchydata

(¢

Hash Partitioning

\copy users (username) from stdin;
proffers
babbles
cents
choose
chalked
redoubts
pitting
coddling
relieves
wooing
codgers
sinewy
separate
ferry
crusty
cursing
hawkers
deducted
gaseous
voyagers
\.

crunchydata

'Hash Partitioning

SELECT tableoid::regclass as partition_name, count(*) FROM users GROUP BY 1 ORDER BY 1;

partition_name | count

users_p@
users_p1
users_p2
users_p3
users_p4
users_pS
users_pb6
users_p7
(8 rows)

_WWNW=_UI N

e If you can identify a column to partition data by, range or list are much better than hash
long term

e Unable to add/remove child tables without recreating entire partition set

e Data often becomes unbalanced unless it is actually random.

e Even UUIDs can end up unbalanced. Look into UUID7/ULID (sortable, time-based
UUID)

12 €\ crunchydata

'A Note About Identity

SQL standard for managing table sequences

Better handling of sequence permissions when tied to a table

Better enforcement of only allowing sequence use for column values
Easier to remove sequences from a table

Only supported properly with declarative partitioning

Only works when entering data through the parent table

CREATE TABLE new_table (

id int GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY,
data text

)

13 €\ crunchydata

'Updating Partitioned Data

14

Support added in PG11

When an UPDATE causes a row to no longer match the partition constraint,
PG will try to move it to a different partition where it does match the partition
constraint

Same as normal updates, behind the scenes does a DELETE/INSERT, but
likely more expensive since it's between tables.

Limited UPSERT support (INSERT ... ON CONFLICT ..))
o DO UPDATE works if there's a matching unique constraint with the partition key

€\ crunchydata

'Default Partition

Added in PG11

Handle partition values that do not have a defined child

Anti-constraint of all existing children, updated when child added or removed
Cannot add a new child table if that child's constraint matches data in default.
Must move data out first.

e |eaving data in DEFAULT can have massive performance penalties for both
queries and DDL

o Adding a new child causes scan of entire default to see if any data matches new constraint

ALTER TABLE [parent_table] ATTACH PARTITION [partition_name] DEFAULT;

15 €\ crunchydata

Partition Pruning/Constraint Exclusion

e Running a query with a condition that does NOT include partition column

=# EXPLAIN ANALYZE SELECT * FROM measurement WHERE city_id < 5;
QUERY PLAN

Append (cost=8.21..223.75 rows=4184 width=24) (actual time=0.621..0.051 rows=4 loops=1)
-> Bitmap Heap Scan on measurement_20060201 (cost=8.21..24.74 rows=523 width=24) (actual time=0.020..0.021
rows=4 loops=1)
Recheck Cond: (city_id < 5)
Heap Blocks: exact=1
-> Bitmap Index Scan on measurement_20060201_pkey (cost=0.00..8.07 rows=523 width=0) (actual
time=0.013..0.013 rows=4 loops=1)
Index Cond: (city_id < 5)
-> Bitmap Heap Scan on measurement_20060202 (cost=8.21..24.74 rows=523 width=24) (actual time=0.003..0.003
rows=0 loops=1)
Recheck Cond: (city_id < 5)
-> Bitmap Index Scan on measurement_20060202_pkey (cost=0.00..8.07 rows=523 width=0) (actual
time=0.002..0.002 rows=0 loops=1)

Index Cond: (city_id < 5)

[...]
-> Bitmap Index Scan on measurement_20060207_pkey (cost=0.00..8.07 rows=523 width=0) (actual

time=0.001..0.001 rows=0 loops=1)

Index Cond: (city_id < 5)

-> Seq Scan on measurement_default (cost=0.00..29.62 rows=523 width=24) (actual time=0.007..0.007 rows=0

loops=1)
Planning Time: 0.354 ms
Execution Time: 0.168 ms
(34 rows)

crunchydata

'Partition Pruning/Constraint Exclusion

e Running a query with a condition that DOES include partition column

=# EXPLAIN ANALYZE SELECT * FROM measurement WHERE logtime < '2006-02-04'::.date;
QUERY PLAN

Append (cost=0.00..257.92 rows=4184 width=24) (actual time=0.018..0.053 rows=72 loops=1)
Subplans Removed: 4
-> Seq Scan on measurement_20060201 (cost=0.00..29.62 rows=523 width=24) (actual time=0.018..0.027 rows=24 loops=1)
Filter: (logtime < '2006-02-04'::date)
-> Seq Scan on measurement_20060202 (cost=0.00..29.62 rows=523 width=24) (actual time=0.006..0.010 rows=24 loops=1)
Filter: (logtime < '2006-02-04'::date)
-> Seq Scan on measurement_20060203 (cost=0.00..29.62 rows=523 width=24) (actual time=0.004..0.008 rows=24 loops=1)
Filter: (logtime < '2006-02-04'::date)
-> Seq Scan on measurement_default (cost=0.00..29.62 rows=523 width=24) (actual time=0.002..0.002 rows=0 loops=1)
Filter: (logtime < '2006-02-04'::date)
Planning Time: 2.748 ms
Execution Time: 0.118 ms
(12 rows)

