Highlights of R

The Why, but not the How, of Using R

Samuel Lurie

Southern California Linux Expo 16x (2018)

({Sunday, March 11, 2018}$’1500-1600’)[[Room 104]]
Overview

1. Disrupting Proprietary Software
2. What about Python?
3. R Philosophy
4. R in Practice
5. Conclusion
R has made expensive proprietary statistical software irrelevant.

- R launched in 1993, Python in 1991 (both FOSS)
- Before then, you had SAS (first release in 1972)
Why SAS?
Why do so many organizations use SAS? It’s clunky, difficult to read, and feels so archaic compared to other languages like R and Python.

Because we use SAS and that’s the way things are done.
Inertia. Dinosaurs at my firm who haven’t learned a new thing in decades will stage a ... revolt if we stop paying an arm-and-a-leg for that shouty, verbose, idiotic language.

–excerpts of a thread on the statistics subreddit (tinyurl.com/whysas)
SAS tries to convince us of its continued relevance...

...but just digs itself into a deeper hole.

I think [R] addresses a niche market ... but [w]e [at SAS] have customers who build engines for aircraft. I am happy they are not using freeware when I get on a jet.

—Anne H. Milley (SAS), 2009

But we already have Python.

So why should we care about R?
In terms of functionality...

R and Python have been imitating each other for years.

- They regularly port each other’s libraries. (e.g. ggplot2 and Pandas)
- Jupyter notebooks now have support for R.
- As data science languages, both are full-featured and mature.
- What you can do in one, you can generally do in the other. The one glaring exception: web development capability

The question can no longer be answered by appealing to functionality!
So why choose R over Python? (or vice versa)

- design philosophy
 - Python:
 - performance > (freedom and flexibility)
 - R:
 - (freedom & flexibility) > performance
- stylistic differences and nuances (later in this talk)
- Base R is far more comprehensive than base Python.
- At the end of the day:
 - ”For 95% of programming problems, the best language is the one that you’re best at.”

—Andrew Robinson (https://www.youtube.com/watch?v=ZIUcI_OYbd8, 55min)
In R, operators are functions.

Trivial Examples
- ‘+(2,3) ↦ 5 (i.e. same as 2+3)
- ‘/‘(4,12) ↦ .3333 (i.e. same as 4/12)

Parentheses are a function.
- A pair of parentheses is a call to the identity map function!
- This is why using more parentheses slows down R code.

Braces are a function.
- A pair of braces is a call to a function that returns the last variable calculated.
- This is why functions (delineated by braces) do not need an explicit return statement.
R indexes from 1. (more on this soon)

- usage among non-programmers and "monolingual" R users
- R has four different assignment operators. (more on this soon)

assignment into function calls??

- e.g. `c("Length", "Width") -> names(df1)`
Old habits die hard.

- surprisingly controversial

- There are benefits to this approach. As an example, take \(x = 1:5 \)

Negative Indices

```r
> print(x)
1 2 3 4 5
> x = x[-3]
> print(x)
1 2 4 5
```

Indexing with Size Functions

```r
> x[length(x)]
5
```
Four Different Assignment Operators

the operators, in order of decreasing precedence:

- `assign('x', 1.645)` # optional envir arg for specific namespace
- `1.645 -> x` (rightward assignment, also `->>>`)
- `x <- 1.645` (leftward assignment, also `<<-`)
- `x = 1.645`

a couple amusing effects of R’s order of operations:

- `a = b <- 3`
- `a = ((b <- 3) + 1)` # Remember that operators are functions!
But R is Slow!

- R has a reputation for slow execution.
- This is not so much a fault of R, but rather the price paid for implementing R’s philosophy.
- The real problem lies in one big misconception about R execution times—loops are slow!
The `apply` family of functions are syntactic sugar for applying a function over all/selected elements of a variable.

