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Who am I?

CEO & founder of Tempesta Technologies (https://tempesta-tech.com/)

Tempesta FW – ultra-fast & secure Linux kernel web accelerator
https://github.com/tempesta-tech/tempesta

● volumetric DDoS protection
● behavior analysis against web scraping bots

Custom high-performance projects:
● WAF mentioned in Gartner magic quadrant
● contributed to MariaDB and Percona XtraDB Cluster engines
● Ulra-scalable kernel bypass NFS and S3 servers



  

What’s this all about

Web cache for Tempesta FW (a hybrid of an HTTP accelerator & firewall)

● softirq (near real-time)

● designed for DDoS mitigation (in-memory)
● a lot of data (persistent)

Database data structures assessment
● lf_hash get performance regression since the bucket size won't 

decrease
https://jira.mariadb.org/browse/MDEV-20630

● PostgreSQL dynamic hash tables (per bucket locks)

https://jira.mariadb.org/browse/MDEV-20630


  

Tail latency

e.g. CDN with a 1000 nodes with average request time ~20-50ms
https://tempesta-tech.com/blog/nginx-tail-latency

1 / 10,000 requests take more than 2-3 seconds

1k nodes with 100KRPS

10k users may observe no header image on your site

A sub-second task may take seconds on a busy server with 1 sec 
secheduling

Deterministic data structure is crucial!
(no rehashing)



  

Data structure as a database

Shared cache (each CPU can process a client request to a particular 
resource)

Hot path: lookup & insert

Lookups more than inserts (caching)

Deletions can be slow, but might block inserts



  

Tempesta DB

Part of Tempesta FW (a hybrid of a firewall and web-accelerator)

Linux kernel space (softirq – deferred interrupt context)

Can be concurrently accessed by many CPUs

In-memory database

Simple persistence by dumping mmap()’ed areas
=> offsets instead of pointers

Duplicate key entries (stale web responses)

Multiple indexes (e.g. URL or Vary for web cache) 



  

Stored data

Mostly large string keys with or without ordering requirements

Large variable-size records

● web-cache (URL or Vary indexes, ordering for PURGE)

● duplicate key entries (stale responses)

Small fixed-size records

● client accounts (complicated keys, e.g. User-Agent + IP)

● session cookies (short string keys)
● filter rules (IP address)

● IP addresses and network masks



  

Lock-free & wait-free

Lock-free (this talk)
● guaranteed system-wide progress
● an operation completes after a finite number of steps
● waiter helps to finish a conflicting operation

Wait-free
● guaranteed system-wide throughput (no starvation)
● all operations complete after a finite number of steps
● no livelocking

Obstruction-free (e.g. transactional memory)
● abort & retry



  

Lock-free deletions are tricky

Intermediary/helping nodes might be concurrently accessed along with 
the deleted node (insert can construct the whole path and just insert it)

Concurrent free() (e.g. a worker and eviction threads decide to 
remove the same item)

Memory fragmentation and/or garbage collection

Solutions
● the upper layer responsibility (e.g. by reference counting)
● RCU
● hazard pointers
● dummy nodes (split-ordered lists, skip trees)



  

Reclaming: hazard pointers

”Hazard Pointers: Safe Memory Reclamation for Lock-Free Objects”,
M.M. Michael, 2004

r/w: second thread-local (hazard) pointer

delete: check all thread-local hazard pointers

Pros
● memory can be freed immediately

Cons (overheads)
● readers must update hazard pointers
● every access requires hazard pointer setup
● requires sophisticated protocol to traverse linked data structures



  

Reclaming: RCU
(kernel softirq context, TREE, PREEMPT_NONE)

https://lwn.net/Kernel/Index/#Read-copy-update

update: create a new version of the data and update pointers atomically

not more than 10% updaters

Pros
● no read overhead – almost

no-op rcu_read_lock()

Cons
● reading must be fast
● defferred feeing may lag

“What is RCU? Part 2: Usage”, P.McKenney, 2007
https://lwn.net/Articles/263130/



  

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/percpu-refcount.h
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/lib/percpu-refcount.c

read path: per-cpu reference counters

cleanup: switch to atomic global counter to avoid new references

memory overhead: N objects on M CPUs

Reclaming: percpu_ref

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/percpu-refcount.h
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/lib/percpu-refcount.c


