

How Facebook Got Consistency
with MySQL in the Cloud

Sam Dunster
Production Engineer

Consistency

Replication

Replication for High Availability

Master

Replica Replica

Replica

Master

Replica Replica

Replica

10ms

Master

Replica Replica

Replica

10ms

100ms

250ms

Asynchronous Replication

Master
Replica

Master
Replica

Storage engine

Master
Replica

Storage engine

Binary logs

Master
Replica

Storage engine

Binary logs

Storage engine

Binary logs

Master
Replica

UPDATE table_a SET foo = "bar";

Storage engine

Binary logs

Storage engine

Binary logs

Master
Replica

UPDATE table_a SET foo = "bar";

Storage engine

Binary logs

Storage engine

Binary logs

Master
Replica

UPDATE table_a SET foo = "bar";

Storage engine

Binary logs

Storage engine

Binary logs

Master
Replica

UPDATE table_a SET foo = "bar";

Storage engine

Binary logs

Relay logs

Storage engine

Binary logs

Master
Replica

UPDATE table_a SET foo = "bar";

Storage engine

Binary logs

Relay logs

Storage engine

Binary logs

Slave IO

Master
Replica

UPDATE table_a SET foo = "bar";

Storage engine

Binary logs

Relay logs

Storage engine

Binary logs

SQL Apply

Master
Replica

UPDATE table_a SET foo = "bar";

Storage engine

Binary logs

Relay logs

Storage engine

Binary logs

read/write read (delayed)

Binary logs

Position-based

mysql > SHOW MASTER STATUS;
+------------------+----------+
| File | Position |
+------------------+----------+
| mysql-bin.000003 | 73 |
+------------------+----------+

3E11FA47-71CA-11E1-9E33-C80AA9429562:23
source_id transaction_id

GTID 
Global transaction ID

GTID Set

2174B383-5441-11E8-B90A-C80AA9429562:1-3,
24DA167-0C0C-11E8-8442-00059A3C7B00:1-19

Show me which transactions you have executed

GTID-based Auto positioning

mysql> CHANGE MASTER TO
 > MASTER_HOST = host,
 > MASTER_PORT = port,
 > MASTER_USER = user,
 > MASTER_PASSWORD = password,
 > MASTER_AUTO_POSITION = 1;

GTID 
Global transaction ID

Master
Replica

UPDATE table_a SET foo = "bar";

Storage engine

Binary logs

Relay logs

Storage engine

Binary logs

read/write read (delayed)

Master
Replica

UPDATE table_a SET foo = "bar";

Storage engine

Binary logs

Relay logs

Storage engine

Binary logs

read/write read (delayed)

Promotion

Live Master Promotion

Live Master Promotion
Dead Master Promotion

Live Master Promotion

Commit

ReplicaMaster

Live Master Promotion

Commit

ReplicaMaster

Live Master Promotion

MA
STE

R_
PO

S_W
AI

T()

Commit

ReplicaMaster

Live Master Promotion

MasterReplica

Dead Master Promotion

Commit

ReplicaMaster

Dead Master Promotion

Commit

ReplicaMaster

Dead Master Promotion

SQL_
THRE

AD W
AITCommit

ReplicaMaster

Synchronous Replication

Synchronous Replication

ReplicaMaster

Synchronous Replication

Prepare

ReplicaMaster

Synchronous Replication

CommitPrepare

ReplicaMaster

Synchronous Replication

Commit Commit

ReplicaMaster

Live Master Promotion

ReplicaMaster

Live Master Promotion

MasterMaster

Dead Master Promotion

Master

MasterMaster

Dead Master Promotion

Master

MasterMaster

Synchronous Constraints

A
fe
w
micr

o
se
co
nd

s A few micro seconds

A few micro seconds

Master

MasterMaster

Semi-Synchronous Replication

Semi-Synchronous Replication

ReplicaMaster

Semi-Synchronous Replication

ReplicaMaster
Binlogs

Semi-Synchronous Replication

ReplicaMaster
RelayLogBinlogs

Semi-Synchronous Replication

ReplicaMaster
RelayLogBinlogs

Semi-Synchronous Constraints

A
fe
w
micr

o
se
co
nd

s A few micro seconds

Master

Semi
Sync

Replica

Semi  
Sync

Replica

Semi-Synchronous Replication

Semi-Synchronous mysqlbinlog

Semi-Synchronous Constraints
A few micro seconds

Milliseconds OK!

