

Git Like You Mean it

Alan Ott
SCaLE 16x

March 8-11, 2018

About the Presenter

● Platform Software at SoftIron
– Data center appliances (storage, transcoding)
– Ceph-based storage appliances
– OverDrive 3000/1000 servers

● OSS Development
– Linux Kernel
– Firmware
– Training
– USB

● M-Stack USB Device Stack for PIC

– 802.15.4 wireless

SCM Overview

Source Code Management

● SCM, or Source Code Management
encompasses the tools and methods for doing
revision control of software
● Usually central, online repository
● Developers commit source code changes

(commits) to the repository
● A log is maintained of all changes
● Branching, tagging support
● Usually the authoritative source

The Old Way

● Tools like CVS and Subversion use a
centralized approach to version control

● The repository exists on a server
● Each user has a working copy
● Users commit changes from their

working copies to the server
● History is maintained on the

server

The Old Way

● Using a centralized system is easy to
understand, but it has serious drawbacks:
● It's hard to preview commits

– Once commits are made, they are immutable
● Anything involving the log must fetch

information from the server
– SLOW!

The Old Way

● drawbacks (cont'd):
● Any kind of branching or merging involves going to

the server. There are no local branches.
– It's a slow process to switch branches

● Merging is difficult
– Varies by system
– Has gotten better over the years

● SVN lacks tags altogether, and only
has “copies.”

Distributed SCM

● In a distributed SCM system, each user has a
full copy of the repository:
● Full history, branches, tags, etc.
● Remote repo and local repo start out identical

● All the functionality of the remote
repository is available on the local
● Local branches, tags, commits, etc.

● A local repo can track multiple
Remote repos

Distributed SCM

● “This is great! I can commit code while I'm on
the train!”
● This is true, but it's just the tip of the iceberg

● “This is great, I can look at the log
while I'm on the train!”
● Also true, but because looking at the

log can be done offline, it's fast, and
much more useful even when not
on the train.

Distributed SCM

● “This is great! I can create, switch to, and
merge branches while I'm on the train!”
● Maybe you should move closer to work

➢ It’s not really about the train, but about
all the other implications of being able
to work locally.

Distributed SCM

● What are the implications?
● Since history is convenient and fast, there's

potential for history to actually be used.
● If history is going to be used, it's important

that history be clean.
– Linear

● Commits don't depend on later commits

– Concise commits
● Germane to one thing

● How do we create a clean history?

Centralized SCM

● In SVN and CVS, all commits are final and
immutable.
● The documentation says, if you want to

change a commit, just make another
commit with your change in it. Done!

● While that “works,” wouldn't it be better
to be able to make the commit
correctly to begin with?
– CVS and SVN provide no

mechanism for getting it right
the first time.

Subversion Example

● Some real SVN commits from my projects:

r812 | alan | 20120425 15:07:41 0400 (Wed, 25 Apr 2012) | 2 lines

Integration fixes from [redacted] facility.

r757 | alan | 20111229 17:43:38 0500 (Thu, 29 Dec 2011) | 2 lines

Bump version to 3.5.2.

r756 | alan | 20111229 17:43:02 0500 (Thu, 29 Dec 2011) | 2 lines

Bump version to 3.5.2.

Subversion Example

● Real SVN Commits (cont'd):

r449 | alan | 20100730 13:21:12 0400 (Fri, 30 Jul 2010) | 2 lines

Forgot to add.

r448 | alan | 20100730 12:46:43 0400 (Fri, 30 Jul 2010) | 2 lines

Updated for version 1.2.4

● “Oops” commits
● Commits with too many things combined

Subversion Limitations

● Committing code:

svn commit file1.c file2.c file3.c

● What if you forget one?
● What if you have some debug code in those

files that you don't want to commit?
● What if you munge the commit message?

➢ No way to go back and fix these issues

Git SCM

● Git provides tools to address these issues:
● Local history is editable
● Separate add and commit steps make it

easy to review what is being committed
– This allows small, atomic commits
– This allows creation of a linear history

● If you mess up, you can go back
and fix it

● Once it's right, push to the
remote repository

But Why?