  

“Hazard Pointers for the Linux Kernel?”, P.McKenney,
https://docs.google.com/document/d/113WFjGlAW4m72xNbZWHUSE-yU2HIJnWpiXp91ShtgeE

“Hazard pointers in Linux kernel”, B.Feng, N.Upadhyay, P.McKenney, Linux Plumbers Conference 2024
https://www.youtube.com/watch?v=yoVLSKG2pZs

RCU vs hazard pointers vs percpu_ref

https://docs.google.com/document/d/113WFjGlAW4m72xNbZWHUSE-yU2HIJnWpiXp91ShtgeE


  

Trees vs hash tables

Hash table
● fast point queries
● need rehashing, which is bad for tail latency

Tree (binary tree, B-tree etc)
● ordering
● range queries

Trie (patricia/radix tree)
● no need rebalancing

=> effort on faster trie



  

Binary trees

e.g. std::map RB-tree

Requires rebalancing, rotations involving many nodes

Hard to implement lock-free

Hard to implement with fine-grained locking

    75% lookups, 25% inserts

    Hash table with per bucket locks:      80ms avg

    std::map with big RW spin-lock:       217ms avg



  

Hash tables

e.g. std::unordered_map

Bucket chains may grow infinitely
● ..but we can use trees instead of lists (almost HTrie)

Rehashing typically takes time and require a global lock
● great impact to tail latency!

Easy to implement fine-granular locks (per bucket)

Open addressing can be SIMD-accelerated
“Designing a Fast, Efficient, Cache-friendly Hash Table, Step by Step”, 
M.Kulukundis, https://www.youtube.com/watch?v=ncHmEUmJZf4 

...but with locking



  

Split-ordered lists

A lock-free extensible hash table
● tbb::concurrent_unordered_map
● MariaDB rw_trx_hash

Uses persistent dummy nodes
● significant degradation after removal

https://jira.mariadb.org/browse/MDEV-20630

Erasing in tbb::concurrent_unordered_map requires a lock



  

Radix/prefix/patricia tree (trie)

E.g. page table

Memory greedy on uniformly distributed keys in a large space

● Quiz: why malloc()’ed addresses are close to each other?

Height depends on the key length
● constant search time for integer keys



  

Radix/prefix/patricia tree (trie)

(Tree of hash tables with hash functions as part of the key)

Judy arrays & ART: 256-way nodes with adaptive compression
”Judy IV Shop Manual”, A.Silverstein, 2002
”The Adaptive Radix Tree: ARTful Indexing
for Main-Memory Databases”, V.Leis, 2013

● not cache conscious
● hard to make concurrent

No reconstruction
(e.g. rebalancing or rehashing)

Easy to make lock-free 



  

Path compression

Per-character trie uses to many memory accesses
/blog/nginx-tail-latency
/blog/web-cache-poisoning

Path compression
”The Adaptive Radix Tree: ARTful Indexing for Main-Memory Databases”, V.Leis, 
2013

Burst trie – no single child nodes



  

Burst trie

“Burst Tries: A Fast, Efficient Data Structure for String Keys”, S.Heinz, J.Zobel, 
H.E.Williams, 2002

Starts as a small hash table with small fixed collision buckets

Burst a bucket if it’s out of space – create a new hash level
● Can be adaptive: e.g. burst top-hitting buckets earlier

Poor performance on the start
=> bigger root node

Buckets reconstruction
(but with good scale)



  

HAT-trie

“HAT-trie: A Cache-conscious Trie-based Data Structure for Strings”, N.Askitis, 
R.Sinha, 2007

Cache-conscious burst trie
● intermediary nodes
● buckets as array hashes

”Cache-Conscious Collision Resolution in String Hash Tables”, N.Askitis, 
J.Zobel, 2005

Hash Array Mapped Tree (HAMT)
”Ideal Hash Trees”, P.Bagwell, 2000

Can preserve order (by the cost of constant size)



  

Memory allocation: data & index blocks

There is no need for fast insertion if memory allocation is slow

Stored entries deletion may lead to memory fragmentation

Small allocation area, so compress pointers
Small is beautiful: Techniques to minimise memory footprint - Steven Pigeon - 
CppCon 2019, https://www.youtube.com/watch?v=Dxy66x6v4HE

