
SlackOps
Automation Framework
Joe Smith - @Yasumoto
Slack - @SlackHQ

© Slack Technologies, Inc - 2017 - @Yasumoto

Joe Smith
• Operations Engineer at Slack
• Previously at Google and Twitter
• Written mountains of Python
• Run lots and lots of servers- both bare metal and

AWS

© Slack Technologies, Inc - 2017 - @Yasumoto

Audience
• Reliability Engineering
• Operations
• DevOps
• SRE (or Production Engineering)

I consider these (and many others!) to have the same
thing:

The desire to build resilient systems

© Slack Technologies, Inc - 2017 - @Yasumoto

Agenda
1. Running Production Services - Why Automate?
2. Convert a runbook into a python tool
3. Setup your own Ops Repo

© Slack Technologies, Inc - 2017 - @Yasumoto

Approaches to
Resiliency
"We will take the site down today!" !
— Pretty much no one when they wake up

There are a few universal best practices which we can
use to inform how we structure our work.

© Slack Technologies, Inc - 2017 - @Yasumoto

Strategies
• Careful Planning and Procedures
• Extensive Documentation
• Good communication

© Slack Technologies, Inc - 2017 - @Yasumoto

Planning
• Some components are prioritized for speed while

others are meant to be canaried and analyzed
• Changes need to be staged to coordinate with each

other
• Give teams the tools and visibility they need to make

improvements and understand impact
• Identify your rollback strategy ahead of time

© Slack Technologies, Inc - 2017 - @Yasumoto

Documentation
• Each code or procedure change should be paired

with an update to easily-readable text
• Help your teammates and yourself weeks from now

when you need to understand how things work.
• Do not just describe how systems are structured,

explain why they are built that way!
• Additional context can inform future decisions

© Slack Technologies, Inc - 2017 - @Yasumoto

Communication
• Change Management - Coordinating release

schedules can be difficult
• Launch Channel - Announce changes, link to more

details in a feature-specific Slack channel for the
change

• Add links to commits, code reviews, threads in Slack,
mailing list posts, and StackOverflow questions

• This enables your team to benefit from the research
you've done

© Slack Technologies, Inc - 2017 - @Yasumoto

Review our Strategies
• Careful Planning and Procedures
• Extensive Documentation
• Good communication

© Slack Technologies, Inc - 2017 - @Yasumoto

Growing Pains
• Unexpected changes, forced roll-forwards
• Out of date runbooks
• Missed notifications

© Slack Technologies, Inc - 2017 - @Yasumoto

Good problems to
have
Generally, as the team grows, it's no longer possible to
understand everything that's happening at once.

This means the scope of what y'all work on is also
increasing!

© Slack Technologies, Inc - 2017 - @Yasumoto

How do tools help with this?1

1 https://davesgeekyideas.com/2016/02/11/thor-hammer-tool-kit/

© Slack Technologies, Inc - 2017 - @Yasumoto

Beyond Runbooks !
Turn a manual checklist into a testable, repeatable set
of steps anyone can run

Anytime you discover a sharp edge or workaround, this
can be codified in the tool

Reduce sections of "but if this happens, check this
dashboard and then do one of three things"

© Slack Technologies, Inc - 2017 - @Yasumoto

Code is readable
"The value of humans is to execute Judgement, the
value of computers is to execute instructions"
— Aron, teammate at Slack

Once you have defined the logic for a process, it can be
written out in a language for the future

Humans can also read code, but machines can execute
explicit instructions.

© Slack Technologies, Inc - 2017 - @Yasumoto

The Tooling Workflow
This process can evolve over a long time and generally
improve things.

• One person has all the knowledge in their head !
• That person writes down everything they know in a

runbook "
• Someone sees an annoying or complicated piece and

writes a small script to be run instead for a tiny part
of the process #

The next jump will be the most difficult part!
© Slack Technologies, Inc - 2017 - @Yasumoto

Maintenance
It feels great to have written your first tool!