● “So we can clean up the history, but who really
cares? I don't look at it anyway.”
● Small, clean commits make code review

possible.
● They make problems harder to introduce

– Fewer unintended consequences
● They make bisection possible

➢ These together contribute to
increased code quality!

Basic Git Tasks

Basics of Git

● To create a git repository in a directory:
git init

● This creates a directory .git which
contains the repository

● The actual files in the current directory
are the working copy.

● No files are automatically added
to the repository

Basics of Git

● Adding files to the git repository

git add <filename>

● This adds a file to the index or the
staging area.

● This file is not committed, but it is
staged for commit.

● git add can be run multiple times
to stage commits from multiple
files for a single commit

Basics of Git

● Commit files:

git commit

● This creates a commit containing all
the changes which are in the index,
meaning all changes which are staged
for commit.

● It will open your editor to prompt
you for a commit message

Basics of Git

● After running the previous command, your repo
has a single commit.

● You can view this log with:

git log

● This opens up the log in less. Press
q to exit.

● View the diffs with each commit:
git log p

Basics of Git

● After the initial commit, you will likely change
and add code (ie: do normal development).

● Show the status of the working copy:
git status

● This shows:
● Files added, changed, removed
● Conflicts
● Files staged for commit

Basics of Git

● Show all the code that's been changed in the
working copy:

git diff

● This shows a colorized diff and pages
it with less.

Basics of Git - Committing

● At some point you will have multiple commits
worth of changes in your working copy
● Once you've developed a new feature

and debugged it

● Individual changes can be staged for
commit with:
git add p

● This will prompt to add each
chunk to the index (ie: stage it).

Basics of Git

● Once you've added all the diff chunks for a
commit, you should review them with:

git diff cached

● This will show you all the changes
staged for commit (ie: all the changes
in the index) in diff format.

➢ It's important to do this review.
Sometimes you will confuse yourself
about what you added.

Basics of Git

● If there's something you don't like, you can
change it.

● To make a change, change the file, and
then run git add p on that file again.
● The index will be updated.

● To remove changes in a file, run:
git reset HEAD <filename>

● This removes all changes for
filename from the index.

Basics of Git

● Once you have reviewed your changes, you
can commit them with:

git commit

● This will create a single commit
● It will pop up your editor and prompt

you for a commit message.

Basics of Git

● Now that you've made this commit, run git log
to look at it.

● Make sure it looks the way you expect it
to look.
● The actual commit message will be

indented four characters
➢ Checking your work is always

important!!

Basics of Git

● If the commit message is not right, you can
easily change it with:

git commit amend

● This will edit the log message of
the topmost commit (HEAD).

● Other commit messages can be
changed with rebase (later).

Basics of Git

● The first commit is made. Run git diff again
to see the remaining changes, and iterate until
finished.

● To get more information, run
git status

● This will tell you:
● Changes in the working copy
● Changes staged for commit
● How to revert changes

Basics of Git

● Commit messages
● Git has a de facto standard for commit messages

– First line: subsystem and short description
– Blank Line
– Long description

● Use the imperative mood
➢ Fancy English term for “commands”
– “Change the...”
– “Add support for...”
– “Handle exception in...”

Sample Commit

commit e09730a04ebc8d8a4cd436d2eaa6141b7d02c3bd
Author: Alan Ott <alan@signal11.us>
Date: Fri Apr 28 19:51:37 2017 0400

 cdc_acm: Handle getting and setting of line coding

 Handling of SET_LINE_CODING and GET_LINE_CODING are
 required, and Windows terminals will fail if those
 requests fail.

 This used to not fail on Windows, but that was by
 accident as there was no way to reject (stall) the
 data stage of control transfers. The behavior which
 triggered this failure was likely caused in
 d1b95bc5c6dadec and then c685ebbec1cf267.

