
12 1 x M a r c h 14-17 t h 2024

Self-healing Clusters
G a m e o f N o d e s a n d S c a l i n g t h e T h r o n e

Who am I?

Hands on with Kubernetes since 2019

Enjoy building distributed systems and
developing POCs

Avid climber

Principal Software Engineer @ Spectro Cloud

@tylergillson

https://linkedin.com/in/tyler-gillson

🧗

🔨

Tyler Gillson

Agenda
The Challenges at Hand

2 The Heroes of the Story

3 Demo

1

Challenges at Hand

The picture can't be
displayed. The picture can't be displayed.

Stability is key
• Downtime is not an option for mission-

critical workloads on Kubernetes
- AI/ML
- Medical imaging
- Video streaming

• As clusters grow, stability becomes a
challenge
- More nodes and pods can lead to

management complexity and growth pains
- How to prevent service outages or

degradations?
- Pods are probably all receiving BestEffort QoS

5

The picture can't be
displayed. The picture can't be displayed.

What makes a cluster unstable?

- Pod Eviction: Low node resources
(pressure) leads to disruptions (kubelet)

- Pod Preemption: Excess pods lead to
disruptions (kube-scheduler)

- Resource Quotas: Improper configurations can
cause pod failures

- Network Policies: Incorrect settings disrupt pod
communication

- Stateful Applications: Mismanagement can result
in data loss

- Logging and Monitoring: Inadequate setups delay
issue detection

6

The picture can't be
displayed. The picture can't be displayed.

Building blocks for stability

• Automated low-level monitoring
- Node Problem Detector for real-time health

checks

• Topology management
- Cluster Autoscaler (CA) to adapt cluster size
- Descheduler for balancing workloads
- KEDA for scaling workloads to zero
- Vertical Pod Autoscaler for optimizing resource

allocation per pod
- InPlacePodVerticalScaling (v1.27+, alpha, #4016)

- Cluster Proportional Autoscaler (beta)

7

https://github.com/kubernetes/autoscaler/issues/4016

The picture can't be
displayed. The picture can't be displayed.

Building blocks for stability
• Policy enforcement
- Pod Security Admission + Pod Security

Standards are insufficient (v1.25+)
- PaC: Kyverno, OPA/Gatekeeper, jsPolicy

• Logging and observability
- Cluster-level logging (Fluentd, etc.)
- Prometheus + Grafana

• Chaos engineering
- ChaosMesh for resiliency testing

8

Heroes of the Story

9

The picture can't be
displayed. The picture can't be displayed.

The Three-Eyed Raven: Node Problem Detector

• Runs as a DaemonSet

• NPD leverages Events and NodeConditions to report problems to the apiserver
- Events are native Kubernetes objects
- NodeConditions are contained within a Node’s status

• Events describe temporary or less severe issues

• NodeConditions register more persistent or severe health issues for a node

• Exporters report problems and/or metrics to various backends (kube-apiserver,
Prometheus, Stackdriver)

10

The picture can't be
displayed. The picture can't be displayed.

The Three-Eyed Raven: Node Problem Detector

• Multiple problem daemons (AKA, sub-daemons) run within the NPD
binary to monitor various issue types:
- SystemLogMonitor: monitor kernel, container runtime logs (e.g., KernelDeadlock)
- HealthChecker: monitor kubelet, container runtime health

(e.g., KubeletUnhealthy, ContainerRuntimeUnhealthy)
- CustomPluginMonitor: execute custom scripts (e.g., NTPProblem)
- SystemStatsMonitor: system metrics collection

(metrics only, used with the Prometheus exporter)

11

The picture can't be
displayed. The picture can't be displayed.

The Hand of the King: Descheduler

• The Kubernetes scheduler does not automatically evict Pods for
rebalancing purposes

• Descheduler’s policy-based eviction can rebalance a cluster
- Prevents bottlenecks
- Enhances cluster efficiency & saves $$$

• Can be run as a Job, CronJob, or Deployment

• Installed using Helm or Kustomize

The picture can't be
displayed. The picture can't be displayed.

The Hand of the King: Descheduler

• Multiple top-level policies are available (plugins)
- LowNodeUtilization: Evict pods from overutilized nodes
- HighNodeUtilization: Evict pods from underutilized nodes
- RemoveDuplicates: Evict duplicate pods running on the same node
- RemovePodsViolatingInterPodAntiAffinity
- RemovePodsViolatingNodeAffinity
- RemovePodsViolatingNodeTaints

• Combine with NPD and CA to automatically remove Nodes experiencing
issues

• Only works for PIDPressure, MemoryPressure, DiskPressure, Ready, and some cloud
provider specific conditions (will be resolved in #565)

https://github.com/kubernetes/node-problem-detector/pull/565

The picture can't be
displayed. The picture can't be displayed.