You may be lucky and have no bugs !

Most likely there are some edge cases- that is okay and
expected!

Take some time to figure out what went wrong and
how to make things better.

© Slack Technologies, Inc - 2017 - @Yasumoto

The Tooling Workflow
• Later on, another part of the process can be added in

and the documentation further updated !
• Over time- the runbook becomes "Run this tool we

wrote, send bugs to the authors" "
• Finally- there is no longer an entry! The tool is run

automatically, or the system itself is able to solve
that problem #

© Slack Technologies, Inc - 2017 - @Yasumoto

Runbook to Automated Workflow
1. Brain !

2. Runbook "

3. Start of automation #

4. Automation evolution (safeguards) $

5. Self-contained Tool %

6. Fully Automated &

© Slack Technologies, Inc - 2017 - @Yasumoto

What does this look like?
• Let's lay out a very simple application
• Webservice with a database behind it
• Example will be replacing a failed database

© Slack Technologies, Inc - 2017 - @Yasumoto

! -> ☎ -> # -> $ -> %%%%
1. User makes DNS request (Route53)
2. Sent to a load balancer (ELB)
3. Request hits the webserver
4. Queries database (a cluster with one Leader and 3

followers)

© Slack Technologies, Inc - 2017 - @Yasumoto

Replacement
At some point, the inevitable happens. Machine failure.

Our first, trusty database has failed, and is out of
service.

We follow the procedures in our runbook.

© Slack Technologies, Inc - 2017 - @Yasumoto

Database Replacement Runbook - Page
1 of 2
1. On all follower hosts, execute STOP SLAVE

IO_THREAD

2. Run SHOW PROCESSLIST until all hosts show Has
read all relay log

3. On the host that is being promoted, run

1. STOP SLAVE

2. RESET MASTER

© Slack Technologies, Inc - 2017 - @Yasumoto

Database Replacement Runbook - Page
2 of 2
1. On the hosts that will not be promoted, run:

1. STOP SLAVE

2. CHANGE MASTER TO
MASTER_HOST='<hostname of new leader>'

2. Execute on the two followers: START SLAVE
3. Edit Webserver configuration: Remove the failed

database hostname with the hostname of the new
leader

© Slack Technologies, Inc - 2017 - @Yasumoto

Progress
So this works well for a while, but we add a few extra
clusters, and more machines.

We spend a lot of time keeping up, and make some
mistakes

Perilous Step 4: CHANGE MASTER TO
MASTER_HOST='<hostname'>

We may accidentally typo or copy-paste wrong, and all
of a sudden the followers think the wrong host is leader!

© Slack Technologies, Inc - 2017 - @Yasumoto

Solving this with tooling
First we need to pick a process we understand well so
we can automate it.

Changing the leader seems like something we can
automate!

Transition into Python for the rest of the talk

© Slack Technologies, Inc - 2017 - @Yasumoto

Building blocks
So.. how do we connect to hosts and execute
commands on them from Python?

We need to do two "fundamental" things

• Execute commands on other hosts
• Use SSH to run commands in a shell

• Find our hosts in the cluster
• Chef's nodes, puppet's manifests, AWS EC2 API,

etc
© Slack Technologies, Inc - 2017 - @Yasumoto

remote_execution.py
from fabric.api import env, run

def execute_command(hostname, command_string, quiet=False):
 """Connect to an external machine, run a command, and return its output.

 This should be used to handle any necessary side effects or preparation for connection.
 """
 env.use_ssh_config = True
 env.host_string = hostname
 try:
 fabric_output = run(command_string, warn_only=True, quiet=quiet)
 except NetworkError as error:
 return ""

 return fabric_output.stdout # Usually want stderr, return code too

© Slack Technologies, Inc - 2017 - @Yasumoto

Finding our hosts mysql.py
from host_management import search
from remote_execution import remote_call

def hosts_in_cluster(cluster_name):
 """Given a cluster name matching our hostname scheme, return all the hosts that belong to a cluster.