Split index and data blocks
● spacial locality: sequential accesses within a page
● data blocks are accessed after index, so keep index blocks together
● collision traverses data buckets, so keep them together



  

Index & data blocks

Index with data blocks, e.g. ellastic binary tree
http://wtarreau.blogspot.com/2011/12/elastic-binary-trees-ebtree.html

● fewer memory accesses for small data sets

Index in separate blocks, e.g. B-tree
● faser scans on large indexes

http://wtarreau.blogspot.com/2011/12/elastic-binary-trees-ebtree.html


  

Being conscious about x86-64 caches

Operates with 64 byte units (cache lines)

Caches are small and shared
● associativity (8-way) can make them even smaller
● e.g. 24 cores/48 threads: L1 - 64KB (per core), L3 - 128MB (shared)
● access times: L1 ~ 1 cycle, L2 ~ 10 cycles, L3 ~ 50 cycles
● TLB cache: L1 ~ 1024 pages

Concurrent update from different CPUs is ~x2 slower (atomics)

NUMA remote access is ~x2 slower

Virtual memory is addressed by 4KB pages



  

Tree nodes live inside the radix tree

a.0

c.0

a.1

c.1

a b

c

Application Tree



  

Going lock-free: x86-64 memory ordering

“Abusing Your Memory Model for Fun and Profit”, S.A.Bahra, P.Khuong,
CppCon 2019, https://www.youtube.com/watch?v=N07tM7xWF1U

Neither loads nor stores are reordered with like operations

Stores are not reordered with earlier loads

Locked instructions have a total order (atomics)

Loads may be reordered with earlier stores to different locations

             x = y = 0

                 CPU1            CPU2

                 x  = 1          y  = 1
                 r1 = y          r2 = x

    allowed: r1 = 0 and r2 = 0



  

Hardware Transaction Memory (Intel TSX)

Several generations of Intel CPUs, not for AMD

A transaction may never succeed, so only lock-elision

Only for low contended cache lines
● doesn’t work with the modern spin-locks

(e.g. MCS locks) (not single integer)?

Only for data in L1d cache and if 8-way associativity is enough

Makes sense for transactions smaller than 32 cache lines
https://natsys-lab.blogspot.com/2013/11/studying-intel-tsx-performance.html

Bad and dead since Alder Lake

https://natsys-lab.blogspot.com/2013/11/studying-intel-tsx-performance.html


  

Cache conscious data structures

Node access is access to 1 cache line (L1-L3 data caches)

Page locality (TLB cache)

Use a cache line fully on each memory access



  

Cache conscious data structures
(no lock-free)

CSB+-tree – cache conscious B+-tree
”Making B + -Trees Cache Conscious in Main Memory” by J.Rao and K.A.Ross, 
2000

● pointer to 1st child, all others are by offsets in contiguous memory
● expensive updates

FAST – binary tree with SIMD multi-node comparison
”FAST: Fast Architecture Sensitive Tree Search on Modern CPUs and GPUs”, C.Kim 
et al, 2010

CST-tree – cache conscious T-tree
”Making T-Trees Cache Conscious on Commodity Microprocessors”, I.Lee, 2011

● group index and data blocks, use indexes instead of pointers



  

Keys tradeoffs

Fixed-size hash values vs ordering (collision: keyi+1 != keyi+1)

Constant height (access time) vs infinite key length

Keys distribution is unknown, so perfect hashing is imposible



  

Tempesta DB HTrie

Cache conscious Burst Hash Trie

Lock-free
● lock-free block allocator for virtually contiguous memory

Persistence: mmap()’ed area is dumped eventually

● short offsets instead of pointers

Copy on updates

Hazard(-like) pointers for data reclaiming

Pointers stability vs better CPU cache utilization
● large stored data is used by pointers
● small data (e.g. an IP address) can be copied



  

Storing data in-place vs metadata

Data in bucket
● large copies
● a bucket can’t handle several big objects
● objects change their addresses

Metadata
● additional indirection layer (memory access)
● buckets can be smaller
● efficient copies



  

Memory allocation

Database shard (file) is up to 128GB

Each CPU works with local allocator within an extent
● for small records CPUs can share 1 extent

