
Managing Networks in a Software-Defined

Future

Jeff Gehlbach

Southern California Linux Expo 2015 (SCaLE13x)

February 23, 2015

1 / 43

Agenda

I Speaker vitals

I Elements of old-school networks

I Elements of software-defined networks

I A case study

I Conclusions

I Questions!

2 / 43

Jeff Gehlbach
Ten fingers, ten toes, some industry experience

I NASA NISN → Management of large IP networks

I Empire / Concord → Making and consulting on NMS

I BellSouth → Cranium formed into Bell shape

I OpenNMS Group → Making and consulting on free NMS!

3 / 43

Elements of old-school networks

4 / 43

Elements of old-school networks
Switches (oversimplified)

I Functions:
I Switching L2 frames
I Running STP

I Many physical ports, often modular

I High-throughput data plane

I Control plane driven by local config (!)

5 / 43

Elements of old-school networks
Routers (oversimplified)

I Functions:
I Forwarding L3 packets
I Running OSPF, BGP, et al

I Relatively few physical ports, often modular

I Medium- to high-throughput data plane

I Control plane driven by local config (!!)

6 / 43

Elements of old-school networks
Firewalls (oversimplified)

I Functions:
I Forwarding L3 packets subject to a ruleset
I Taking blame when anything breaks

I Relatively few physical ports, sometimes modular

I Low- to medium-throughput data plane

I Control plane driven by local config (!!!)

7 / 43

Elements of old-school networks
Inventory and configuration management

I Functions:
I Making the right configs run on the right devices
I Accounting for hardware elements in the network
I Eating time and / or money

I Two separate problems really, each pretty hard
I Typically no understanding of configurations (control

plane)
I Are all your nodes in your inventory?

Image: graemefazakerley / DeviantArt / CC BY-SA 3.0

8 / 43

Elements of old-school networks
Network management system (NMS)

I Functions – OSI FCAPS model:
I Fault management*
I Configuration management
I Accounting management
I Performance management*
I Security management

I OpenNMS adheres roughly to FCAPS

I Focus on fault (FM) and performance (PM)

9 / 43

Elements of old-school networks
FM and PM as implemented in OpenNMS

I Provisioning – how can we get nodes, interfaces,
services into the system?

I Service assurance – how can we know whether
important network entities are responsive?

I Fault management – how can a network element tell us
it has a problem?

I Performance management – how can we quantify
utilization of a network interface or a CPU?

10 / 43

Elements of old-school networks
Simple Network Management Protocol (SNMP)

I Functions:
I NMS-to-managed-node data queries (GET / GET-BULK)
I Managed-node-to-NMS unsolicited messages (TRAP)

I Routers, switches, et al are where the action happens

I The NMS talks to the SNMP agent on the managed node

I Data gathered: interface traffic, BGP statistics,
environmentals...

I Extensible via Management Information Base (MIB)
Image: tedeytan / Wikimedia Commons / CC SA-2.0 Generic

11 / 43

Elements of old-school networks
In summary

I Many sovereign nodes with local configs driving control
plane

I When we’re lucky, traffic flows as intended

I Impossible to simulate accurately

I Clearly not designed by hackers
Image: D J Shin - My Toy Museum / Wikimedia Commons / CC BY-SA 3.0 Unported

12 / 43

Elements of software-defined
networks

13 / 43

Elements of software-defined networks
Separation of planes is key!

If you take away just one SDN fact:

SDN is about separation of
control plane from data

plane; and programmability.

14 / 43

Elements of software-defined networks
Data plane

() ==
I Functions:

I Moving frames or packets around
I According to rules gotten from controller (“control plane”)

I Comparatively generic hardware

I Sometimes virtual

I Called “switches” regardless of role

15 / 43

Elements of software-defined networks
Control plane

I Functions:
I Control behavior of switches (“data plane”)

I According to centrally-managed rules (eases config)
I Across registered nodes (eases inventory)

I Expose inventory, configuration, etc. via open APIs
I Scripting hooks for network programmability

I Controller is just a general-purpose computer

I May have a bridge or flower tattooed on it

I May be virtual

16 / 43

Elements of software-defined networks
In summary

I Relatively dumb switches

I Switch inventory, configurations centrally managed

I Programmability enables awesome wackiness, agility

I When we’re skilled, traffic flows as intended

I Might even be unit-testable

I This is how hackers would build a network!
Image: Andreas Trepte / Wikimedia Commons / CC SA 2.5 Generic