 Returns: ["hostnameA", "hostnameB", "hostnameC"]
 """
 return search(cluster_name)

def leader_and_followers(cluster_name):
 """The leader of a cluster is always the lowest-numbered hostname.

 Returns: ("clusterC1", ["clusterC2", "clusterC3", "clusterC4"])
 """
 cluster_hosts = sorted(hosts_in_cluster(cluster_name))
 return cluster_hosts[0], cluster_hosts[1:]

© Slack Technologies, Inc - 2017 - @Yasumoto

Picking the new leader - mysql.py
def change_leader(leader, followers):
 """Update followers to point to the new leader

 Parameters:
 leader: String, like "clusterC1"
 followers: List of Strings, like ["clusterC2", "clusterC3", "clusterC4"]
 """
 for follower in followers:
 print("Pointing {} to follow new leader: {}".format(follower, leader))
 execute_command(follower, "mysql -uadmin \"CHANGE MASTER TO MASTER_HOST='{}'\"".format(leader))

© Slack Technologies, Inc - 2017 - @Yasumoto

First Tool !
So now we can build our first tool- details on building it
will come later!
$./promote-mysql-follower --cluster-name=clusterA

Found hosts in clusterA: clusterA2, clusterA3, clusterA4

Pointing clusterA3 to follow clusterA2
Pointing clusterA4 to follow clusterA2

© Slack Technologies, Inc - 2017 - @Yasumoto

Better
This helps a bit- we only need to type the new leader's
name once, and we automatically detect the followers.

In fact this works out for a few weeks, but the next
time we have to perform this process, we accidentally
move too quickly.

We did not run SHOW PROCESSLIST to verify all hosts
had caught up to the relay log.

Let's fix that!

© Slack Technologies, Inc - 2017 - @Yasumoto

Detecting caught up relay log mysql.py
def relay_log_caught_up(cluster_name):
 cluster_hosts = hosts_in_cluster(cluster_name)
 for hostname in cluster_hosts:
 execute_command(hostname, "mysql -uadmin 'STOP SLAVE IO_THREAD'")
 while len(cluster_hosts) > 0:
 for hostname in cluster_hosts:
 output = remote_call(hostname, "mysql -uadmin 'SHOW PROCESSLIST\G'")
 if 'Has read all relay log' in output:
 cluster_hosts.remove(hostname)
 return True

© Slack Technologies, Inc - 2017 - @Yasumoto

New Runbook !

1. Run stop-relay-thread --cluster-
name=<cluster>

2. On new leader, run STOP SLAVE and RESET MASTER

3. ./promote-mysql-follower --cluster-
name=<cluster>

4. Once that has completed, run START SLAVE on the
two followers

5. Edit to Webserver configuration with leader's
© Slack Technologies, Inc - 2017 - @Yasumoto

Our first issue !
Time passes, and unfortunately a teammate runs the
script and gets an exception.
Traceback (most recent call last):
 File "/home/jmsmith/tools/stop-relay-thread", line 15, in stop-relay-thread
 File "/home/jmsmith/tools/remote_execution", line 25, in remote_execution
SSHConnectionTimeoutError: Could not connect to clusterD4

This looks like we were unable to connect to a host!