A few micro seconds

Logtailer

Logtailer Master

Replica

Dead Master Failover

ReplicaMaster

Logtailer

Dead Master Failover

11000

10000 Re
ad

_M
as
te
r_
Lo

g_
Po

s

Fi
le
 s
iz
e

ReplicaMaster

Dead Master Failover

11000

10000

mysqbinlog

--start-position=10000

ReplicaMaster

Lossless semi-sync

Lossless Semi-Sync
=> Commit;
Binlog Prepare => No-op
InnoDB Prepare => Written to InnoDB for recovery
Binlog Commit => Written to binlog
InnoDB Commit => Visible from other clients
<= OK;

Lossless Semi-Sync

=> Commit;
Binlog Prepare
InnoDB Prepare
Binlog Commit
InnoDB Commit
Wait for Semi-Sync Ack
<= OK;

=> Commit;
Binlog Prepare => No-op
InnoDB Prepare => Written to InnoDB for recovery
Binlog Commit => Written to binlog
InnoDB Commit => Visible from other clients
<= OK;

Lossless Semi-Sync

=> Commit;
Binlog Prepare
InnoDB Prepare
Binlog Commit
InnoDB Commit
Wait for Semi-Sync Ack
<= OK;

Crash!

=> Commit;
Binlog Prepare => No-op
InnoDB Prepare => Written to InnoDB for recovery
Binlog Commit => Written to binlog
InnoDB Commit => Visible from other clients
<= OK;

Lossless Semi-Sync

=> Commit;
InnoDB Prepare
Binlog Prepare
Binlog Commit
Wait for Semi-Sync Ack
InnoDB Commit
<= OK;

Crash!

=> Commit;
Binlog Prepare
InnoDB Prepare
Binlog Commit
InnoDB Commit
Wait for Semi-Sync Ack
<= OK;

=> Commit;
Binlog Prepare => No-op
InnoDB Prepare => Written to InnoDB for recovery
Binlog Commit => Written to binlog
InnoDB Commit => Visible from other clients
<= OK;

(MySQL 5.7)

Rollout

https://www.youtube.com/watch?v=sl-PACHY2zE

https://www.youtube.com/watch?v=sl-PACHY2zE

Sum of Master
downtime

Deployment date

mysqlbinlog + semi-sync patches

Binlog Server

Local Disk

Master

Semi-sync-
Replication

mysqlbinlog

Semi-sync Binlog Writer/Acker

log.index

Binlog

00001.bin 00002.bin 00003.bin

Binlog Binlog

Local Disk

ReplicaMaster

Semi-sync-
Replication

Binlog Server Log-tailer

Semi-sync Binlog Writer/Acker Binlog Reader

Promotion
Catchup

log.index

Binlog

00001.bin 00002.bin 00003.bin

Binlog Binlog

ReplicaMaster

Logtailer

mysqbinlog
--start-position=10000

binary-
logs-3301.127526

ReplicaMaster

Logtailer

Replica

Logtailer

Master

CHA
NG

E M
AST

ER
 TO

Binlog Server ++

Lagged replicas?
Error 1236

Replicaset 12345

Master

Replication

slave status:

Error Msg:

Master has
purged the
required
binary logs

Greatly Lagged
Replica

Replicaset 12345

Greatly Lagged
Replica

 change master to Binlog Server;

