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About me

Computer Science Engineer from Paris (2013)
Bioinformatics PhD in Geneva in pharma industry (2019)
2 years independent research on NLP (twitter withheld content)
3 years wannabe founder, web app for real-estate market estimation

(Also some automated trading and storytelling)



Harvard Medical, CELEHS

Joined Prof. Cai January 2024 in CELEHS
Research associate (senior postdoc)

Translational data science, learning health system
Analysis of electronic health records (hospitals visits)

Some of the big collaborators: Mass General Brigham, Veterans Affairs
Specific diseases studied: rheumatology, multiple sclerosis, Alzheimer

One big research area: transfer learning from large to small hospitals



My work at CELEHS

50% suicide prevention, 50% lab level, multiple projects

Suicide risk prediction, codified data + NLP on clinicians notes
csrp.mgh.harvard.edu

Dictionary codebook:
Map hospital variables to standardized classifications

Enhancing research apps by customizing RShiny with JS

Implementation quality, reproducibility (pharma quality processes)
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PheWAS Resources s

Phecode Map 1.2 with ICD9 and ICD-10cm Codes

Show 20 entries Search:
ICD Flag ICDString Phecode PhecodeString PhecodeCategory
All All All Al schizo| All
®
295 9 Schizophrenic disorders 295 Schizophrenia and other psychological disorders

psychotic disorders
295.0 9 Simple type schizophrenia 295.1 Schizophrenia psychological disorders

295.00 9 Simple type schizophrenia, 295.1 Schizophrenia psychological disorders
unspecified state

295.01 9 Simple type schizophrenia, 295.1 Schizophrenia psychological disorders
subchronic state

295.02 9 Simple type schizophrenia, chronic  295.1 Schizophrenia psychological disorders
state
295.03 9 Simple type schizophrenia, 295.1 Schizophrenia psychological disorders

subchronic state with acute
exacerbation

295.04 9 Simple type schizophrenia, chronic  295.1 Schizophrenia psychological disorders
state with acute exacerbation

295 05 g Simple tvpe schizophrenia. in 2951 Schizophrenia pnsvcholoeical disorders
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Part 1
The best of both worlds




Once upon a time

- “Oh Thomas you could do us an Elasticsearch embedding based app
right ?”

- “A what ?”
- “You previously did an app with Elasticsearch right ?”
- “Er yes... I was using a software that made use of ES...”

- “Ok great you’ll be fine”



One duckduckgo search later

https://dylancastillo.co/posts/semantic-search-elasticsearch-openai-langchain.html

User receies ah
arswer to the

quary




“Oh I think I get it, oh wow”
(aka Eureka)

Remember those people who were saying ES would be useful when doing
search on elements with many numbers of characteristics / indexes ?

You know how we’re using vector embeddings to represent words...

You should be able to search for words based on the embeddings
directly !



Crash course on embeddings

Word2vec and the latest natural language processing methods are not that
different.

Let’s say you have a paragraph with several sentences...
Say each time two words appear in the same sentence,
you give +1 similarity to that pair of words.

You get a symmetric matrix with all your words pairs, and their similarities.

You can then use that matrix to ask:
“What are the 5 words most similar to word X ?”



Crash course on embeddings (2)

Methods like ChatGPT are slightly more sophisticated,
they train “neural networks” instead of just a similarity matrix.

But they do know that a lot of people like those similarity matrices,
so even if it’s not at the core of the method,
they still provide them because (some) people prefer to use that.

Ever heard about hallucinations ? My first scientific encounter:

Give 10 variables related to obesity (e.g. overweight, anorexia, bariatric surgery)
Ask to regroup them by class (synonyms, eating disorders, consequences)
After ~10 passes of prompt engineering, LL.M includes a variable not given in list (bulimia)
Even with a RAG system prompt (“use only the list provided”)
My guess: the more prompt complexity, the higher risk of hallucinations



Hallucinating is bad

Consider you have a biomedical dataset...
You have, say, a few variables for 1000 patients over a few weeks
Something like body mass index, average heart rate etc.

