
The State of Partitioning
Where Partitioning Has Been
Where It Is
Where It's Going

Keith Fiske
http://www.keithf4.com
http://www.crunchydata.com

Who Am I

● Senior Database Engineer at Crunchy Data
● Working with PostgreSQL since 8.3
● Author of several popular third party PostgreSQL extensions including

○ pg_partman - https://github.com/pgpartman/pg_partman
○ pgMonitor - https://github.com/CrunchyData/pgmonitor
○ pg_jobmon - https://github.com/omniti-labs/pg_jobmon

● Provide PostgreSQL training and develop solutions to make PostgreSQL
easier to use

2

https://github.com/pgpartman/pg_partman
https://github.com/CrunchyData/pgmonitor
https://github.com/omniti-labs/pg_jobmon

What is Partitioning?

● Organization of data into logical "chunks" or partitions

● Each partition is generally its own table

● Rules dictate where data goes and constrain data within a partition

3

Why Partition Tables?

● Easier to manage data and space

Deletion of large amounts of data in PostgreSQL can be expensive and often does not
return disk space to the OS. Dropping a table is quick and almost immediately returns
disk space. Data retention is the primary reason for partitioning in PostgreSQL

● Improves table maintenance

The VACUUM process in PostgreSQL grows in expense as table size grows. Smaller
tables are easier for VACUUM to manage and can potentially be skipped

● Query Performance
As tables grow in size, read and write performance may be impacted. On extremely
large tables, partition pruning in the query plan can be a noticeable benefit. Avoids
larger index & tables scans.

4

The Old Way

● Table Inheritance
○ Child tables that inherit their properties from a parent table

● Triggers
○ Triggers on the parent that route the data to the proper child

● Constraints
○ Constraints on the child tables that limit data that can exist inside them

● All this had to be manually managed (or custom automation written) and was
extremely inefficient outside of retention management.

● May still be needed in some very narrow use-cases

5

The New Way

● Declarative Partitioning (aka native)

● SQL syntax commands

● Range, List, & Hash

● Internal tuple routing and partition pruning are far more efficient than triggers
and constraint exclusion

6

Range Partitioning
● Partitioned into ranges by one or more columns with no overlap between partitions. Ex:

Time/Integer

7

CREATE TABLE measurement (
 city_id int not null,
 logdate date not null,
 peaktemp int,
 unitsales int
) PARTITION BY RANGE (logdate);

CREATE TABLE measurement_y2006m02 PARTITION OF measurement
 FOR VALUES FROM ('2006-02-01') TO ('2006-03-01');

CREATE TABLE measurement_y2006m03 PARTITION OF measurement
 FOR VALUES FROM ('2006-03-01') TO ('2006-04-01');

=# \d+ measurement
 Table "public.measurement"
 Column | Type | Collation | Nullable | Default | Storage | Stats target | Description
-----------+---------+-----------+----------+---------+---------+--------------+-------------
 city_id | integer | | not null | | plain | |
 logdate | date | | not null | | plain | |
 peaktemp | integer | | | | plain | |
 unitsales | integer | | | | plain | |
Partition key: RANGE (logdate)
Partitions: measurement_y2006m02 FOR VALUES FROM ('2006-02-01') TO ('2006-03-01'),
 measurement_y2006m03 FOR VALUES FROM ('2006-03-01') TO ('2006-04-01')

List Partitioning
● Partitioned by explicitly listing which key value(s) appear(s) in each partition

8

CREATE TABLE cities (
 city_id bigserial not null,
 name text not null,
 population int
) PARTITION BY LIST (initcap(name));

CREATE TABLE cities_west
 PARTITION OF cities (
 CONSTRAINT city_id_nonzero CHECK (city_id != 0)
) FOR VALUES IN ('Los Angeles', 'San Francisco');

=# \d+ cities
 Table "public.cities"
 Column | Type | Collation | Nullable | Default | Storage | Stats target |
Description
------------+---------+-----------+----------+---+----------+--------------+---

 city_id | bigint | | not null | nextval('cities_city_id_seq'::regclass) | plain | |
 name | text | | not null | | extended | |
 population | integer | | | | plain | |
Partition key: LIST (initcap(name))
Partitions: cities_west FOR VALUES IN ('Los Angeles', 'San Francisco')

Hash Partitioning
● Used when you want to partition a randomized, growing data set evenly or don't know

data distribution in advance

● MODULUS is the number of partitions, and REMAINDER is a number, 0 or more, but
less than MODULUS.