Binlog Server

Binlog Locator

Binlog Reader/Sender

binlog_server> show slave status\G
*************************** 1. row ***************************
 Slave_IO_State: Waiting for master to send event
 Master_Host: HOSTNAME
 Master_Port: PORT
 Connect_Retry: 0
 Master_Log_File: binary-logs-xxxxxx.007964
 Read_Master_Log_Pos: 97115
 Binlog_File: binary-logs-xxxxxx.007964
 Binlog_Pos: 97115
 Last_IO_Errno: 0
 Master_Server_Id: 3695980966
 Executed_Gtid_Set: ea4a5e01-b3e4-4273-a25e-88d06db8d1a5:1-902842,
b29a87bd-d60b-4455-9ab8-90d7b720f169:1-81669
 Mysql_Replicaset: REPLICA_SET_NAME
Replicaset_Tier_Version: VERSION_NUM
 Semisync_Slave: Yes

There's plenty more to Binlog Server
Search for "Binlog Server at Facebook"

MariaDB MaxScale

https://mariadb.com/resources/blog/the-binlog-server/

https://github.com/mariadb-corporation/MaxScale

Distributed systems
are really hard

DBAs don't scale as
well as MySQL does

Lossless Semi-Sync

=> Commit;
InnoDB Prepare
Binlog Prepare
Binlog Commit
Wait for Semi-Sync Ack
InnoDB Commit
<= OK;

Crash!

=> Commit;
Binlog Prepare
InnoDB Prepare
Binlog Commit
InnoDB Commit
Wait for Semi-Sync Ack
<= OK;

=> Commit;
Binlog Prepare => No-op
InnoDB Prepare => Written to InnoDB for recovery
Binlog Commit => Written to binlog
InnoDB Commit => Visible from other clients
<= OK;

Lossless Semi-Sync

=> Commit;
InnoDB Prepare
Binlog Prepare
Binlog Commit
Wait for Semi-Sync Ack
InnoDB Commit
<= OK;

Crash!

=> Commit;
Binlog Prepare
InnoDB Prepare
Binlog Commit
InnoDB Commit
Wait for Semi-Sync Ack
<= OK;

=> Commit;
Binlog Prepare => No-op
InnoDB Prepare => Written to InnoDB for recovery
Binlog Commit => Written to binlog
InnoDB Commit => Visible from other clients
<= OK;

status semi-sync thread async thread

transaction 1 acked

status semi-sync thread async thread

transaction 1 acked

transaction 2 prepare

status semi-sync thread async thread

transaction 1 acked

transaction 2 waiting for ack

status semi-sync thread async thread

transaction 1 acked

transaction 2 acked

status semi-sync thread async thread

transaction 1 acked

transaction 2 acked

transaction 3 prepare

status semi-sync thread async thread

transaction 1 acked

transaction 2 acked

transaction 3 waiting for ack

status semi-sync thread async thread

transaction 1 acked

transaction 2 acked

transaction 3 acked

Flappy/partially-isolated master

Master Replica

Logtailer

MySQL Automation

Logtailer

Client

Master Replica

Logtailer

MySQL Automation

Logtailer

Client

Master Replica

Logtailer

MySQL Automation

Logtailer

Client

Logtailer failures

Master Replica

Logtailer

MySQL Automation

Logtailer

Client

Master Replica

Logtailer

MySQL Automation

Logtailer

Client

Master Replica

Logtailer

MySQL Automation

Logtailer

Client

Master Replica

Logtailer

MySQL Automation

Logtailer

Client

???

Master Replica

Logtailer

MySQL Automation

Logtailer

Client

!!!

Master
(blocked)

Replica

Logtailer

MySQL Automation

Logtailer

Client

!!!

Master Master

Logtailer

MySQL Automation

Logtailer

Client

Master Master

Logtailer

MySQL Automation

Logtailer

Client

Master Replica

Logtailer

MySQL Automation

Logtailer

Client
lbu010
lbu030

Replica

Logtailer

MySQL Automation

Logtailer

Client
lbu010
lbu030Master

(blocked)

Replica

MySQL Automation

Logtailer

Client Master
(blocked)

Logtailer

These situations were very rare

Everything open source*
https://github.com/facebook/mysql-5.6/

MariaDB MaxScale
https://mariadb.com/resources/blog/the-binlog-server/

https://github.com/mariadb-corporation/MaxScale

* except Facebook's Binlog Server

Sam Dunster

Come chat at the Facebook
booth right after this!