Commit Info

commit e09730a04ebc8d8a4cd436d2eaa6141b7d02c3bd

● SHA1 hash of the commit
● The SHA1 hash of everything in this commit

(patch, date, time, author, email, commit message,
etc.), plus the hash of the previous commit.

● This commit ID serves as a unique identifier of
this point in the history.

● It identifies the commit, and since it includes the
previous commits, it also identifies indirectly the
branch.

Commit Info

commit e09730a04ebc8d8a4cd436d2eaa6141b7d02c3bd

● The commit ID is used everywhere a git
revision is called for.
● Compare to the revision ID in SVN

● A prefix can be used (provided it's unique)
● Can be used with git checkout (for example):

git checkout e09730a04eb

● Will check out a specific version to the working
copy.

Commit Info

Author: Alan Ott <alan@signal11.us>
Date: Fri Apr 28 19:51:37 2017 0400

● Author and commit date
● The date is the date of the commit, not the date

that it's merged or pushed to a remote.
● New commits can have old dates.
● Dates are not necessarily increasing.
● Commit dates are not a good way to determine the

state of the repository on a particular date.

Commit Message

 cdc_acm: Handle getting and setting of line coding

 Handling of SET_LINE_CODING and GET_LINE_CODING are
 required, and Windows terminals will fail if those
 requests fail.

 This used to not fail on Windows, but that was by
 accident as there was no way to reject (stall) the
 data stage of control transfers. The behavior which
 triggered this failure was likely caused in
 d1b95bc5c6dadec and then c685ebbec1cf267.

● Subsystem and Short description
● More Info in long description
● References other commit IDs

Basics of Git

● Interactive Demo #0

git init
git add
git commit
git log (p)
git diff
git add p
git diff cached
git commit

Ranges

Ranges

● Some git commands take a range parameter
● For example, you might want to look at a diff

between two different commits

● Example:
git diff d1b95bc5..c6dadec1

● This shows the differences between
revisions d1b95bc5 and c6dadec1

Ranges

● The same can be done with git log

● Example:
git log d1b95bc5..c6dadec1

● This shows all the commits which are in
c6dadec1 but not in d1b95bc5.

● Remember that ranges are:
older..newer

Ranges

● You can also use symbolic names, meaning the
name of a branch or tag:

git log v4.13..v4.14

● This shows the commits which are
version v4.14 which are not in v4.13
– V4.14 and v4.13 are tags

Ranges

● One revision has a special name: HEAD

● HEAD describes the most recent revision which
is checked out in your current branch

● Sometimes you might want to get a
log or diff from some revision to HEAD

git log v4.14..HEAD

Ranges

● You can reference a commit previous to a
specified revision.
● This is often done relative to HEAD:
● Putting a carat (^) after a revision gets the

revision previous to the specified revision.
● Multiple carats can be used:

– git log HEAD^..HEAD

– git log HEAD^^^^..HEAD

Ranges

● Instead of using multiple carats, a tilde can be
used with a number, indicating the number of
commits to go back.

git log HEAD~4..HEAD

● is equivalent to:

git log HEAD^^^^..HEAD
● which will show the last 4 commits.

Ranges

● As a shortcut, the later revision can be omitted,
and HEAD will be assumed. Thus:

git log HEAD~4..HEAD

● is equivalent to:

git log HEAD~4

● See the man page for gitrevisions:
man 7 gitrevisions

Branch and Merge

Branches

● Remember that in a distributed SCM system,
the entire repo exists on your workstation.
● This includes branches and tags

● Branches can be made locally which
do not correspond to upstream

● Branches are extremely fast to
create and fast to switch between
● It's very convenient to create

local feature branches for work.

Branches

● Git will always give you a default branch called
master.
● This is typically the branch synced with

upstream.
● It's your “trunk”
● There's nothing special about the

mechanism of master, but it's prudent
to use the standard policy.

Branches

● To view local branches
git branch

➢ Current branch is starred

● To create a branch:
git branch <branch_name>

● The branch is not checked out yet!