© Slack Technologies, Inc - 2017 - @Yasumoto

Timeouts and Exceptions

We want to make sure we can be resilient to errors but
also not loop forever

1. Handle SSHConnectionTimeoutError

2. Keep trying untiltimeout < CONNECTION_TIMEOUT

© Slack Technologies, Inc - 2017 - @Yasumoto

CONNECTION_TIMEOUT = 300
def relay_log_caught_up(cluster_name):
 cluster_hosts = hosts_in_cluster(cluster_name)
 for hostname in cluster_hosts:
 execute_command(hostname, "mysql -uadmin 'STOP SLAVE IO_THREAD'")
 timeout = 0
 # Continue until we run out of hosts or hit 5min
 while len(cluster_hosts) > 0 and timeout < CONNECTION_TIMEOUT:
 for hostname in cluster_hosts:
 try:
 output = execute_command(hostname, "mysql -uadmin 'SHOW PROCESSLIST\G'")
 except SSHConnectionTimeoutError as error:
 print("Error! Could not connect to {}: {}".format(hostname, error))
 if 'Has read all relay log' in output:
 cluster_hosts.remove(hostname)
 else:
 timeout += 30
 print("Giving {} another {} seconds".format(hostname, CONNECTION_TIMEOUT - timeout))
 time.sleep(30)
 if len(cluster_hosts) > 0:
 print("Warning! Could not connect to {} in time!".format(cluster_hosts))
 return False, cluster_hosts # Let the calling function know which hosts failed
 return True, []

© Slack Technologies, Inc - 2017 - @Yasumoto

Full Automation ✏
Fortunately it turned out the error was indeed
temporary.

After a few more weeks, we have some time to finalize
the automation!

© Slack Technologies, Inc - 2017 - @Yasumoto

Promote New Leader mysql.py
def promote_leader(hostname):
 retries = 0
 while retries < 3: # Only one host so we use retries
 retries += 1
 try:
 output = remote_call(hostname, "mysql -uadmin 'STOP SLAVE'; mysql -uadmin 'RESET MASTER'")
 return True
 except SSHConnectionTimeoutError as error: # We could also add a sleep
 print("Error! Could not connect to {}: {}".format(hostname, error))
 return False

© Slack Technologies, Inc - 2017 - @Yasumoto

def resume_replication(follower_hostnames):
 """TODO: Add retries + error handling"""
 for hostname in follower_hostnames:
 remote_call(hostname, "mysql -uadmin 'START SLAVE'")

© Slack Technologies, Inc - 2017 - @Yasumoto

promote-mysql-follower.py

import argparse

from mysql import (leader_and_followers, change_leader, relay_log_caught_up,
 promote_leader, resume_replication)

def main():
 parser = argparse.ArgumentParser(
 description='Replace a downed MySQL Cluster Leader')
 parser.add_argument("--cluster", type=str,
 help="Cluster Name (such as clusterA)")
 args = parser.parse_args()
 leader, followers = leader_and_followers(args.cluster)
 relay_log_caught_up(args.cluster)
 promote_leader(leader)
 change_leader(leader, followers)
 resume_replication(followers)

if __name__ == '__main__':
 main()

© Slack Technologies, Inc - 2017 - @Yasumoto

Final Runbook
1. To replace a database leader, run:

1. promote-mysql-follower --
cluster=<clusterName>

© Slack Technologies, Inc - 2017 - @Yasumoto

Process in Code
When there are issues, the code can be reviewed for
process changes, git history can be consulted, etc

No more "I forgot that was changed and followed the
old process!"

Each time someone submits an improvement or
workflow tweak, that will always be useful from now
on!

© Slack Technologies, Inc - 2017 - @Yasumoto

New procedure !
Let's say we also want to make sure we have a current
backup in place before we mess around with our
databases in the future.

We could write the following:

1. Verify the latest backup is in place
1. Compare the timestamp of the artifact in S3 with

the latest insert of the data
2. If the backup is not up to date, execute another

backup
© Slack Technologies, Inc - 2017 - @Yasumoto

Using boto3 python module
• AWS Has an Open Source python module named

boto3
• Well respected in the community
• Best way to interact with Amazon Web Services API

from Python

© Slack Technologies, Inc - 2017 - @Yasumoto

mysql.py

import time
import boto3

BACKUPS_BUCKET_NAME="tools-backups"
THIRTY_MINUTES = 60 * 30 # 60s per minute, 30 min

def latest_mysql_backups(cluster_name):
 timestamp_filename = "tmp_{}_timestamp.txt".format(cluster_name)
 s3 = boto3.client('s3')
 s3.download_file(BACKUPS_BUCKET_NAME,
 "{}-backups-timestamp".format(cluster_name),
 timestamp_filename)
 with open(timestamp_filename, 'r') as fp:
 written = int(fp.read())
 now = time.time()
 if now - THIRTY_MINUTES > written:
 return False
 return True

