Introduction to SoC+FPGA

Marek Vasut <marek.vasut@gmail.com>

March 3, 2017

Marek Vasut

v

Software engineer at DENX S.E. since 2011
Versatile Linux kernel hacker
Custodian at U-Boot bootloader

v

v

v

Yocto (oe-core) contributor
FPGA enthusiast

v

Structure of the talk

v

What is SoC, FPGA and SoC+FPGA ?

Available solutions, small and big

v

v

Small bare-metal or RTOS solutions

v

Big solutions with U-Boot and Linux
FPGA manager and DTOs

Conclusion

v

v

SoC? FPGA? SoC+FPGA?

SoC:
» System on Chip
» CPU core + peripherals
FPGA:
» Field-Programmable Gate Array
» Programmable logic device
SoC+FPGA:
» SoC and FPGA on a single chip

» Connected through on-chip bus

FPGA

» Field Programmable Gate Array
» High-Speed Programmable logic
» Plenty of 1/0O options

> Extremely parallel architecture

» Usually used for:

» Digital Signal Processing (DSP)
Parallel data processing
Custom hardware interfaces
ASIC prototyping

vV vy vy

» Common vendors — Xilinx, Altera, Lattice, Microsemi. ..

Internal structure

BLUE Global interconnect
GREEN Local interconnect
RED Logic element

Why SoC+FPGA?

v

Cost ?

Need for special bus interface for a CPU
Need for obscure (amount of) I/O

Need for extra CPU power for your FPGA

v

v

v

What's available?

A lot !
» Cypress PSoC: 8051/CortexM0/M3 , Flash+SRAM
» Microsemi SF2: CortexM3 , Flash+SRAM+DRAM
> Altera SoCFPGA: CortexA9 SoC + FPGA
» Xilinx Zynq: CortexA9/A53 SoC + FPGA

Cypress PSoC

v

Originally 8051 + Analog programmable fabric
Since PSoC4, ARM Cortex MO + Optional digital blocks
Since PSoC5, ARM Cortex M3

All PSoCs are flash-based , so non-volatile

v

v

v

v

Targets deeply embedded systems, like smoke detectors

» Kit is $10 with easily accessible pins and programmer

This is awesome! But ...

Cypress PSoC getting started

» PSoC Creator is Windows only (or Wine) :-(

» GreenPAK project is working on fixing this :-)

» Installation is annoying, but doable

» Lot of examples in the design tool :-)

» Most of them don't target cheap kits :-(

» Programable logic design is done via schematic entry

» Click compile - program - done ...

Cypress PSoC Creator

Fle Eit View Project Build Debug Tools Window Help

BNSSHIcR sanx|oe

T

SRR B Doy

7 3 8K | Microsoft Sans Seit

Elezla 2o diomsendnd, FbE

fspace Worksp Projecs)
573 Project ‘Designdl” [CYECA247AZ1-MASS]
-] TopDesign.cysch

55 Design Wide Resources (Desion0Lcyci)
L pins

a0 Analog

£50MA

1@ oo
L Interupts
L sysem
£ Directives
13 Flash securty
© Hoader s
© 1) cyapiallbacisn
3 Source Fies.
9

) Generated Source.
20 Psoc

O cmLsee
9 CTRISEG 0c
2] CTRUSEG 00
' CIRLSECOPMC
o aR s
9 CTRLSEG 1
L1 CrRUSEG 1h
g CIRUSEG_LPMc
CTRLSEC 2

ey [aompeed [aumundies [snios,

Show output rom; Al

Log file for This session is located at: Ci \femp\#soc Creator-000.log

<l Ol

-l SRFlp Flop [vL0]

<1 Togale i Flop (w10
(] irual Mux (v1.0)

| S xpor i)

ouputHotce Lst|

Ready

X-BaAY-152)

0Emors 0Warnings OMNotes

DA

Cypress PSoC software

v

PSoC creator has bare-metal code templates

v

Each PL component has register interface

v

PSoC creator generates templates for PL components
There are even convenience functions !