● To check out the new branch:
git checkout <branch_name>

Branches

● Checking out a branch checks out the branch to
the working copy.
● The working copy will contain the branch
● The log will reflect the branch
● Commits made will be made to the

branch

● You can switch between branches
easily with git checkout.
➢ Make sure to commit your changes!

Branches

● It's convenient to use branches to work on a
feature:
● Make a branch to work on a feature
● Check out the branch
● Commit changes to the branch
● Checkout the master

● Merge the branch to the master
git merge <branch_name>

Branches

● Hopefully your branch can be merged. If not, git
will often tell you what needs to be done to
make it happen.
● Sometimes you will have a conflict
● Conflicts work similarly to CVS and SVN

Branch and Merge

● Interactive Demo #1

git branch
git log (with ranges)
git diff (with ranges)
git merge

Revisions

Revisions

● git checkout can be used to check out a
specific revision, a branch or a tag:
● git checkout d1b95bc5
● git checkout working_branch

● git checkout HEAD^

● git checkout HEAD~20

➢ This makes it very easy to work
with old revisions

Stashing

● When switching between revisions with git
checkout, sometimes there will be a conflict.
● git checkout will refuse to alter the

working tree in this case

● To get around this case, git stash
can be used to store away all your
working directory changes.
● This leaves a clean working

directory

Stashing

● Once the directory is clean, you can try the git
checkout again.

● Once the new version is checked out,
you can then get your stashed changes
back with git stash pop

Stashing

● Git maintains the stash list (a stack)
of stashed diffs.
● git stash list

● git stash show

– View an individual stash diff

➢ Stashing is a good way to temporarily
clean your working tree

Reset

● git reset will manipulate the history to set
your current revision and working copy to a
certain state.
● It has several uses, but here we focus on

resetting to a previous revision
● git reset <revision>

– Set the current HEAD to <revision>

– Leave the working copy as-is
– Remove the log history for all

commits after <revision>

Reset

● git reset has several modes.
● By default, mixed mode is used.

● hard resets the commit history and also
the working tree
– Be careful, you will lose data!

● soft resets the commit history and
leaves the changes but also puts
them in the index (staged for
commit)

● See man page for gitreset

Rebase

Rebase

● Probably the single greatest feature of git is the
ability to rebase.
● History is editable

– This might seem scary, but it's not.
– Remember that with distributed SCM, there

is local history.
● Commits which are not pushed to a remote

– Usually you will only edit local history
before it is pushed to a remote repo

● Get the commit set right, and then push!

Rebase

● What is rebasing?
● Simple rebasing involves inserting commits (from

another branch, or upstream) before your local
commits.

● Use case
– You have a working branch, and have made

commits
– Someone else pushes commits to

the remote repo
– You want your commits to be on

top of the remote commits

Rebase

Upstream

● In this example, the state of
the repo before starting
work just contains a master
branch.

● The master branch contains
the main line of
development.

● It is potentially fast-moving.

Rebase

Upstream

Working Branch

● Working branch is created

● Branch-local commits are
made to it

Rebase

Upstream

Working Branch

Upstream
Changes

● Commits are made to the
master branch, maybe from
upstream.

● Master and working branch
now diverge.

● (If you want the commits in
the working branch to go
into the master (upstream),
they may have to be
modified to remove
conflicts.)

Rebase

Upstream

Working Branch

Upstream
Changes

● A rebase operation on the
working branch will:

● Pop the branch-local
commits out of the
history and save them

● Apply the commits from
master to the working
branch

● Re-apply the saved
branch-local commits to
the working branch

Rebase

● Procedure used:
● git branch working_branch

● git checkout working_branch

● <make new commits>
● <assume others commit to master>
● git checkout master

● git pull (get changes from remote)

● git checkout working_branch

● git rebase master

Rebase

● git rebase master

– Save all commits which are in working_branch but not
in master to a temporary area

– Reset the working_branch to the most recent
commit which is common to working_branch
and master

– Apply all the commits from master which
are not in working_branch to
working_branch

– Apply the saved commits (from
above) to working_branch.