9

CREATE TABLE users (
 username text not null,
 password text,
 created_on timestamptz not null default now(),
 id_admin bool not null default false
) PARTITION BY HASH (username);

CREATE TABLE users_p0 PARTITION OF users (primary key (username)) FOR VALUES WITH (MODULUS 8, REMAINDER 0);
CREATE TABLE users_p1 PARTITION OF users (primary key (username)) FOR VALUES WITH (MODULUS 8, REMAINDER 1);
CREATE TABLE users_p2 PARTITION OF users (primary key (username)) FOR VALUES WITH (MODULUS 8, REMAINDER 2);
CREATE TABLE users_p3 PARTITION OF users (primary key (username)) FOR VALUES WITH (MODULUS 8, REMAINDER 3);
CREATE TABLE users_p4 PARTITION OF users (primary key (username)) FOR VALUES WITH (MODULUS 8, REMAINDER 4);
CREATE TABLE users_p5 PARTITION OF users (primary key (username)) FOR VALUES WITH (MODULUS 8, REMAINDER 5);
CREATE TABLE users_p6 PARTITION OF users (primary key (username)) FOR VALUES WITH (MODULUS 8, REMAINDER 6);
CREATE TABLE users_p7 PARTITION OF users (primary key (username)) FOR VALUES WITH (MODULUS 8, REMAINDER 7);

Hash Partitioning

10

\d+ users
 Table "public.users"
 Column | Type | Collation | Nullable | Default | Storage | Stats target | Description
------------+--------------------------+-----------+----------+---------+----------+--------------+-------------
 username | text | | not null | | extended | |
 password | text | | | | extended | |
 created_on | timestamp with time zone | | not null | now() | plain | |
 id_admin | boolean | | not null | false | plain | |
Partition key: HASH (username)
Partitions: users_p0 FOR VALUES WITH (modulus 8, remainder 0),
 users_p1 FOR VALUES WITH (modulus 8, remainder 1),
 users_p2 FOR VALUES WITH (modulus 8, remainder 2),
 users_p3 FOR VALUES WITH (modulus 8, remainder 3),
 users_p4 FOR VALUES WITH (modulus 8, remainder 4),
 users_p5 FOR VALUES WITH (modulus 8, remainder 5),
 users_p6 FOR VALUES WITH (modulus 8, remainder 6),
 users_p7 FOR VALUES WITH (modulus 8, remainder 7)

\d+ users_p1
 Table "public.users_p1"
 Column | Type | Collation | Nullable | Default | Storage | Stats target | Description
------------+--------------------------+-----------+----------+---------+----------+--------------+-------------
 username | text | | not null | | extended | |
 password | text | | | | extended | |
 created_on | timestamp with time zone | | not null | now() | plain | |
 id_admin | boolean | | not null | false | plain | |
Partition of: users FOR VALUES WITH (modulus 8, remainder 1)
Partition constraint: satisfies_hash_partition('1161847'::oid, 8, 1, username)
Indexes:
 "users_p1_pkey" PRIMARY KEY, btree (username)

Hash Partitioning

11

\copy users (username) from stdin;
proffers
babbles
cents
choose
chalked
redoubts
pitting
coddling
relieves
wooing
codgers
sinewy
separate
ferry
crusty
cursing
hawkers
deducted
gaseous
voyagers
\.

Hash Partitioning

12

SELECT tableoid::regclass as partition_name, count(*) FROM users GROUP BY 1 ORDER BY 1;

 partition_name | count
----------------+-------
 users_p0 | 2
 users_p1 | 5
 users_p2 | 1
 users_p3 | 3
 users_p4 | 2
 users_p5 | 3
 users_p6 | 3
 users_p7 | 1
(8 rows)

● If you can identify a column to partition data by, range or list are much better than hash
long term

● Unable to add/remove child tables without recreating entire partition set
● Data often becomes unbalanced unless it is actually random.
● Even UUIDs can end up unbalanced. Look into UUID7/ULID (sortable, time-based

UUID)

A Note About Identity

● SQL standard for managing table sequences
● Better handling of sequence permissions when tied to a table
● Better enforcement of only allowing sequence use for column values
● Easier to remove sequences from a table
● Only supported properly with declarative partitioning
● Only works when entering data through the parent table

13

CREATE TABLE new_table (
 id int GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY,
 data text
);

Updating Partitioned Data

● Support added in PG11
● When an UPDATE causes a row to no longer match the partition constraint,

PG will try to move it to a different partition where it does match the partition
constraint

● Same as normal updates, behind the scenes does a DELETE/INSERT, but
likely more expensive since it's between tables.

