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Who am I?

Hands on with Kubernetes since 2019

Enjoy building distributed systems and 
developing POCs

Avid climber

Principal Software Engineer @ Spectro Cloud

@tylergillson

https://linkedin.com/in/tyler-gillson
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Challenges at Hand



The picture can't be 
displayed. The picture can't be displayed.

Stability is key
• Downtime is not an option for mission-

critical workloads on Kubernetes
- AI/ML
- Medical imaging
- Video streaming

• As clusters grow, stability becomes a 
challenge
- More nodes and pods can lead to 

management complexity and growth pains
- How to prevent service outages or 

degradations?
- Pods are probably all receiving BestEffort QoS
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The picture can't be 
displayed. The picture can't be displayed.

What makes a cluster unstable?

- Pod Eviction: Low node resources
(pressure) leads to disruptions (kubelet)

- Pod Preemption: Excess pods lead to 
disruptions (kube-scheduler)

- Resource Quotas: Improper configurations can 
cause pod failures

- Network Policies: Incorrect settings disrupt pod 
communication

- Stateful Applications: Mismanagement can result 
in data loss

- Logging and Monitoring: Inadequate setups delay 
issue detection
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The picture can't be 
displayed. The picture can't be displayed.

Building blocks for stability

• Automated low-level monitoring
- Node Problem Detector for real-time health 

checks

• Topology management
- Cluster Autoscaler (CA) to adapt cluster size
- Descheduler for balancing workloads
- KEDA for scaling workloads to zero
- Vertical Pod Autoscaler for optimizing resource 

allocation per pod
- InPlacePodVerticalScaling (v1.27+, alpha, #4016)

- Cluster Proportional Autoscaler (beta)
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https://github.com/kubernetes/autoscaler/issues/4016


The picture can't be 
displayed. The picture can't be displayed.

Building blocks for stability
• Policy enforcement
- Pod Security Admission + Pod Security 

Standards are insufficient (v1.25+)
- PaC: Kyverno, OPA/Gatekeeper, jsPolicy

• Logging and observability
- Cluster-level logging (Fluentd, etc.)
- Prometheus + Grafana

• Chaos engineering
- ChaosMesh for resiliency testing
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Heroes of the Story
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The picture can't be 
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The Three-Eyed Raven: Node Problem Detector

• Runs as a DaemonSet

• NPD leverages Events and NodeConditions to report problems to the apiserver
- Events are native Kubernetes objects
- NodeConditions are contained within a Node’s status

• Events describe temporary or less severe issues

• NodeConditions register more persistent or severe health issues for a node

• Exporters report problems and/or metrics to various backends (kube-apiserver, 
Prometheus, Stackdriver)
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The picture can't be 
displayed. The picture can't be displayed.

The Three-Eyed Raven: Node Problem Detector

• Multiple problem daemons (AKA, sub-daemons) run within the NPD 
binary to monitor various issue types:
- SystemLogMonitor: monitor kernel, container runtime logs (e.g., KernelDeadlock)
- HealthChecker: monitor kubelet, container runtime health 

(e.g., KubeletUnhealthy, ContainerRuntimeUnhealthy)
- CustomPluginMonitor: execute custom scripts (e.g., NTPProblem)
- SystemStatsMonitor: system metrics collection

(metrics only, used with the Prometheus exporter)
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The picture can't be 
displayed. The picture can't be displayed.

The Hand of the King: Descheduler

• The Kubernetes scheduler does not automatically evict Pods for 
rebalancing purposes

• Descheduler’s policy-based eviction can rebalance a cluster
- Prevents bottlenecks
- Enhances cluster efficiency & saves $$$

• Can be run as a  Job, CronJob, or Deployment

• Installed using Helm or Kustomize



The picture can't be 
displayed. The picture can't be displayed.