Rebase

● It's possible that there was a conflict when
applying the saved commits.
● Rebase will stop on the conflicting commit and give

you an opportunity to fix it.
● At this point you can run:
git rebase abort
to revert back to before the rebase

● You can fix the commit and run:
git rebase continue

Rebase

● If conflicts or exception cases occur, remember
that:
● Git will often tell you what to do.
● Running git status will tell you what

to do.

➢ It helps to open a second window in
an exception case, so that any
instructions remain on the screen
and you don’t forget the state

Rebase

● Interactive Demo #2

git add p
git commit
git log (with ranges)
git diff (with ranges)
git rebase

Interactive Rebase

Rebase

● Simple rebase is used to integrate the history
of one branch into another branch
● History is rewritten

● Interactive rebase will also rewrite
history, but it is much more flexible.

● Remember that rebasing should
only be done on local branches
which are not pushed to a
remote!!

Rebase

● Interactive rebasing will allow you to drastically
rewrite history.
● Only do this on a local working branch
● Don't rebase commits that have been

pushed to a remote repository!

● Use rebase to integrate changes
suggested during code review.
● This can happen before a branch

is merged into master!

Rebase

● Rewriting history is important during
the development process.
● Making history simple (simple commits)
● Making commits linear

– Each commit builds on previous commits
– Commits don't undo one another
– No “oops, forgot to add” fixes

● Just rebase and fix it!

● Making every point in history valid
– No commit breaks the build

Rebase

● To start, run git rebase -i <revision> which
will rebase all commits newer than <revision>.

● Git will open up your editor with a list
of commits, one per line.

● Each line indicates:
● What to do with the commit
● The sha1 and commit message

Rebase

● From this window, you can:
● Delete commits

– Delete the line
● Reorder commits

– Move the lines around (copy/paste)
● Modify the commits

– Edit the first word of the line

➢ The file tells you what to do!

Rebase

● Modification commands:
● p (pick), leave as is (default)
● r (reword), change commit message
● e (edit), change a commit
● s (squash), combine with previous commit

➢ There are others, but these are the
basics

Rebase

● It's easy to move commits around.
● The problem comes when there's a conflict

– Normal conflict resolution will occur.
– You will be able to resolve the conflicts

manually.
● Be careful when editing the rebase

command file.
– Deleting a line will remove that commit!

Rebase

● It's best to use two windows for this:
● One window for the git rebase commands

– When rebase stops (either for error or for
editing) it will tell you the next steps. It's good
not to lose this information.

● Another window to do the edits
– Reset, edit, add, etc.

Rebase

● Splitting Commits
● Interactive rebase can be used to split commits

– Mark a commit with “e” for edit.
– When rebase stops, reset the log to the

previous commit, leaving the changes in the
working tree:

git reset HEAD^

– With the commit removed, create this
commits the way you want them to be:

git add p
git commit
...

Rebase

● Interactive Demo #3

git rebase i
git reset HEAD^
git add
git commit
git rebase continue

Rebase

● Important things to remember:
● Rebase is destructive!
● Make sure you backup

– Make a new branch as a backup
– Copy the whole repo (cheap insurance)

● Double-check what branch you're on
– It’s easy to be wrong

● Know whether you're up to date

Remotes

Remotes

● So far we've dealt with local repositories
● Git supports remote repositories
● Several protocols are supported:

● git, http, ssh, local filesystem
– For remotes that you can authenticate to,

you will often use ssh
– http/git is often be used for anonymous

access (for OSS projects)
– Filesystem is good for cloning a

repo that exists on your disk

Remotes

● Git supports multiple remotes
● Push to and pull from each

● This is because git can detect when
repos have a common history.
● It’s easy using the sha1
● The sha1 revision is not tied to the repo,

but to the actual history.

● Some example use cases of multiple
remotes...