● Limited UPSERT support (INSERT … ON CONFLICT …)
○ DO UPDATE works if there's a matching unique constraint with the partition key

14

Default Partition

● Added in PG11
● Handle partition values that do not have a defined child
● Anti-constraint of all existing children, updated when child added or removed
● Cannot add a new child table if that child's constraint matches data in default.

Must move data out first.
● Leaving data in DEFAULT can have massive performance penalties for both

queries and DDL
○ Adding a new child causes scan of entire default to see if any data matches new constraint

15

ALTER TABLE [parent_table] ATTACH PARTITION [partition_name] DEFAULT;

Partition Pruning/Constraint Exclusion
● Running a query with a condition that does NOT include partition column

16

=# EXPLAIN ANALYZE SELECT * FROM measurement WHERE city_id < 5;
 QUERY PLAN
--
 Append (cost=8.21..223.75 rows=4184 width=24) (actual time=0.021..0.051 rows=4 loops=1)
 -> Bitmap Heap Scan on measurement_20060201 (cost=8.21..24.74 rows=523 width=24) (actual time=0.020..0.021
rows=4 loops=1)
 Recheck Cond: (city_id < 5)
 Heap Blocks: exact=1
 -> Bitmap Index Scan on measurement_20060201_pkey (cost=0.00..8.07 rows=523 width=0) (actual
time=0.013..0.013 rows=4 loops=1)
 Index Cond: (city_id < 5)
 -> Bitmap Heap Scan on measurement_20060202 (cost=8.21..24.74 rows=523 width=24) (actual time=0.003..0.003
rows=0 loops=1)
 Recheck Cond: (city_id < 5)
 -> Bitmap Index Scan on measurement_20060202_pkey (cost=0.00..8.07 rows=523 width=0) (actual
time=0.002..0.002 rows=0 loops=1)
 Index Cond: (city_id < 5)
[...]
 -> Bitmap Index Scan on measurement_20060207_pkey (cost=0.00..8.07 rows=523 width=0) (actual
time=0.001..0.001 rows=0 loops=1)
 Index Cond: (city_id < 5)
 -> Seq Scan on measurement_default (cost=0.00..29.62 rows=523 width=24) (actual time=0.007..0.007 rows=0
loops=1)
 Planning Time: 0.354 ms
 Execution Time: 0.168 ms
(34 rows)

Partition Pruning/Constraint Exclusion

● Running a query with a condition that DOES include partition column

17

=# EXPLAIN ANALYZE SELECT * FROM measurement WHERE logtime < '2006-02-04'::date;
 QUERY PLAN

 Append (cost=0.00..257.92 rows=4184 width=24) (actual time=0.018..0.053 rows=72 loops=1)
 Subplans Removed: 4
 -> Seq Scan on measurement_20060201 (cost=0.00..29.62 rows=523 width=24) (actual time=0.018..0.027 rows=24 loops=1)
 Filter: (logtime < '2006-02-04'::date)
 -> Seq Scan on measurement_20060202 (cost=0.00..29.62 rows=523 width=24) (actual time=0.006..0.010 rows=24 loops=1)
 Filter: (logtime < '2006-02-04'::date)
 -> Seq Scan on measurement_20060203 (cost=0.00..29.62 rows=523 width=24) (actual time=0.004..0.008 rows=24 loops=1)
 Filter: (logtime < '2006-02-04'::date)
 -> Seq Scan on measurement_default (cost=0.00..29.62 rows=523 width=24) (actual time=0.002..0.002 rows=0 loops=1)
 Filter: (logtime < '2006-02-04'::date)
 Planning Time: 2.748 ms
 Execution Time: 0.118 ms
(12 rows)

Coming Soon™

● Improved query performance for partition sets with many tables.
○ Patch in current commitfest

● Global Indexes
○ Work has slowly been ongoing for a while, even before partitioning
○ Many discussions on hackers list about it

18

PostgreSQL Partition Manager (pg_partman)

● Originally created to better manage "the old way" when 9.1 introduced the
extension system

● Declarative now manages triggers, constraints, & inheritance

● So is partman still needed?

