
Hett ie Dombrovskaya

Database Architect

SCALE 2024

Securing Your PostgreSQL Data:
A Comprehensive Guide to Protecting Your
Database Assets

2

Who am I

Hettie Dombrovskaya

Database Architect at DRW
Local Organizer of Chicago PostgreSQL User Group

PG Day Chicago is on April 26, 2024!

3

Why this
talk?

- We live in an age of data breaches

- Securing data is a high priority

- PostgreSQL has everything

- Still…

USER: POSTGRES

SCHEMA: PUBLIC

4

What will be covered

Se
cu

ri
ng

 Y
ou

r
Po

st
gr

eS
QL

 D
at

a

• Common security challenges

• The necessity of standardization and its role in solving these

challenges

• Adopted security models and their practical implementations

• Addressing a wide spectrum of access control needs

• Using automation to streamline security

• Ongoing issues and future prospects

5

Challenge #1: PostgreSQL does
not force you to create roles
and schemas in order to start.

And all examples in documentation create objects in
PUBLIC schema!

6

As a result…

- Applications are developed using postgres user

- When they move to production, developer either forget to change the user or run

into permissions problems they do not have time do not know how to fix

- When an application uses connection pools different application users can connect

as the same database user

7

Challenge #2: The wonders of
inheritance

- Starting from PG 7.3, there is no distinction between users and roles

(user=role+login)

create role role1;

create role role2 login password ‘pwd’;

create user user1 password ‘pwd’;

- All of the grants below will work:

grant role1 to role2;

grant role2 TO user1;

grant user1 to role2;

… and if later you will execute

create role role3;

grant role3 to role1 ---will be inherited

8

Challenge #3: You think you
created a role for a database?
Think again!

- Roles are created on the instance level, not the database level

- If there are several databases on one instance, all users will have access to all

databases, because…

 By default, all user have CONNECT privilege to all databases on the instance

- Until PG 15, all users could create objects in PUBLIC schema. That includes public

schema in all databases on the same instance.

 - If a customer requested a superuser privilege, this superuser will be able to do

everything on all databases on that instance.

9

Trying to do things the right
way!
Grouping (objects and users):

 - Using schemas for access control: all objects in each schema have the same set

of privileges

- Granting privileges to groups (nologin roles) only. And granting roles to users
create schema orders owner orders_owner;

grant orders_owner to orders_admin;

create role orders_read_write;

create role orders_read_only;

grant select on all tables in schema orders to orders_read_only;

grant select, insert, update, delete on all tables in schema orders to

orders_read_write;

What is not going to work?

10

Challenge #4: Default privileges

- Yes, you also need to grant usage!
grant usage on schema orders to orders read_write, orders_read_only

- What else?
alter default privileges in schema orders grant select on tables to

orders_read_only;

alter default privileges in schema orders grant select, insert,

update, delete on tables to orders_read_write;

Now:
create table orders.customer (

customer_id int primary key,

customer_name text);

- Why were default permissions not applied?!
alter default privileges in schema orders for role orders_owner grant

select, insert, update, delete on tables to orders_read_write;

11

Challenge #5: The wonders of
ownership!

- When you run:

create schema orders owner orders_owner;

It created a lot of privileges for orders_owner user:

grant all on schema orders to orders_owner

- But what happens when you execute

alter schema orders owner new_orders_owner;

Does anything change with permissions?

12

Challenges #6, #7, #8… Lots of
weird things!

grant select orders.sales_points to role1;

grant insert, update, delete on orders.sales_points to role2;

grant role1 to user1;

grant role2 to user1;

revoke delete on orders.sales_points from user1;

Will this work?

- It won’t, and moreover, errors won’t be reported:
REVOKE of permissions which are not granted
GRANT permissions which are already granted except for roles

- You can’t drop user that has any privileges

- You can’t drop role cascade

- And there is no easy way to see what permissions a given user has!

13

Now imagine you have not five, not
ten, but 280 databases, and new
requests are coming each day!

14

We want to be isolated!

A separate instance for
each new project –
possible, but expensive.

What are the
alternatives?

15

Security
Models

Overview

Principles and implementation

16

• A user is given the minimum levels of access needed to perform their
job functions.

Principle of least privilege

Basic
principles
The only security model to support
multi-tenancy within one PostgreSQL
database

• Non-superuser users do not have a way to bypass
security settings

Durability

• One package supports four security models with
different permissions hierarchy.