The Hand of the King: Descheduler

• Multiple top-level policies are available (plugins)
- LowNodeUtilization: Evict pods from overutilized nodes
- HighNodeUtilization: Evict pods from underutilized nodes
- RemoveDuplicates: Evict duplicate pods running on the same node
- RemovePodsViolatingInterPodAntiAffinity
- RemovePodsViolatingNodeAffinity
- RemovePodsViolatingNodeTaints

• Combine with NPD and CA to automatically remove Nodes experiencing 
issues

• Only works for PIDPressure, MemoryPressure, DiskPressure, Ready, and some cloud 
provider specific conditions (will be resolved in #565)

https://github.com/kubernetes/node-problem-detector/pull/565


The picture can't be 
displayed. The picture can't be displayed.

The Master of Whisperers:  C luster  Autoscaler  ( C A )
• Operational Details
- Runs on the Kubernetes Control Plane
- Typically via a Kubernetes Deployment
- Consider your NodeResourcesFit scheduler plugin strategy (MostAllocated)

• Cluster Management
- Dynamically adjusts cluster size, adding or removing nodes from node groups
- Node and Pod exclusion via annotations

"cluster-autoscaler.kubernetes.io/safe-to-evict[-local-volumes]": "[true|false]"
"cluster-autoscaler.kubernetes.io/enable-ds-eviction": "true"
"cluster-autoscaler.kubernetes.io/scale-down-disabled": "true"

- Pod exclusion via Priority Classes + priority cutoff
- Pods with priority < -10 don’t trigger scale-ups or prevent scale-downs



The picture can't be 
displayed. The picture can't be displayed.

The Master of Whisperers:  C luster  Autoscaler  ( C A )

• Scaling Intelligence
- Scales up node groups based on pending/unschedulable pods

- Expanders provide strategies for node group selection:
random, most-pods, least-waste, price, priority

- Scales down nodes having low (enough) resource requests, movable pods, 
and no blocking annotations for >10min (default)
- SUM(CPU + Memory requests) below configurable threshold

• Interoperability and Extensibility
- Compatible with 25+ Cloud Providers
- Supports Cluster API (CAPI)



The picture can't be 
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Example with CAPI
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Management Cluster

Cluster API Addon Provider Helm (CAAPH) 
Cluster Autoscaler
ArgoCD

Workload Cluster

Workload Cluster



The picture can't be 
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Example with CAPI
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apiVersion: apps/v1 
kind: Deployment 
metadata:

name: cluster-autoscaler 
namespace: kube-system

spec:
selector: 

matchLabels:
app: cluster-autoscaler



The picture can't be 
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Example with CAPI
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template: 
spec:
containers:
- name: cluster-autoscaler 

args:
- --kubeconfig=/mnt/value
- --clusterapi-cloud-config-authoritative
- --cloud-provider=clusterapi
- --node-group-auto-discovery=clusterapi:clusterName=capi-dev 
volumeMounts:
- name: kubeconfig-vol

mountPath: /mnt

volumes:
- name: kubeconfig-vol 

secret:
secretName: capi-dev-kubeconfig



The picture can't be 
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Example with CAPI

• Annotate the CAPI resource (MachineSet/MachineDeployment/MachinePool )
with the following key/value pairs:
cluster.x-k8s.io/cluster-api-autoscaler-node-group-max-size: "10"
cluster.x-k8s.io/cluster-api-autoscaler-node-group-min-size: "1"

• Scale from zero
- Native support in some, but not all, CAPI providers
- You can still use any provider via capacity annotations
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Let’s make them 
work together!
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Workflow
• Deploy enough Pods to create resource pressure

• Watch as CA provisions a new node, Descheduler rebalances pods

• Update Descheduler config & delete Pods

• Watch as Pods are bin-packed, CA deprovisions the new node

• Test NPD by writing to /dev/kmsg

• Verify node conditions are updated, events created

-------- Time Permitting --------

• Manually stress one of the nodes

• Wait for the node controller to add a NoSchedule taint

• Watch Descheduler evict the pods and CA trigger a new node creation



• Stability is the cornerstone of a resilient 
Kubernetes cluster

• Node Problem Detector, Descheduler, and Cluster 
Autoscaler play unique but complementary roles

• Be proactive, not reactive, by employing 
intelligent monitoring and rebalancing strategies

• Combine PDBs, scoped ResourceQuotas, and 
LimitRanges for a robust cluster

• Leverage the power of the Kubernetes API for 
declarative cluster lifecycle management

Key Takeaways
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