Remotes

● Linux Kernel and Stable repos
– Pull master from linux
– Pull branches from linux-stable

● Public/private repo
– Push/pull to/from private repo
– Push to Github

● Working Repo
– Pull from upstream OSS repo
– Push/pull to/from private working repo
– Send patches to mailing list

Remotes

● Public Working Repo
– Pull from upstream OSS repo
– Push to personal, public working repo

● git.kernel.org, for example

– Send pull requests to maintainers

Remotes

● Getting a repo from a remote is called cloning.
● git clone git@github.com:signal11/mstack.git

– ssh syntax, requires ssh public key
● git clone git://git.kernel.org/pub/.../linux.git

– git protocol; anonymous
● git clone https://git.kernel.org/pub/.../linux.git

– https protocol; use behind firewalls

● These commands clone the repo, including
all history of the master branch.

Remotes

● Cloning a repo gives a single remote called
origin.
● origin is sometimes used as an implicit remote

● Other remotes can be added:
● git add remote <name> <URL>

● You can checkout branches from remotes:
● git checkout remote/branch

Remotes

● Inspect which remotes are being tracked
● git remote a

● Branches checked out will automatically
track the remotes from which they
came.
● Push/pull will operate as expected

● See which branches are available
on the remote:
● git branch a

Remotes

● Clone with reference (optimization)
● Sometimes you want a new copy of a repo you

already have.
● Use --reference to provide clone a

local repository to use as a reference.
– git will use hard-linking to save disk space
– Clone operation will be faster

● git clone reference /path/to/linux \
git@git.kernel.org/pub/.../linux.git

Remotes

● Fetching
● Remember that your local git has the capacity to be

a complete repository
– branches, tags, etc, (collectively called refs)

● git fetch will fetch all refs from a
remote to your local repo.
– It will not modify your working copy

Remotes

● Push and pull
● To get updates from a remote, pull from the remote:

– git pull origin master
● Pull from the remote origin, the master branch
● Origin and master are implicit

– Could be simply git pull
● It's best to not do it like this.

– If your local branch has local commits
your history will diverge from upstream

– In this case you'll get a merge commit
which is probably not what you want.

Remotes

● You are better off pulling with ffonly
● This ensures that only fast-forward merges are

allowed
– This means the local repo has no local

commits.
● git pull ffonly

● If it can't fast-forward, it will simply fail
– Then you can figure out why, fix it,

and try again.

Remotes

● Avoiding pull issues:
● Have a master branch that tracks an upstream
● Do your work on a local working branch
● When the upstream changes:

– git checkout master

– git pull ffonly

– git checkout working

– git rebase master

● Your working branch is now
up-to-date.

Remotes

● Pushing is sending your commits to a remote, most
often the origin

● When it's time to push:
● git checkout master
● update master using git pull
● git merge working ffonly

● git push origin master

● This will push your changes to the
origin on the master branch

Remotes

● Sometimes you don't have push access to the
remote.
● Often the case for OSS projects
● You'll need to send patch files instead
● Git can do this for you!
● git formatpatch HEAD^^^^^

– Generate a patch file for the most recent
five commits

Remotes

● Git will generate a patch file for each commit.
● It can also generate a cover letter, with stats, to

describe the patch series.
– git formatpatch coverletter HEAD^^^^^

– Make sure to edit the cover letter before
sending

● To send a patch series, use:
– git sendemail

Remotes

● For submitting a patch upstream, see Greg
Kroah-Hartman's excellent talk:
● Write and Submit your first Linux Kernel Patch
● https://www.youtube.com/watch?v=LLBrBBImJt4

➢ Watch it a couple times

Remotes

● To accept a set of patch files into your
repository, use git am
● git am *.patch

● This will append the set of patches into
your commit history on your current
branch.

● git am preserves the author
names present in the patches

Reflog

Reflog

● Git keeps track of when branches change.
● Commits, pulls, merges, and rebases

● This information is stored in the reflog
● Each change gets an entry into the

reflog, and the repository can be
reset to that state.