7 €\ crunchydata

'Coming Soon™

e Improved query performance for partition sets with many tables.
o Patch in current commitfest

e Global Indexes

o Work has slowly been ongoing for a while, even before partitioning
o Many discussions on hackers list about it

18 €\ crunchydata

'PostgreSQL Partition Manager (pg_partman)

19

Originally created to better manage "the old way" when 9.1 introduced the
extension system

Declarative now manages triggers, constraints, & inheritance
So is partman still needed?

Many other things to manage and consider outside of child table creation

htips://github.com/pgpartman/pg_partman

€\ crunchydata

'Still need pg_partman?

20

Easily installed as an Extension

Pre-creates child tables to avoid contention
o Declarative does not automatically create child tables
o Creating on demand can cause transaction backlog
Currently used for time & integer/id based partitioning
o New child tables needed indefinitely
o Most other situations are a one-time setup
o Version 5.1 will support LIST partitioning for single id values
Retention management
o Automatically detach/drop old tables based on configured intervals
o Convenience script to help retain old tables as dump files

Automatically creates default table (if desired)

€\ crunchydata

'Additional partman features

e Many options can be overwhelming. Likely only need a few.
e Background Worker to handle maintenance without third-party scheduler

e More easily partition existing table
o Online & offline partitioning options depending on situation
e Handle naming length limits

63 byte limit on all object names. PG truncates longer names

Partition suffix often indicates child property. Truncation could cut that off.

partman truncates the base table name and then adds suffix

Tip: Keep partition names as short as possible, especially with ID-based partitioning

e Non-partition column constraint exclusion

o If old data is unchanging, creates a constraint based on existing data
o Allows query performance optimizations outside the partition column

21 €\ crunchydata

o O O O

'Additional partman features

e Sub-partitioning support
Negligible performance gains outside of VERY large tables (multi-terabyte)
May even cause performance degradation
Data always lives at lowest level
Some business logic requires additional separation of data
e Monitoring
o pg_jobmon extension
m Create alerting based around errors encountered during maintenance
m Can be used to provide step-based logging inside any function without rolled back
transactions undoing the logging within the database
o \Version 5.1 adds config column with last successful runtime per partition set

e \Version 5 dropped trigger-based partitioning support

o O O O

22 €\ crunchydata

'Current Issues In Core

e No Global Index
o Cannot create a unique index on the parent that does not include the partition column(s)
e Unlogged is not properly inherited
o Running ALTER TABLE to set OR unset unlogged property on parent does nothing in catalog
and therefore inherits nothing to children
o Because it changes nothing in catalog, you cannot change unlogged status of parent
e Dropping child tables with foreign keys TO the partition set
o |f DROP ... CASCADE is run on a child table, drops the entire FK relation for the entire set
o Must clean out all FK related data first before non-cascade drop can be done

e Relation options not inherited from parent (privileges, autovac, etc)
e Replica Identity not inherited from parent

23 €\ crunchydata

'Workarounds w/ partman!

e Apply property to partman's template table

o Non-partition column primary keys, unique indexes & unique index tablespaces
m Only enforced on at individual child table level

o Relation-specific options (autovac, storage, etc)

o Unlogged status

e Privileges from parent

o Non-inheritance likely intentional
o Flag in partman can do this to allow direct access to child tables
o Direct access bypasses tuple routing and partition pruning bottlenecks

e Replica ldentity from parent (upcoming version 5.1)

24 €\ crunchydata

'Partitioning in PostgreSQL

e Partitioning now a first-class feature in PostgreSQL
o Versions 10 to 16 saw vast improvements following PG's iterative development process
e Primary reason to partition is data retention

e Recommend attempting query tuning before going straight to partitioning

o You may see query performance reduced with partitioning vs examining the query plan and
tuning the database or your queries

e Would prefer that pg_partman be made obsolete!

25 €\ crunchydata

'Thank you!

e These slides - http://slides.keithf4.com/state of partitioning.pdf

e PostgreSQL Home Page - postgresgl.org

e Crunchy Data Solutions, Inc - crunchydata.com

e Planet PostgreSQL Community News Feed - planet.postgresqgl.org

e PostgreSQL Extension Network - pgxn.org

26 €\ crunchydata

http://slides.keithf4.com/state_of_partitioning.pdf
https://www.postgresql.org
https://www.crunchydata.com
https://planet.postgresql.org
https://www.pgxn.org