© Slack Technologies, Inc - 2017 - @Yasumoto

Creating a Python
Repo2

2 http://massey.dur.ac.uk/training/python/assets/gif/pixel_python.gif

© Slack Technologies, Inc - 2017 - @Yasumoto

Grouping Code
Terms used to describe your layout

• ! Module

• a .py file which contains python

• " Distribution
• All the files that make up your codebase
• Can be bundled and released as the same version

© Slack Technologies, Inc - 2017 - @Yasumoto

Multiple Distributions 3

How do we keep track of not only our code, but the
other distrubutions we depend on?

3 http://www.gifmania.us/Animated-Gifs-Technology/Free-Animations-Computing/Images-Computer-Folders/Yellow-
Folder-89637.gif

© Slack Technologies, Inc - 2017 - @Yasumoto

PEX !
There is a solution based on (and referenced in) PEP
441!

There are some amazing things you can do- please
take a look at Brian Wickman's WTF is PEX talk for
details!

This is the basis for how we bundle up all of our code
into one easy-to-handle tool.

© Slack Technologies, Inc - 2017 - @Yasumoto

http://www.youtube.com/watch?v=NmpnGhRwsu0

PEX
Inside of a properly setup tools directory:

$ pex -o tools.pex .
$./tools.pex
Python 2.7.12
>>> import mysql
>>> mysql.hosts_in_cluster("clusterA")
["clusterA1", "clusterA2", "clusterA3"]
>>>

© Slack Technologies, Inc - 2017 - @Yasumoto

Define our Entry Point

Creating a tool as we define it is easy- we just give pex
a -c argument.

note the trailing .
pex -c promote-mysql-follower -o promote-mysql-follower .

That gives us the promote-mysql-follower file we
can then scp around and execute anywhere!

© Slack Technologies, Inc - 2017 - @Yasumoto

Layout
$ ls ./tools
bootstrap-python.sh # creates ./.virtualenv
setup.py
build.sh
lib/
test-python.sh # Testing our operational code will come next time!

© Slack Technologies, Inc - 2017 - @Yasumoto

Configure the tools Distribution

1. What our codebase is called
2. What version of the code we're producing
3. Any links and documentation we have

4. Which tools we produce, called console-scripts
5. The dependencies we need

© Slack Technologies, Inc - 2017 - @Yasumoto

setup.py

"""Distribution Definition for tools module"""
from setuptools import find_packages, setup

setup(name='tools',
 version='0.0.1',
 description='Automation for Operations and Reliability',
 url='https://github.com/Yasumoto/tools',
 packages=find_packages('lib'),
 package_dir={'': 'lib'},
 entry_points={
 'console_scripts': [
 'promote-mysql-follower=tools.bin.promote-mysql-follower:main',
],
 }
)

© Slack Technologies, Inc - 2017 - @Yasumoto

Include other Distributions - setup.py

 install_requires=[
 'boto3==1.3.1',
 'fabric==1.11.1',
],

© Slack Technologies, Inc - 2017 - @Yasumoto

bootstrap-python.sh

#!/bin/sh
if [$BOOTSTRAP_NEEDED -eq 0]; then
 echo Bootstrapping virtualenv
 virtualenv "${REPO_ROOT}/.virtualenv"
 . "${REPO_ROOT}/.virtualenv/bin/activate"
 (./.virtualenv/bin/python2.7" setup.py develop)
 echo 'yup' > "${REPO_ROOT}/.virtualenv/BOOTSTRAPPED"
fi

