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Asynchronous Replication



Master
Replica



Master
Replica

Storage engine



Master
Replica

Storage engine

Binary logs



Master
Replica

Storage engine

Binary logs

Storage engine

Binary logs



Master
Replica

UPDATE table_a SET foo = "bar";

Storage engine

Binary logs

Storage engine

Binary logs



Master
Replica

UPDATE table_a SET foo = "bar";

Storage engine

Binary logs

Storage engine

Binary logs



Master
Replica

UPDATE table_a SET foo = "bar";

Storage engine

Binary logs

Storage engine

Binary logs



Master
Replica

UPDATE table_a SET foo = "bar";

Storage engine

Binary logs

Relay logs

Storage engine

Binary logs



Master
Replica

UPDATE table_a SET foo = "bar";

Storage engine

Binary logs

Relay logs

Storage engine

Binary logs

Slave IO



Master
Replica

UPDATE table_a SET foo = "bar";

Storage engine

Binary logs

Relay logs

Storage engine

Binary logs

SQL Apply



Master
Replica

UPDATE table_a SET foo = "bar";

Storage engine

Binary logs 

Relay logs

Storage engine

Binary logs

read/write read (delayed)



Binary logs 



Position-based

mysql > SHOW MASTER STATUS;
+------------------+----------+
| File             | Position |
+------------------+----------+
| mysql-bin.000003 | 73       |
+------------------+----------+



3E11FA47-71CA-11E1-9E33-C80AA9429562:23
source_id transaction_id 

GTID 
Global transaction ID



GTID Set

2174B383-5441-11E8-B90A-C80AA9429562:1-3, 
24DA167-0C0C-11E8-8442-00059A3C7B00:1-19

Show me which transactions you have executed



GTID-based Auto positioning

mysql> CHANGE MASTER TO
     >     MASTER_HOST = host,
     >     MASTER_PORT = port,
     >     MASTER_USER = user,
     >     MASTER_PASSWORD = password,
     >     MASTER_AUTO_POSITION = 1;



GTID 
Global transaction ID
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Synchronous Replication
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Semi-Synchronous Replication
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Semi-Synchronous Constraints
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Semi-Synchronous Replication



Semi-Synchronous mysqlbinlog



Semi-Synchronous Constraints
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Lossless semi-sync



Lossless Semi-Sync
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Lossless Semi-Sync
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(MySQL 5.7)



Rollout

https://www.youtube.com/watch?v=sl-PACHY2zE

https://www.youtube.com/watch?v=sl-PACHY2zE
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mysqlbinlog + semi-sync patches



Binlog Server
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Binlog Server ++



Lagged replicas?
Error 1236
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Replicaset 12345
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 change master to Binlog Server; 

Binlog Server 

Binlog Locator

Binlog Reader/Sender



binlog_server> show slave status\G
*************************** 1. row ***************************
         Slave_IO_State: Waiting for master to send event
            Master_Host: HOSTNAME
            Master_Port: PORT
          Connect_Retry: 0
        Master_Log_File: binary-logs-xxxxxx.007964
    Read_Master_Log_Pos: 97115
            Binlog_File: binary-logs-xxxxxx.007964
             Binlog_Pos: 97115
          Last_IO_Errno: 0
       Master_Server_Id: 3695980966
      Executed_Gtid_Set: ea4a5e01-b3e4-4273-a25e-88d06db8d1a5:1-902842,
b29a87bd-d60b-4455-9ab8-90d7b720f169:1-81669
       Mysql_Replicaset: REPLICA_SET_NAME
Replicaset_Tier_Version: VERSION_NUM
         Semisync_Slave: Yes



There's plenty more to Binlog Server
Search for "Binlog Server at Facebook"



MariaDB MaxScale

https://mariadb.com/resources/blog/the-binlog-server/

https://github.com/mariadb-corporation/MaxScale



Distributed systems 
are really hard



DBAs don't scale as 
well as MySQL does
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Flappy/partially-isolated master
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These situations were very rare



Everything open source*
https://github.com/facebook/mysql-5.6/

MariaDB MaxScale
https://mariadb.com/resources/blog/the-binlog-server/

https://github.com/mariadb-corporation/MaxScale

* except Facebook's Binlog Server



Sam Dunster

Come chat at the Facebook 
booth right after this!