You ask ChatGPT,
“I’m gonna give you a list of variables,
which ones should I study to best predict cardio-vascular diseases ?”
He will tell you maybe,
“Out of the 300 you gave me I think these 3 are the most relevant”
And then you’ll notice,
“Ah, but 2 out of 3 are not in the list I provided”

This is why we prefer to use embeddings:
less natural language understanding (e.g. negations)
but more control on output (hallucination free guarantee)



Our first embedding based app

We have 1.4 M variables with text descriptions,
we build the similarity matrix between descriptions (aka embedding matrix),
then we can query new words and get the most similar ones (BGE based)

« = C Q B https://dictionary.parse-health.org W L @ 9 = & =
Embedding query Cosine similarity threshold
.. 05 0.85
Dictionary v3.4 bipolar = J
0. B8 075 0. B85
Show 25 v entries Search:
Type Local_Code Local_Code_Description Common_Ontology_Code Common_Ontology_Description Group_Code Group_Description require_further_group_mapping cosine
med ® Al Al Al Al ] Al Al
453 MED RXNORM:50598 Lithium hydride RXNORM:90598 Lithium hydride RXNORM:6448 lithium false 0.9102
454 MED RXNORM:50597 Lithium isotope RXNORM:90597 Lithium isotope RXNORM:6448 lithium false 0.9102
455 MED RXNORM:90122 LITHIUM SALTS RXNORM:90122 LITHIUM SALTS RXNORM:6448 lithium false 0.9102
456  MED MDFRT:NOD00029346  Lithium salts RXNORM:50122 LITHIUM SALTS RXNORM:6448 lithium false 0.9102
457  MED RXMORM:846386 Lithium orotate 5 mg oral capsule RXNORM:846386 lithium orotate 5 MG Oral Capsule RXNORM:6448 lithium false 0.9102
458 MED RXNORM:846385 lithium Oral Capsule RXNORM:846385 lithium Oral Capsule RXNORM:6448 lithium false 0.9102
459 MED RXNORM:846384 lithium orotate 5 MG RXNORM:846384 lithium orotate 5 MG RXNORM:6448 lithium false 0.9102
Showing 1 to 25 of 112 entries (filtered from 3,050 total entries) )
Previous 2 3 4 5 Next




How it’s built

. >




How it’s built (2)

Pytorch enables GPU indexing, I.angchain enables vectorization
Computing a word’s representation is fast, computing 1.4M representations can take a while.
If you do a naive for loop your GPU will be at 1% capacity
Langchain batches words together, gets your GPU at 100%.

— 1.4M descriptions in 25min on a low grade GPU (RTX 4060, $300)

(I do recommend however getting everything right with a naive for loop for starters)

Elasticsearch enables easy querying
Native functions to perform cosine similarity search




How it’s built (Python)

The Python indexer

Done with Langchain

from
Trom
from
Trom

embeddings

file_paths = ["app/mgb_dict_batchil.json", "app/mgb_dict_batch2.json", "app/

#Tile_paths = ["app/mgb_dict_batch_testl.json"™, "app/mgb_dict_batch_test2.j

for Tile path in fTile_paths:

embeddings,
es_url="http

index_name="gl




How it’s built (Docker / ES)

Use Docker Compose to connect to an
independent ElasticSearch instance easily

from pytorch

run pip install elasticse e rmers uvicorn langchain

workdir Scode

add ./app/install.py
run python sinstall.py

UL oS e v :E_h'E'El'Eh':_."

build:




How it’s built (RShiny JS)

title: "Dictionary"

A second “deployment” Docker Compose
file uses the pre-indexed ES data and

connects to R/Shiny boty 1 t

padding-top:20px !importan

(Index locally with your GPU, then copy
your ES data to your AWS Shiny server)

# con

# test inde

# readlLines 5:9200/_aliases') == "{\"elastic-index\":{\"aliases\":{}}}"



And this is where the fun begins

- “Can you use rather PubMedBert instead of BGE ?
Since it’s trained specifically on biomedical data it should be better”

- “Well I explored a few cases manually,
BGE seems better, look at these examples: (...)