● The reflog is stored locally
● It is not pushed

https://www.youtube.com/watch?v=LLBrBBImJt4

Reflog

● To see the reflog, run:
● git reflog

● This shows all the entries and their sha1
● This sha1 is different than a commit sha1

● To reset the repo to a previous state:
● git reset <sha1>

Reflog

● The reflog is great if you mess up a rebase or
pull.
● Simply reset to a known good state
● It can be tricky to find the last good state

● The reflog is not guaranteed to exist
forever.
● It can be garbage-collected with

 git gc

Bisect

Bisect

● For large projects, a few thousand commits
might go by before noticing a bug.
● How do you determine where the bug was

introduced?

● Git provides a mechanism called
bisect, which will perform a binary
search between known good and
known bad.

Bisect

● To start bisect, give it a known good revision
and a bad revision, and tell it to start.

● Git will then give you the revision which
is centered between them.

● Build, run, and test this revision
● Tell git if it's good or bad
● Git will continue a binary search

based on the answer, giving
you the next commit to try.

Bisect

● Since bisect uses a binary search, it will allow
you to find the error in O(log2 n) time, where n
is the number of commits.
● Search 1000 commits in ~10 steps
● Very efficient!

Bisect

● Start the bisect
● git bisect start

● Give git a good and bad revision
● git bisect good <revision>

● git bisect bad <revision>

● Git will then start the bisection
● Git gives you the center commit

between the good and bad
revisions

Bisect

● Test the revision. If it's good, run:
● git bisect good

● If it's bad, run:
● git bisect bad

● Git will give you another commit to test
● Goto the top of this page

Bisect

● Eventually git will tell you which is the first bad
commit.
● This is the one which introduced the bug

● When done, run:
● git bisect reset

● It’s easier than it looks.
● The first try will work as you expect

Bisect

● During a bisect, Git can potentially give you any
revision in the history to test.

● This is why it's important that every
commit build, run, and pass tests.
● Imagine bisect giving you the commit

before an “oops, forgot to add this file”
– It would be much less fun.

● This is also why it's important that
history be linear, and have older
commits not dependent on newer.

Teamwork in Git

Teams

● Git provides the tools to enable large,
distributed teams of developers to work
together.
● Rebase
● Cheap, local branching
● Multiple remotes

➢ The Linux kernel is likely the
largest software team in the world.

Teams

● The typical method:
● Each developer has their own online git repository.
● Developers work on code and push it to their

own repositories.
● When it comes time to submit code to the

maintainer for integration, the developer
uses interactive rebase to linearize
and clean up the commits.
– Typically this will happen on a new

branch.

Teams

● The typical method (cont’d):
● Once the new branch has been rebased and is

clean, the developer pushes the branch to their own
public repository and sends a pull
request to the maintainer.

● Unlike on github, a pull request is typically
an email that says something like:
– Hi <maintainer>, please pull from <url>

● The maintainer can then pull this
branch into their local repo.

Teams

● The typical method (cont’d):
● The maintainer can then look at the changes, in log

format, using a range:
– git log master..pull_request_branch

● Even if the developer’s branch is based
on a revision older than what’s on the
maintainer’s master it still works.
– This case is likely!
– Git will recognize the common history

and show only the developer’s
commits

Teams

● The typical method (cont’d):
● The maintainer will then provide feedback on the

commits.
● The developer can integrate the

suggested changes (using rebase -i),
and submit another pull request (on a
different branch).

● The maintainer can then re-pull the
branch, review, and merge it with
their own master.

Teams

● What are the advantages?
● Code review is possible

– Code can be reviewed at the commit level before
commits are actually in the upstream master.

– Commits can be modified by the developer
an unlimited number of times before merging.

– Code quality is improved!
● The maintainer has complete control

of the repository.
– No surprise commits

Resources

● Pro Git book, available online:
● https://git-scm.com/book/en/v2

● git ready website:
● http://gitready.com/

● Man pages (use a hyphen):
● gitlog(1)
● gitclone(1)
● etc

Alan Ott
alan@softiron.com
www.softiron.com

+1 407-222-6975 (GMT -5)

	Slide 1
	Slide 2
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127