The Master of Whisperers: C luster Autoscaler (C A)
• Operational Details
- Runs on the Kubernetes Control Plane
- Typically via a Kubernetes Deployment
- Consider your NodeResourcesFit scheduler plugin strategy (MostAllocated)

• Cluster Management
- Dynamically adjusts cluster size, adding or removing nodes from node groups
- Node and Pod exclusion via annotations

"cluster-autoscaler.kubernetes.io/safe-to-evict[-local-volumes]": "[true|false]"
"cluster-autoscaler.kubernetes.io/enable-ds-eviction": "true"
"cluster-autoscaler.kubernetes.io/scale-down-disabled": "true"

- Pod exclusion via Priority Classes + priority cutoff
- Pods with priority < -10 don’t trigger scale-ups or prevent scale-downs

The picture can't be
displayed. The picture can't be displayed.

The Master of Whisperers: C luster Autoscaler (C A)

• Scaling Intelligence
- Scales up node groups based on pending/unschedulable pods

- Expanders provide strategies for node group selection:
random, most-pods, least-waste, price, priority

- Scales down nodes having low (enough) resource requests, movable pods,
and no blocking annotations for >10min (default)
- SUM(CPU + Memory requests) below configurable threshold

• Interoperability and Extensibility
- Compatible with 25+ Cloud Providers
- Supports Cluster API (CAPI)

The picture can't be
displayed. The picture can't be displayed.

Example with CAPI

16

Management Cluster

Cluster API Addon Provider Helm (CAAPH)
Cluster Autoscaler
ArgoCD

Workload Cluster

Workload Cluster

The picture can't be
displayed. The picture can't be displayed.

Example with CAPI

17

apiVersion: apps/v1
kind: Deployment
metadata:

name: cluster-autoscaler
namespace: kube-system

spec:
selector:

matchLabels:
app: cluster-autoscaler

The picture can't be
displayed. The picture can't be displayed.

Example with CAPI

18

template:
spec:
containers:
- name: cluster-autoscaler

args:
- --kubeconfig=/mnt/value
- --clusterapi-cloud-config-authoritative
- --cloud-provider=clusterapi
- --node-group-auto-discovery=clusterapi:clusterName=capi-dev
volumeMounts:
- name: kubeconfig-vol

mountPath: /mnt

volumes:
- name: kubeconfig-vol

secret:
secretName: capi-dev-kubeconfig

The picture can't be
displayed. The picture can't be displayed.

Example with CAPI

• Annotate the CAPI resource (MachineSet/MachineDeployment/MachinePool)
with the following key/value pairs:
cluster.x-k8s.io/cluster-api-autoscaler-node-group-max-size: "10"
cluster.x-k8s.io/cluster-api-autoscaler-node-group-min-size: "1"

• Scale from zero
- Native support in some, but not all, CAPI providers
- You can still use any provider via capacity annotations

19

Let’s make them
work together!

20

The picture can't be
displayed. The picture can't be displayed.

Workflow
• Deploy enough Pods to create resource pressure

• Watch as CA provisions a new node, Descheduler rebalances pods

• Update Descheduler config & delete Pods

• Watch as Pods are bin-packed, CA deprovisions the new node

• Test NPD by writing to /dev/kmsg

• Verify node conditions are updated, events created

-------- Time Permitting --------

• Manually stress one of the nodes

• Wait for the node controller to add a NoSchedule taint

• Watch Descheduler evict the pods and CA trigger a new node creation

• Stability is the cornerstone of a resilient
Kubernetes cluster

• Node Problem Detector, Descheduler, and Cluster
Autoscaler play unique but complementary roles

• Be proactive, not reactive, by employing
intelligent monitoring and rebalancing strategies

• Combine PDBs, scoped ResourceQuotas, and
LimitRanges for a robust cluster

• Leverage the power of the Kubernetes API for
declarative cluster lifecycle management

Key Takeaways

The picture can't be
displayed. The picture can't be displayed. 23

The picture can't be
displayed. The picture can't be displayed. 24

The picture can't be
displayed. The picture can't be displayed. 25