17 / 43

A case study

18 / 43

Case Study
Controller: Project Floodlight

Controller: Project Floodlight

I Implements OpenFlow 1.0 – 1.4

I Apache-licensed

I Maintained by Big Switch Networks

I projectfloodlight.org

19 / 43

Case Study
Switches: Open vSwitch / Fedora 21

Switches: Open vSwitch / Fedora 21

I Implements OpenFlow 1.3

I Apache-licensed

I Distributed maintainership

I Kernelspace implementation in Linux, FreeBSD

I Userspace implementation in NetBSD

I openvswitch.org

20 / 43

SDN for provisioning

Provisioning / Inventory

21 / 43

SDN for provisioning
Provisioning: SDN controller as a source of truth

I Option 1: Push inventory from controller to OpenNMS API
I Leans on SDN controller’s internal programmability

I Option 2: Pull inventory from controller’s API
I Leans on SDN controller’s API

22 / 43

SDN for provisioning
Floodlight → OpenNMS

Option 1: Push-mode

23 / 43

SDN for provisioning
Floodlight → OpenNMS

I Floodlight features pluggable notification managers

1 public interface INotificationManager {
2 /**
3 * Post a notification. Depending on the underline implementation, it
4 * may write the notes to log file or send an SNMP notification/trap.
5 *
6 * @param notes string message to be sent to receiver
7 */
8 public void postNotification(String notes);
9 }

1 private static class NotificationSwitchListener implements IOFSwitchListener {
2 // ...
3 @Override
4 public void switchAdded(DatapathId switchId) {
5 notifier.postNotification("Switch " + switchId + " connected.");
6 }
7 // ...
8 }

24 / 43

SDN for provisioning
Floodlight → OpenNMS

I Default implementation just squawks to syslog
I Write a new one that POSTs to OpenNMS requisition ReST

endpoint
I Or just watch logs from outside, do the POST from there

I Doesn’t seem the cleanest approach, but should be
effective

I Floodlight / other SDN controller hackers, comments?

25 / 43

SDN for provisioning
Floodlight → OpenNMS

Option 2: Pull-mode

26 / 43

SDN for provisioning
OpenNMS ← Floodlight

I Query Floodlight’s core/controller/switches endpoint

1 // Output of http://mal:8080/wm/core/controller/switches/json
2 [
3 {
4 // Switch "wash"
5 "inetAddress": "/10.0.0.138:45261",
6 "connectedSince": 1424451598399,
7 "switchDPID": "00:00:26:09:6a:ae:e3:49"
8 },
9 {

10 // Switch "zoe"
11 "inetAddress": "/10.0.0.57:35907",
12 "connectedSince": 1424453016500,
13 "switchDPID": "00:00:d2:0b:68:3a:d2:49"
14 }
15]

27 / 43

SDN for provisioning
OpenNMS ← Floodlight

I Query Floodlight’s core/switch/<DPID> endpoint

1 // Output of http://mal:8080/wm/core/switch/00:00:d2:0b:68:3a:d2:49/desc/json
2 // This is "zoe"
3 {
4 "desc": {
5 "version": "OF_13",
6 "manufacturerDescription": "Nicira, Inc.",
7 "hardwareDescription": "Open vSwitch",
8 "softwareDescription": "2.3.1-git3282e51",
9 "serialNumber": "None",

10 "datapathDescription": "None"
11 }
12 }

I A bit short on details, but that’s on Open vSwitch

I Anybody with Nexus, Arista, etc. gear see better data?