● Many other things to manage and consider outside of child table creation

19

https://github.com/pgpartman/pg_partman

Still need pg_partman?

● Easily installed as an Extension
● Pre-creates child tables to avoid contention

○ Declarative does not automatically create child tables
○ Creating on demand can cause transaction backlog

● Currently used for time & integer/id based partitioning
○ New child tables needed indefinitely
○ Most other situations are a one-time setup
○ Version 5.1 will support LIST partitioning for single id values

● Retention management
○ Automatically detach/drop old tables based on configured intervals
○ Convenience script to help retain old tables as dump files

● Automatically creates default table (if desired)

20

Additional partman features

● Many options can be overwhelming. Likely only need a few.
● Background Worker to handle maintenance without third-party scheduler
● More easily partition existing table

○ Online & offline partitioning options depending on situation

● Handle naming length limits
○ 63 byte limit on all object names. PG truncates longer names
○ Partition suffix often indicates child property. Truncation could cut that off.
○ partman truncates the base table name and then adds suffix
○ Tip: Keep partition names as short as possible, especially with ID-based partitioning

● Non-partition column constraint exclusion
○ If old data is unchanging, creates a constraint based on existing data
○ Allows query performance optimizations outside the partition column

21

Additional partman features

● Sub-partitioning support
○ Negligible performance gains outside of VERY large tables (multi-terabyte)
○ May even cause performance degradation
○ Data always lives at lowest level
○ Some business logic requires additional separation of data

● Monitoring
○ pg_jobmon extension

■ Create alerting based around errors encountered during maintenance
■ Can be used to provide step-based logging inside any function without rolled back

transactions undoing the logging within the database
○ Version 5.1 adds config column with last successful runtime per partition set

● Version 5 dropped trigger-based partitioning support

22

Current Issues In Core

● No Global Index
○ Cannot create a unique index on the parent that does not include the partition column(s)

● Unlogged is not properly inherited
○ Running ALTER TABLE to set OR unset unlogged property on parent does nothing in catalog

and therefore inherits nothing to children
○ Because it changes nothing in catalog, you cannot change unlogged status of parent

● Dropping child tables with foreign keys TO the partition set
○ If DROP … CASCADE is run on a child table, drops the entire FK relation for the entire set
○ Must clean out all FK related data first before non-cascade drop can be done

● Relation options not inherited from parent (privileges, autovac, etc)
● Replica Identity not inherited from parent

23

Workarounds w/ partman!

● Apply property to partman's template table
○ Non-partition column primary keys, unique indexes & unique index tablespaces

■ Only enforced on at individual child table level
○ Relation-specific options (autovac, storage, etc)
○ Unlogged status

● Privileges from parent
○ Non-inheritance likely intentional
○ Flag in partman can do this to allow direct access to child tables
○ Direct access bypasses tuple routing and partition pruning bottlenecks

● Replica Identity from parent (upcoming version 5.1)

24

Partitioning in PostgreSQL

● Partitioning now a first-class feature in PostgreSQL
○ Versions 10 to 16 saw vast improvements following PG's iterative development process

● Primary reason to partition is data retention
● Recommend attempting query tuning before going straight to partitioning

○ You may see query performance reduced with partitioning vs examining the query plan and
tuning the database or your queries

● Would prefer that pg_partman be made obsolete!

25

Thank you!

● These slides - http://slides.keithf4.com/state_of_partitioning.pdf

● PostgreSQL Home Page - postgresql.org

● Crunchy Data Solutions, Inc - crunchydata.com

● Planet PostgreSQL Community News Feed - planet.postgresql.org

● PostgreSQL Extension Network - pgxn.org

26

http://slides.keithf4.com/state_of_partitioning.pdf
https://www.postgresql.org
https://www.crunchydata.com
https://planet.postgresql.org
https://www.pgxn.org