- They are `apply`, `lapply`, `sapply`, `mapply`, and `tapply`.
- Each has its own usage.
 - `sapply(1:100, function(x){2*sqrt(x)+1})` returns a numeric vector of $2\sqrt{1} + 1$, $2\sqrt{2} + 1$, ..., $2\sqrt{100} + 1$
 - `lapply(list(c(1,2),c(3,4)),sum)`
    ```r
    [[1]]
    [1] 3
    [[2]]
    [1] 7
    ```
 - `tapply`: a wrapper around `lapply`, used for blocking
 - `mapply`: multiple vectors inputted into a function
List Comprehension (part 2 of 2)

Recycling

Functions defined for one element can take multiple elements anyway.

example: factorial()

```r
factorial(1:6)
1 2 6 24 120 720
```

example: length mismatches

```r
(1:6)/c(10,100,1000)
0.1 0.02 0.003 0.4 0.05 0.006
```
The R community largely views loops as being slow and advocates using the `apply` functions as a faster alternative.

This is misinformation! What slows down loops is when you have memory allocations in each iteration!

`apply` may indeed be faster—but that’s simply because it acts as a guard against programmers doing that.
apply() vs. loops: A Counterexample

Loop

```r
# .4 seconds
proc.time() -> exec_time
vec_a <- 1:1e6
vec_b <- vector(mode = "numeric", length = 0)
for(i in vec_a)
{
  vec_b[[1 + length(vec_b)]] <- sqrt(i)
  # notwithstanding a memory operation in each iteration!
}
exec_time <- proc.time() - exec_time
print(exec_time)
```

Sapply()

```r
# .7 seconds
proc.time() -> exec_time
vec_a <- 1:1e6
vec_b <- sapply(vec_a, sqrt)
exec_time <- proc.time() - exec_time
print(exec_time)
```
An upside of the `apply()` habit:

- R programmers have been conditioning themselves to write computations in embarrassingly parallel ways. Even before parallel computing was in vogue!

- Libraries for parallel computing (CPU) thus came to R very naturally as parallelized wrappers for the `apply()` functions.
 - e.g. The `parallel` package has the `mclapply()` function, which performs an `lapply()` in parallel.
 - It has an argument for specifying the number of cores to use. This argument can even be set as `detectCores()-1`!

- Similarly, R has libraries for GPU computing.
I would be remiss if I did not mention these in an R talk, even though they are beyond our present scope.

- ggplot2
- shiny
But R isn’t Deployable!

- R has long been criticized and belittled for its apparent lack of deployability.
 - Until a few years ago, it was hard to refute this criticism.
 - But now... we have Docker!
my R::Shiny Dockerfile

FROM openanalytics/r-base

"forked" from https://www.shinyproxy.io/deploying-apps/

RUN apt-get update && apt-get install -y \
 sudo \
 pandoc \
 pandoc-citeproc \
 libcurl4-gnutls-dev \
 libcairo2-dev \
 libxt-dev \
 libssl-dev \
 libssh2-1-dev \
 libssh1-dev \
 libssl1.0.0

RUN R -e "install.packages(c("shiny" , "rmarkdown" , "tibble" , "formattable" , "dplyr" , "stringi" , "knitr" , "rvest" , "XML" , "pbapply" , "ggplot2" , "chron" , "lubridate" , "DistributionUtils" , "stringr" , "reshape2" , "grDevices" , "outliers") , repos = "http://cran.cnr.berkeley.edu/" , dependencies=TRUE)"

COPY app.R /etc

CMD ["R", "-e", "shiny::runApp('./etc/app.R', port = 8080, host = '0.0.0.0')"]
But R still doesn’t deploy well! You can’t compile a stand-alone ”desktop” R script!

- Yes, you can. If you’re resourceful. (I’ll tell you one way to do it.)
- Let that be the takeaway. The hacker spirit of R is why I thought this talk is suitable for a GNU/Linux conference.
 - I hope you think so too.
The End