2 free lists: buckets and data blocks



  

Index node

const size_t HTRIE_BITS = 4;
const size_t HTRIE_FANOUT = 1 << HTRIE_BITS;
const size_t HTRIE_DBIT = 1 << (sizeof(int) * 8 – 1);

struct HtrieNode {
    uint32_t shifts[HTRIE_FANOUT];
};

1 bit is reserved for “last level” (data or index block offset)

Root node may resolve more bits (e.g. 8, 12, 16…)

1 index node = 1 cache line: 16 * sizeof(int) = 64 bytes

Maximum index: 231 * 64 = 128GB for one shard



  

Collision bucket

struct TdbHtrieBucket {
    // Each slot takes 2 bits:
    //   00 - slot is empty
    //   10 - regular occuped slot
    //   01 - record removal in progress
    //   11 - record write in progress  
    // (up to 32 collisions)
    uint64_t     col_map;
    . . .
};

// Acquire an empty collision slot
do {
    bm = ~(b->col_map | mask);                           
    if (unlikely(!bm))
        return -1;                                       
    b_free = fls64(bm);
    if (tdb_htrie_bckt_burst_threshold(b_free))
        return -1;
} while (sync_test_and_set_bit(b_free, &b->col_map));



  

Bucket creation

while (1) {
    node = htrie_descend(key);
    // Alloc and initialize the inserted bucket
    b = htrie_alloc_bucket();
    htrie_bckt_write_data(b, key, data, len, 0, rec);
    // Publish the new node
    unsigned int b_off = add2off(b);
    if (node->shifts[i].compare_exchange(0, b_off) == 0)
        return 0;
    // Somebody already inserted a bucket, rollback
    htrie_rollback_bucket(b);

}



  

Bucket with large/non-inplace data
(pointer stability in bursting buckets)

// No need to reallocate on the index
// insertion failure
o = htrie_alloc_data(dbh, len)));
rec = htrie_create_rec(dbh, o, key, data, &len);

while (1) {
    node = htrie_descend(key);

    // Alloc and initialize the inserted bucket
    b = htrie_alloc_bucket();
    htrie_bckt_write_data(b, key, data, len, 0, rec);
    // Publish the new node
    unsigned int b_off = add2off(b);
    if (node->shifts[i].compare_exchange(0, b_off)
           == 0)
        return 0;

    // Somebody already inserted a bucket, rollback
    htrie_rollback_bucket(b);

}



  

Bucket burst

retry: // ...descend and all the insertion code... 
while (1) { // key bits collision
    // Allocate a new index and bucket nodes,
    // copy buckets data and link from the new index

    // Link the new index with the new & old buckets
    if (CAS(node->shifts[i], new_index))
        goto retry;
    while (1) {
        curr_map = CAS(bucket->col_map, old_map,
                       new_map);

        if (curr_map = old_map)
            break;

        map = curr_map ^ map;
        // Copy records for the new collisions

        map = curr_map;

   }
}



  

Hazard bucket pointer: only one bucket is observed at a time

Buckets are scanned for some time
● keys are large, compound and part of stored object

Update: copy a bucket, even for a record removal
● Requires memory to remove a record

Mix hazard pointer with RCU



  

Reclaiming data
(Don’t delete empty index nodes, it’s just 64B)

struct TdbPerCpu {
    uint64_t  active_bckt; // hazard pointer
}

tdb_htrie_descend_get_bckt() {
    do {
        // get regular pointer to a bucket
        o = tdb_htrie_descend(dbh, key, bits, node);
        bckt = TDB_PTR(dbh, o);
        // write the per-CPU hazard pointer
        tdb_htrie_get_bucket(dbh, bckt);
        // check that the pointer hasn’t been changed
    } while (node->shifts[IDX(key, *bits)] != o);
    // use the bucket pointer
    return bckt;
}

htrie_remove() {
    // copy & update the backet, CAS() the index
    // check hazard pointers on all CPUs
}



  

Thank you! Questions?

Availability: https://github.com/tempesta-tech/blog/tree/master/htrie

Tempesta FW: https://github.com/tempesta-tech/tempesta

    Alexander Krizhanovsky

      ak@tempesta-tech.com
        @a_krizhanovsky

mailto:ak@tempesta-tech.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