[and a while later]

- “You really need to try SAPBert, literature says it’s the best”

[“is a reprex provided ?”’]



Automated evaluation !

We often use clinician-curated known pairs to measure our prediction models’ performances

E.g. in our known pairs we have “Schizophrenia is related to Psychosis”
We query “schizophrenia”, if the top matches include “Psychosis”, +1 (or AUC)
This also helps us to automatically find good similarity thresholds,
we can use thresholds that correspond to 5 or 10% false positives, instead of raw similarity values
Out of the 1.4M descriptions, we have 20k pairs between 5k concepts

I would really like to avoid the previous two-step indexing + deployment,
(you know, for reproducibility)
But, the thing is, I kinda hate mandatory indentation
Plus I already did an R package to do these models’ performances (check out kgraph)
I mean, Python is great and all, but I just want to do as much as possible in R




Automated evaluation (??)

But...
I already have a Docker Compose, called by a Makefile...
Should I rather do a Docker Compose calling a Makefile...

Or should I install R in the Pytorch Docker image...
(Last time it failed after 2 hours of installation)

Or should I install Pytorch in a R Docker image...
(It’s gonna take 6 hours and the GPU will probably not work)



Automated evaluation, [
yes indeed I

“Ah yes, I'll just do a Makefile, indexer_sapbert.py
calling a Docker Compose, install_p2.py

calling a Makefile (or two)” D:_”__ki??iil . py

heap_size.options
1. Build your evaluation dataset in R: Makefile
Subset your 1.4 M descriptions to the 20k Makefile
. . . README . md
included in your known pairs
auc_bgebase. txt
2. Move the dataset to your Python folder auc_bgem3. txt
auc_bge. txt
. auc_pubmedbert.txt
store in ES with a Docker volume auc_sentencebert.txt
dictionary_mapping_v3.
4. From R, connect to ES, E:;:HE;?F
call your evaluation scripts Makefile
pairs_arranged.Rdata




Automated evaluation, yes indeed

kervices:
write_eval_db:
build: ./relastic/
command: make write_eval_db
working_dir: /relastic MY
volumes: retries: 5@
- ./relastic:/relastic index:
es: build: ./eslang/
image: docker.elastic.co/elasticsearch/elasticsearch:8.15.2 depends_on:
environment: es:
- xpack.security.enabled=false condition: service_healthy
- discovery.type=single-node command: make
volumes: working_dir: /seslang
- esdata:/usr/share/elasticsearch/data volumes:
- ./eslang/heap_size.options:/usr/share/elasticsearch/config/jv - ./eslang:/eslang
healthcheck: deploy:

test: resources:

[.. " reservations:
CMD-SHELL", devices:

"curl -s http://es:9200 >/dev/null || exit 1", -~ driver: nvidia

count: 1
capabilities: [gpu]
write_embeds_auc:
build: ./relastic/
depends_on:
- es
command: make write_embeds_auc
working_dir: /relastic
volumes:
- ./relastic:/relastic

]

interval: 2@s
timeout: 10s
retries: 50

‘make && cat relastic/*.txt"

olumes:
esdata:




And a few minutes later

cat relastic/*.txt

odel: bgebase, All pairs: 0.8157, No Dx-Dx: 0.6151, Only Dx-Dx: 0.8492
odel: bgem3, All pairs: ©.7324, No Dx-Dx: 0.4712, Only Dx-Dx: 0.7715

odel: bge, All pairs: ©.8156, No Dx-Dx: 0.5859, Only Dx-Dx: ©.8597

odel: pubmedbert,

All pairs: 0.7802, No Dx-Dx: ©.5568, Only Dx-Dx:

odel: sapbert, All pairs: 0.758, No Dx-Dx: 0.5325, Only Dx-Dx: ©.8312

odel: sentencebert,

All pairé: 0.6223, No Dx-Dx: 8.3 12, Only Dx-Dx:

“- Mhhh, no. BGE is still better.