© Slack Technologies, Inc - 2017 - @Yasumoto

Building these tools !
We want these accessible to teammates who aren't
spending a ton of time writing Python

Also make sure someone in the middle of writing code
has a dependable tool available

1. Jenkins job
2. Uploads to S3 (at the Jenkins build number)

© Slack Technologies, Inc - 2017 - @Yasumoto

build.sh

#!/bin/sh
build.sh
python -c '

from __future__ import print_function
 import pkg_resources
 [print(ep) for ep in pkg_resources.iter_entry_points(
 group="console_scripts")]'\

 | grep tools \
 > ./console_scripts.txt

© Slack Technologies, Inc - 2017 - @Yasumoto

build.sh

#!/bin/sh

pex . -o "./dist/tools.pex"
/usr/local/bin/s3-upload tools-bucket "./dist/tools.pex" $BUILD_NUMBER

while read TOOL; do
 bin=$(echo "$TOOL" | cut -d'=' -f1)
 ep=$(echo "$TOOL" | cut -d'=' -f2)
 "$(dirname "$0")/repex.sh" "./dist/tools.pex" "$ep" "./dist/$bin"
 $SKIP /usr/local/bin/s3-upload tools-bucket "./dist/${bin}" $BUILD_NUMBER
 printf '\033[1;32m%s OK\033[0m\n' "${TOOL}"
done < ./console_scripts.txt

© Slack Technologies, Inc - 2017 - @Yasumoto

Deploying these Tools
We have a small helper resource in Chef:
slackops_tool

Given a version, pull down the proper binary from S3
after validating its checksum

Enables two types of tools:
1. Human-run
2. Fleet-wide Services (managed by Runit or Monit)

© Slack Technologies, Inc - 2017 - @Yasumoto

action :create do
 remote_path = "tools-bucket/tools"
 if new_resource.version
 remote_path = "#{remote_path}/#{new_resource.version}"
 else
 # Pull down latest for environment (prod, dev, or test)
 remote_path = "#{remote_path}/#{node[:environment]}"
 end
 download_path = node[:tool_bucket][:data_home]
 Dir::exist?(download_path) || Dir::mkdir(download_path, 0755)
 s3_file "#{download_path}/#{new_resource.name}" do
 bucket node[:tools][:aws][:bucket]
 remote_path "#{remote_path}/#{new_resource.name}"
 aws_access_key_id node[:tools][:aws][:key]
 aws_secret_access_key node[:tools][:aws][:secret]
 mode new_resource.mode
 owner new_resource.owner
 group new_resource.group
 end
 link "/usr/local/bin/#{new_resource.name}" do
 to "#{download_path}/#{new_resource.name}"
 end
end

© Slack Technologies, Inc - 2017 - @Yasumoto

Install a tool
tool 'promote-mysql-follower' do
 version 30
end

tool 'monitor-webserver' do
 version 185
 notifies :restart, 'service[monitor-webserver]
end

© Slack Technologies, Inc - 2017 - @Yasumoto

Empowers simpler
distribution
Once you create all of that, a teammate can:
1. Create a new python tool
2. Add the console_script in setup.py
3. Kick off a build
4. Install it with config management (like Chef)

© Slack Technologies, Inc - 2017 - @Yasumoto

Configuring for your
workplace
• There is a bit of "boiler-plate" that needs to be

written once
• Tweaks to suit your needs over time
• Sample layout will be available at https://github.com/

Yasumoto/tools
• Additional checks, error handling, and bootstrapping

© Slack Technologies, Inc - 2017 - @Yasumoto

https://github.com/Yasumoto/tools
https://github.com/Yasumoto/tools

Summary
Operations should move along this trajectory:

1. Institutional Knowledge
2. Documented Runbooks
3. Opinionated and Safe Tools
4. Resilient Self-Healing Systems

https://github.com/Yasumoto/tools

© Slack Technologies, Inc - 2017 - @Yasumoto

https://github.com/Yasumoto/tools

