
Latency SLOs Done Right
By Fred Moyer

SCaLE17x

#SCaLE17x@phredmoye
r

Latency

Is it important?

#SCaLE17x@phredmoye
r

Latency

For any of your services, how many requests
were served within 500 ms over the last month?

@phredmoye
r

#SCaLE17x

Latency

For any of your services, how many requests
were served within 250ms over the last month?

@phredmoye
r

#SCaLE17x

Latency

How would you answer that question for your
services?

@phredmoye
r

#SCaLE17x

Latency

How accurate would your answer be?

@phredmoye
r

#SCaLE17x

I’m Fred and I like SLOs

- Developer Evangelist @Circonus
- Engineer who talks to people
- Writing code and breaking prod for 20 years
- @phredmoyer on Twitter
- Likes C, Go, Perl, PostgreSQL

@phredmoye
r

#SCaLE17x

Talk Agenda

● SLO Refresher
● A Common Mistake
● Computing SLOs with log data
● Computing SLOs by counting requests
● Computing SLOs with histograms

@phredmoye
r

#SCaLE17x

Service Level Objectives

SLI - Service Level Indicator

SLO - Service Level Objectives

SLA - Service Level Agreement

@phredmoye
r

#SCaLE17x

@phredmoye
r

#SCaLE17x

Service Level Objectives

“SLIs drive SLOs which inform SLAs”

@phredmoye
r

SLI - Service Level Indicator, a
measure of the service that can
be quantified

“99th percentile latency of homepage
requests over the past 5 minutes <
300ms”

Excerpted from “SLIs, SLOs,
SLAs, oh my!”

@sethvargo @lizthegrey

https://youtu.be/tEylFyxbDL
E

#SCaLE17x

@phredmoye
r

SLO - Service Level Objective, a
target for Service Level
Indicators

“99th percentile homepage SLI will
succeed 99.9% over trailing year”

Excerpted from “SLIs, SLOs,
SLAs, oh my!”

@sethvargo @lizthegrey

https://youtu.be/tEylFyxbDL
E

#SCaLE17x

“SLIs drive SLOs which inform SLAs”

@phredmoye
r

SLA - Service Level Agreement,
a legal agreement

“99th percentile homepage SLI will
succeed 99% over trailing year”

Excerpted from “SLIs, SLOs,
SLAs, oh my!”

@sethvargo @lizthegrey

https://youtu.be/tEylFyxbDL
E

#SCaLE17x

“SLIs drive SLOs which inform SLAs”

Talk Agenda

● SLO Refresher
● A Common Mistake
● Computing SLOs with log data
● Computing SLOs by counting requests
● Computing SLOs with histograms

@phredmoye
r

#SCaLE17x

A Common Mistake

@phredmoye
r

Averaging Percentiles

p95(W1 ∪ W2) != (p95(W1)+ p95(W2))/2

Works fine when node workload is symmetric

Hides problems when workloads are asymmetric

#SCaLE17x

A Common Mistake

@phredmoye
r

#SCaLE17x

A Common Mistake

@phredmoye
r

#SCaLE17x

99% of requests
served here

@phredmoye
r

Averaging Percentiles

#SCaLE17x

A Common Mistake

@phredmoye
r

p95(W1) = 220ms
p95(W2) = 650ms

p95(W1 ∪ W2) = 230ms

(p95(W1)+p95(W2))/2 = 430ms

~200% difference

#SCaLE17x

A Common Mistake

@phredmoye
r

Averaging Percentiles

#SCaLE17x

A Common Mistake
p95 actual (230ms)

p95 average (430ms)

ERROR

A Common Mistake

@phredmoye
r

Log parser => Metrics (mtail)

What metrics are you storing?

Averages? p50, p90, p95, p99, p99.9, p99.9?

#SCaLE17x

Talk Agenda

● SLO Refresher
● A Common Mistake
● Computing SLOs with log data
● Computing SLOs by counting requests
● Computing SLOs with histograms

@phredmoye
r

#SCaLE17x

Computing SLOs with log
data

@phredmoye
r

"%{%d/%b/%Y %T}t.%{msec_frac}t %{%z}t"

~100 bytes per log line

~1GB for 10M requests

#SCaLE17x

Computing SLOs with log
data

@phredmoye
r

Logs => HDFS

Logs => ElasticSearch/Splunk

ssh -- `grep ... | awk ... > 550 ... | wc -l`
Then query all the log files

#SCaLE17x

Computing SLOs with log
data

@phredmoye
r

Calculating p95 SLI

1. Extract samples for time window

2. Sort the samples by value

3. Find the sample 5% count from largest

4. That’s your p95

#SCaLE17x

Computing SLOs with log
data

@phredmoye
r

Calculating p95 SLO

“95th percentile SLI will succeed 99.9% trailing year”

1. Divide 1 year samples into 1,000 slices

2. For each slice, calculate SLI

3. Was p95 SLI met for 999 slices? Met SLO if so

#SCaLE17x

Computing SLOs with log
data

@phredmoye
r

Pros:

1. Easy to configure logs to capture latency

2. Easy to roll your own processing code, some open source

options out there

3. Accurate results

#SCaLE17x

Computing SLOs with log
data

@phredmoye
r

Cons:

1. Expensive (see log analysis solution pricing)

2. Sampling possible but skews accuracy

3. Slow

4. Difficult to scale

#SCaLE17x

Talk Agenda

● SLO Refresher
● A Common Mistake
● Computing SLOs with log data
● Computing SLOs by counting requests
● Computing SLOs with histograms

@phredmoye
r

#SCaLE17x

Computing SLOs by counting
requests

@phredmoye
r

1. Count # of requests that violate SLI threshold

2. Count total number of requests

3. % success = 100 - (#failed_reqs/#total_reqs)*100

Similar to Prometheus cumulative ‘le’ histogram

#SCaLE17x#SCaLE17x

Computing SLOs by counting requests

@phredmoye
r

#SCaLE17x

Computing SLOs by counting requests

@phredmoye
r

SLO = 90% of reqs < 30ms

bad requests = 2,262
total requests = 60,124

100-(2262/60124)*100=96.2%

SLO was met

#SCaLE17x

@phredmoye
r

Pros:

1. Simple to implement

2. Performant

3. Scalable

4. Accurate

Computing SLOs by counting
requests

#SCaLE17x

@phredmoye
r

Cons:

1. Fixed SLO threshold - must reconfigure

2. Look back impossible for other thresholds

Computing SLOs by counting requests

#SCaLE17x

Talk Agenda

● SLO Refresher
● A Common Mistake
● Computing SLOs with log data
● Computing SLOs by counting requests
● Computing SLOs with histograms

@phredmoye
r

#SCaLE17x

@phredmoye
r

AKA distributions

Sample counts
in bins/buckets

Gil Tene’s hdrhistogram.org

Computing SLOs with histograms

Sample value

Samples
Median

q(0.5)

Mode
q(0.9)

q(1)Mean

#SCaLE17x

@phredmoye
r

Some histogram types:

1. Linear
2. Approximate
3. Fixed bin
4. Cumulative
5. Log Linear

Computing SLOs by counting
requests

#SCaLE17x

@phredmoye
r

Log Linear Histogram

github.com/circonus-labs/libcircllhist
github.com/circonus-labs/circonusllhist

#SCaLE17x

@phredmoye
r

Log Linear Histogram

#SCaLE17x

@phredmoye
r

h(A ∪ B) = h(A) ∪ h(B)

A & B must have identical bin boundaries

Can be aggregated both in space and time

Mergeability

#SCaLE17x

@phredmoye
r

How many requests are faster than 330ms?

1. Walk the bins lowest to highest until you reach 330ms

2. Sum the counts in those bins

3. Done

Computing SLOs with histograms

#SCaLE17x

@phredmoye
r

#SCaLE17x

@phredmoye
r

For the libcircllhist implementation we have bins at:

... 320, 330, 340, ...

.... And: 10,11,12,13...

.... And: 0.0000010, 0.0000011, 0.0000012,

For every decimal floating point number, with 2
significant digits, we have a bin (within 10^{+/-128}).

So ... where are the bin boundaries?

#SCaLE17x

@phredmoye
r

Pros:
1. Space Efficient (HH: ~ 300bytes / histogram in practice, 10x

more efficient than logs)
2. Full Flexibility:

- Thresholds can be chosen as needed and analyzed
- Statistical methods applicable, IQR, count_below, q(1), etc.

3. Mergability (HH: Aggregate data across nodes)
4. Performance (ns insertions, μs percentile calculations)
5. Bounded error (half the bin size)
6. Several open source libraries available

Computing SLOs with histograms

#SCaLE17x

@phredmoye
r

Cons:

1. Math is more complex than other methods

2. Some loss of accuracy (<<5%) in worst cases

Computing SLOs with histograms

#SCaLE17x

@phredmoye
r

github.com/circonus-labs/libcircllhist
(autoconf && ./configure && make && make install)

github.com/circonus-
labs/libcircllhist/tree/master/src/python

(pip install circllhist)

Log Linear histograms with Python

#SCaLE17x

@phredmoye
r

h = Circllhist() # make a new histogram
h.insert(123) # insert value 123
h.insert(456) # insert value 456
h.insert(789) # insert value 789
print(h.count()) # prints 3
print(h.sum()) # prints 1,368
print(h.quantile(0.5)) # prints 456

Log Linear histograms with Python

#SCaLE17x

@phredmoye
r

from matplotlib import pyplot as plt
from circllhist import Circllhist
H = Circllhist()
… # add latency data to H via insert()
H.plot()
plt.axvline(x=H.quantile(0.95), color=red)

Log Linear histograms with
Python

#SCaLE17x

@phredmoye
r

Averaging Percentiles

Log Linear histograms with
Python

#SCaLE17x

@phredmoye
r

Conclusions
1. Averaging Percentiles is tempting, but misleading

2. Use counters or histograms to calculate SLOs
correctly

3. Histograms give the most flexibility in choosing
latency thresholds, but only a couple libraries
implement them (libcircllhist, hdrhistogram)

4. Full support for (sparsely encoded-, HDR-)
histograms in TSDBs still lacking (except IRONdb).

#SCaLE17x

@phredmoye
r

Thank you!

Tweet me: @phredmoyer

AMA about histograms on: slack.s.circonus.com

More talks about histograms:

slideshare.net/redhotpenguin
https://github.com/HeinrichHartmann/DS4OPS

#SCaLE17x

@phredmoye
r

DEMO

#SCaLE17x