Flexibility

17

Key features

Event trigger

• Schemas and roles creation/deletion are performed
using security definer functions

Security-definer functions

• Schema owner TRUE/FALSE

• Account owner TRUE/FALSE

Security levels matrix

• Forces all objects in each schema to be owned by the
schema owner role and assigns default privileges

• Security modal is set up on the database level

Database level security

18

Enabling security model

• Deploy the package

• If the package was previously deployed, the previous security settings will be used:

you can’t change the existing settings for a database

• If that’s the first deployment run
select * from grant_create_schema_users(Boolean, Boolean)

This will

§ record security setting in the database

§ enable event trigger

§ grant execute on all security-definer functions to the database owner role

19

Security matrix

FALSE TRUE

FALSE - All schemas are created
and owned by db_owner.
- Users are created/
assigned roles by
db_owner

All schemas are created
by db_owner
- Each schema has it’s
own owner.
- Users are created/
assigned roles by
db_owner

TRUE - db_owner creates
accounts
- account can create
schemas
- schemas are owned by
account_owner
- Users are created/
assigned roles by
account_owner
- Accounts are isolated

- db_owner creates
accounts
- account can create
schemas
- Each schema has it’s
own owner
- Users are created/
assigned roles by
account_owner
- Accounts are isolated

schema_owner

account_owner

20

Security matrix

FALSE TRUE

FALSE - All schemas are created
and owned by db_owner.
- Users are created/
assigned roles by
db_owner

All schemas are created
by db_owner
- Each schema has it’s
own owner.
- Users are created/
assigned roles by
db_owner

TRUE - db_owner creates
accounts
- account can create
schemas
- schemas are owned by
account_owner
- Users are created/
assigned roles by
account_owner
- Accounts are isolated

- db_owner creates
accounts
- account can create
schemas
- Each schema has it’s
own owner
- Users are created/
assigned roles by
account_owner
- Accounts are isolated

schema_owner

account_owner

22

Functions

23

create_schema_roles

Input parameters:

• schema_name

• app_user_name (opt)

• app_user_password (opt)

• ddl_user_name (opt)

• ddl_user_password (opt)

• account_owner (optional. Default current user)

Actions:

• creates schema (ownership is driven by security

settings)

• creates read_write role

• creates read_only role

• creates owner role (if applicable)

• creates/assigns app and owner users

24

drop_schema_roles

Input parameters:

• schema_name

Actions:

• revokes read_only role from all users

• revokes read_write from all users

• revokes owner role (if applicable)

• drops all associated roles

• drops schema

25

assign_schema_owner_user

Input parameters:

• schema_name

• ddl_user_name

• ddl_user_password (opt)

Actions:

• creates user ddl_user_name if it does not exist

• changes password if user exists & password provided

• grants schema owner role to ddl_user_name

26

assign_schema_app_user

Input parameters:

• schema_name

• app_user_name

• app_user_password (opt)

Actions:

• creates user app_user_name if it does not exist

• changes password if user exists & password provided

• grants schema read_write role to app_user_name

27

assign_schema_ro_user

Input parameters:

• schema_name

• ro_user_name

• ro_user_password (opt)

Actions:

• creates user ro_user_name if it does not exist

• changes password if user exists & password provided

• grants schema read_only role to ro_user_name

28

Revoke functions

• revoke_schema_owner_role

• revoke_schema_app_role

• revoke_schema_ro_role

29

Additional security definer functions

• select_all_privileges(): all privileges on the current db

• blocking_processes(): blocking query with superuser privileges

• pg_stat_activity(): pg_stat_activity with superuser privileges

30

Code details

Event trigger forces new object ownership and permissions to the
schema owner

FOR v_obj IN
 SELECT * FROM
pg_event_trigger_ddl_commands ()
 order by object_type desc
LOOP
 <fix perm>
END LOOP

31

Code details
Check whether the current_user :has an ownership role for this schema
(grant execute is not enough)

select
 exists (
 with recursive x as
 (
 select member::regrole,
 roleid::regrole as role
 from pg_auth_members as m
 union all
 select x.member::regrole,
 m.roleid::regrole
 from pg_auth_members as m
 join x on m.member = x.role
)
 select 1
 from x
 where
 (member::text = current_user
 and role = (select nspowner::regrole from
pg_namespace
 where nspname=p_schema_name)
 or current_user= (select
(nspowner::regrole)::text from pg_namespace
 where nspname=p_schema_name)
));

32

Code details

Checking the execution stack inside security definer function

if not
 perm_check_stack(
'dba_tools.perm_drop_schema_roles')
 then
 raise exceaption 'You are not allowed
to drop schema %', p_schema_name;
end if;

33

Future work

• Reporting

• Unit tests

• Conversion automation

34

GLOBAL TRADING

34

Q&A
Hettie Dombrovskaya
Database Architect DRW

hdombrovska@drwholdings.com
www.drw.com

http://www.drw.com/