The fine-tuned model we developed with the intern however...”



Fine-tuned BGE, in a nutshell

I observed that in the top matches for “schizophrenia”,

b2 AN 13

Most are good but, we also get “bacteria”, “leukemia”, “pneumonia”

The culprit is called tokenization.
The similarity is based on the suffixes,
It happens especially for words the original model encountered rarely in the training set.

The thing is, when you fine-tune a model,
it’s quite hard to get with a few GPUs something better
than what the original team has trained with thousands of GPUs.
Even if you input billions of biomedical pairs.

However, if you focus your fine-tuning on words with identical suffixes...
And have a devoted intern that knows Python...



Clinical Trials and PubMed Article Search

A comprehensive platform to search for clinical trials and retrieve related PubMed articles.

Clinical Trials Search # NCTID Title Condition(s) Link
4 NCT01692327 Study About High Fat Meal and Postprandial Lipemia Obesity View
Select search method: )

Trial

Search by Condit v |
CANCH Dy, Sondition 5 NCT01119976 Association Between the Menstrual Cycle and Weight Loss Overweight, Obesity View
rial

obesity ‘

Brief Summary:

This is a research study to look at the association between weight loss and the menstrual cycle in healthy, overweight, prem

Search Trials women. Participants will be asked to follow a reduced-calorie diet and exercise plan for 3 months,

Interventions:
BEHAVIORAL: Reduced calorie diet and exercise plan; BEHAVIORAL: Different reduced calorie diet and exercise plan

PubMed Article Retrieval

Enter NTC ID Retrieval Mode False Positive Rate (%)
© Fast(Threshold-based)
MCTOS5013879 3 ! m u
| Precise (Top 10 Reranked) —9

) Pravided by Authors i e
Search Articles Cosine Similarity Threshold: 0.

Filter by title:

Enter text to filter titles...

#  Article ID Title Similarity URL

1 32459670 Effects of combining manual lymphatic drainage and Kinesiotaping on pain, edema, and range of motion in patients with total knee replacement: a 0.8776 Link
randomized clinical trial.

2 24819349 The effectiveness of Kinesio Taping® after total knee replacement in early postoperative rehabilitation period. A randomized controlled trial. 0.8749 Link

=

3 23841976 Effects of kinesio tape to reduce hand edema in acute stroke, 0.8527 in
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The hidden agenda




Using Llama for UMLS — Phecode

Unified Medical Language System (UMLYS):

— Dictionary of ~5M codes / descriptions (CUIs) of diagnoses, medications etc.
— We use it for NLP of clinicians notes, contains synonyms, plurals, acronyms...

— Codes have relationships:
synonyms, parent-child, relatedness (e.g. medication “may treat” disease)

— We want to perform roll-up
(regroup rare codes in larger statistically useful groups)

Llama: Facebook’s “open-source” version of ChatGPT
(icymi)



Using Llama for UMLS — Phecode

We want to use the parent-child relationships
to replace rare children concepts by their parents

— e.g. “suicide by hanging” child of “suicide” child of “self-harm”

But how do we know which level to roll-up to ?
Can we avoid using the frequencies we observe in a specific study ?
Can we have a study-independent dictionary, useful for several projects ?
(rheumatoid arthritis, suicide prevention, multiple sclerosis)

First experiments with CUI rollup:
— Use graph properties (subcomponents, degrees)
— Decent but many very small groups



Using Llama for UMLS — Phecode

The revelation:
— Use the codified dictionary to guide the CUI roll-up
— Start by finding exact string matches, map to corresponding group code (Phecode, ingredient)