28 / 43

SDN for provisioning
OpenNMS ← Floodlight

I Query Floodlight’s /core/switch/<DPID>/port-desc
endpoint

1 // Output of http://mal:8080/wm/core/switch/00:00:d2:0b:68:3a:d2:49/port-desc/json
2 // This is switch "zoe"
3 {
4 "version": "OF_13",
5 "portDesc": [
6 {
7 "portNumber": "1",
8 "hardwareAddress": "06:4e:04:ca:b5:70",
9 "name": "eth1",

10 "config": "1",
11 "state": "1", // ...
12 "currSpeed": "1000000",
13 "maxSpeed": "10000000"
14 },
15 {
16 "portNumber": "local",
17 "hardwareAddress": "d2:0b:68:3a:d2:49",
18 "name": "br-int", // ...
19 }
20]
21 }

29 / 43

SDN for provisioning
OpenNMS ← Floodlight

I Build a requisition (PRIS source plugin)
I Foreign-ID = DPID

1 <?xml version="1.0"?>
2 <model-import foreign-source="floodlight-switches">
3 <node node-label="wash" foreign-id="00:00:26:09:6a:ae:e3:49">
4 <interface ip-addr="10.0.0.138" descr="" status="1" snmp-primary="P" />
5 </node>
6 <node node-label="zoe" foreign-id="00:00:d2:0b:68:3a:d2:49">
7 <interface ip-addr="10.0.0.57" descr="" status="1" snmp-primary="P" />
8 </node>
9 </model-import>

30 / 43

SDN for network management

Service assurance

31 / 43

SDN for network management
Service assurance (“are the switches up?”)

I Controller exposes presence / absence of switches

I Most other measures best done through synthetic
transactions directly to switches

I Seems not much will change soon in this facet

32 / 43

SDN for network management

Fault

33 / 43

SDN for network management
Fault management (“ZOMG a switch broke!”)

I Controller able to send unsolicited messages to an NMS

I Similar in function to SNMP traps

I Examples
I “Switch 00:00:00:00:de:ad:be:ef joined the controller”
I “Switch 00:00:00:00:ca:fe:ca:fe left without saying

goodbye”

I Not yet well-developed in main Floodlight code base
I Downstream OEMs may provide their own
NotificationManagers

I OpenNMS can reparent data onto the correct node
(switch) via its Event Translator facility

34 / 43

SDN for network management

Performance

35 / 43

SDN for network management
Performance management (“How busy is that switch interface?”)

I Floodlight exposes interface-level metrics and other stuff
via ReST

I OpenNMS can collect performance data directly via ReST
using XMLCollector with JSON handler

I Data trivially reparented onto the correct node (switch)

36 / 43

SDN for network management
Performance management (“How busy is that switch interface?”)

I Query Floodlight’s /core/switch/<DPID>/port endpoint

1 // Output of http://mal:8080/wm/core/switch/00:00:d2:0b:68:3a:d2:49/port/json
2 // This is switch "zoe"
3 {
4 "version": "OF_13",
5 "port": [
6 {
7 "portNumber": "1",
8 "receivePackets": "5213610",
9 "transmitPackets": "2947725",

10 "receiveBytes": "2855576667",
11 "transmitBytes": "2354303692",
12 "receiveDropped": "0",
13 "transmitDropped": "0",
14 "receiveErrors": "0",
15 "transmitErrors": "0",
16 "receiveFrameErrors": "0",
17 "receiveOverrunErrors": "0",
18 "receiveCRCErrors": "0",
19 "collisions": "0", // ...
20 }, // ...
21]
22 }

37 / 43

SDN for network management
Performance management (“How busy is that switch interface?”)

But...

38 / 43

SDN for network management
Performance management (“How busy is that switch interface?”)

I Scalability of ReST / JSON-based collection to huge
networks is unproven

I Most SDN switches on the market also support SNMP

I Every NMS in the world groks SNMP already
I Prediction: Gradual transition from SNMP to controller API
I Consistency across controller APIs is key

39 / 43

Conclusions

40 / 43

Conclusions
How OpenNMS is coping

I It’s still early days for SDN on the ground
I Standards landscape frequently changing
I Most deployments we see are hybrid

I We’ve had some practice with similar movements

I Work on SDN full time? Let’s chat over a beer.

41 / 43

Is SNMP finally dead?
Predicted since late 1990s or earlier

I Not yet. Sorry.

I Problems? Sure.
I Painful to implement
I SMI struggles to model really complex relationships
I Stateless nature increasingly problematic with larger data

sets

I Still useful, though

I Entrenchment + utility = durability

42 / 43

Questions!
jeffg@opennms.org

IRC: Freenode jeffg / #opennms
Twitter: @jeffgdotorg

License: Creative Commons Attribution-ShareAlike 4.0 International

43 / 43