Then use synonyms and parent-child relationships to map those with no string matches
— 10% mapped globally, 1200 of the 1875 Phecodes, promising but not yet sufficient

One of the limitations:
“Suicide or self-inflicted...” (Phecode), “Suicide and self-inflicted...” (CUI)

We need to be careful with partial string matching
e.g. Type 1 Diabetes and Type 2 Diabetes



Using Llama for UMLS — Phecode

One of the core problematic:

Phecode:297 Suicide Ideation or Suicide Attempt
Phecode:297.1 Suicide Ideation Phecode:297.2 Suicide Attempt

— We want the CUI mapping to follow this hierarchy,
we don’t want to map the same CUI to two different Phecodes

Using graph properties, good individual mappings,
but could not follow structure, same CUI for 297 and 297.2

I finally gave up and started taking the L.lama road
— Despite the risk of hallucination, but that’s actually not the worst part



Using Llama for UMLS — Phecode

Trying it out on Llama and ChatGPT:

“Here is a list of 30 variables,
[perform first CUI filter with BGE embeddings]
Which one is best match for ‘Suicidal Ideation or Suicide Attempt’ ?”

[Llama: Suicidal behavior
ChatGPT: Suicidal ideation

“Oh wow it works ! And Llama (3.1 7B) is better than ChatGPT (40) ! FOSS !”
But...



Using Llama for UMLS — Phecode

But...

Once integrated in Docker Compose with API call:

“Oh no so sorry you are having those thoughts.
Here is the hotline: 1-800-TalkToMe”

(or “I cannot help you hurt yourself”, or “Suicidal ideation”, or...)

N

Even with a temperature parameter of 0 ?? [ @ o

(should be “more reproducible”) (=



Using Llama for UMLS — Phecode

Annoying, but still the best we got
— One big step was to include the variables we didn’t want in the prompt,
to take care of the cases where it was answering ‘suicidal ideation’
“Here is a list ... You cannot use these variables: [297.1], [297.2]...”

After that, the safety answers were managed with a few loops in a while(TRUE)
— Only one other case gave such “safety errors”: gynecology related

The decimal level Phecodes (297.1, 297.2) are mapped by string distance,
Then the integer level Phecodes with BGE + Llama

Out of ~300 integer Phecodes, using ~10 loops, only one stuck on a hallucination
— The variable makes sense, but it’s not in the list I provided, and I’m unable to map it
— But, it’s not one of my disease of interest, so...



Using Llama for UMLS — Phecode

So...
Works for me !

The word of the end:

“UMLS - Llama — Phecode,
it’s actually more about the safety than the hallucinations.”



Summary

Semantic search = Embeddings based = Vector search
— First part of a RAG, hallucination free guarantee

To use LLMs in science, need to constrain and control
— 1 did as much as possible with classic methods, before going to Llama
- Even then, another mapping takes place after, filters out hallucinations

Known pairs and benchmarks are highly valuable
— Takes domain experts a lot of time
— Relevance to real-world needs, quality, difficulty



Summary

LLM parameters are like climate science and computer systems,
There’s so much components, not one expert knows them from top to bottom

— Deep learning experts play on learning rate, LL.M experts keep it fixed
— [ think in Llama, ~5 parameters that influence reproducibility,
still a long way to go before submission to FDA
Need to identify which of your application can make use of LLMs,

and which questions are useless since most likely will hallucinate

— Asking questions about books is really bad in my experience
— ChatGPT including references in outputs is really cool



Summary

Since we need to constrain and control, not every application will be useful

Young devs, please don’t think it is smarter than you
You are the one who is making use of it

It’s kinda like Wikipedia,
You’re not supposed to cite it if you haven’t gone back to the reference

Like great storytellers say,
You have to know the rules to know when you can break the rules.



TRANSLATIONAL DATA SCIENCE

axvaromevicatscioor €4 CELEH S

CENTER FOR A LEARNING HEALTH SYSTEM

Building R / Python pipelines for
biomedical semantic search

La] s e




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