Or export the PL init blob and include it in RTOS
FreeRTOS and uC/0OS2 BSPs are available

v

v

v

Microsemi SmartFusion 2

v

Has roots in Actel offerings

CortexM3 with MPU, Flash/SRAM/DDR DRAM

Arrow SF2PLUS kit is $125 with programmer

Usual RTOS offerings — FreeRTOS, uC/OS-IlI, Keil RTX

Capable of running Linux *

v

v

v

v

* uClinux with prehistoric kernel

Microsemi SF2 getting started

It's easy ... no, not really ...
» Register at Microsemi website
» Download Libero SoC design software 11.7
» Download separate service pack 3
» Download license server daemons
> Install the first two (howto kinda works ...)
> Install asortment of 32bit libs
» Unpack the daemons
» Obtain evaluation license from Microsemi

> See next slide for how to launch this monster

Microsemi SF2 getting started

© O U A WN -

export
export
export
export
export
export
export
export

LD_LIBRARY_PATH=/1ib/i386-1inux-gnu/:/usr/1ib/i386-1inux-gnu/
LIBERO_INSTALLED_DIR=/work/MicroSemi/Libero_v11.7/
PATH=$PATH:$LIBERO_INSTALLED_DIR/Libero/bin/

PATH=$PATH: $LIBERO_INSTALLED_DIR/Synplify/bin/
PATH=$PATH:$LIBERO_INSTALLED_DIR/Model/modeltech/linuxacoem/
PATH=$PATH: $LIBERO_INSTALLED_DIR/../Linux_Licensing_Daemon/
LM_LICENSE_FILE=1702@localhost
SNPSLMD_LICENSE_FILE=1702@localhost

cd /work/MicroSemi/Libero_v11.7/Libero
/work/MicroSemi/Linux_Licensing_Daemon/lmgrd \

libero

-c /work/MicroSemi/License.dat \
-1 /tmp/microsemi-lmgrd.log

killall Imgrd actlmgrd

Altera SoCFPGA

» ARM Cortex A9 UP/SMP

» SPI NOR/NAND/SD storage, DDR2/3 DRAM
» Standard peripherals (12C, SPI, CAN, USB ...)
» Upcoming Stratix 10 is ARMv8 Cortex A53

» Usually runs U-Boot, Linux

» RTOS offerings exist, uC/OS, FreeRTOS

» Capable of running in AMP configuration

Altera SoOCFPGA design software

» Altera Quartus , now intelFPGA
> Proprietary, but runs fine on Linux

» Project Typhoon

Altera SoOCFPGA bootloader

U-Boot or MPL:

» U-Boot

> Altera
» 2013.01.01
> Ancient, buggy, obtuse

» Mainline
> 2017.xx
> Actively maintained
> Altera is contributing
> Used in production (use it)

» MPL
» BSD-licensed bootloader
» Bugs fixed in U-Boot not fixed here
» Very rudimentary (init hw, start blob)

Altera SoCFPGA Linux support

» Vendorkernel
» Reasonably recent 4.x
> Altera is trying to keep it in sync with Linus
» Still a lot of questionable patches

» Mainline

» HPS peripherals supported out of the box
» FPGA part needs a few patches from ML
» DT overlay support
» FPGA manager support
» DT overlay support for FPGA manager

Xilinx Zynq

» ARM Cortex A9 or Cortex A53 (ZyngMP)

» SPI NOR/NAND/SD storage, DDR2/3 DRAM
» Standard peripherals (12C, SPI, CAN, USB ...)
» ZyngMP has a lot of multimedia stuff

» ZyngMP has GPU, but it's ARM Mali :-(

» Usually runs U-Boot, Linux

» RTOS offerings exist, uC/OS, FreeRTOS

Xilinx Zynq design software

» Xilinx Vivado
» Proprietary, but runs fine on Linux
» FOSS solution is in the works :-)

Xilinx Zynq bootloader

> U-Boot
» Mainline U-Boot works, with limitations on ZyngMP
» ZyngMP ATF loading is in progress
» Xilinx is active at contributing

» FSBL + U-Boot

Xilinx's preloader with extended capabilities

Sets up the hardware, loads blobs, starts U-Boot
In this setup, U-Boot runs without SPL

This configuration is thus far needed on ZyngMP

vV vy vVvYyy

Xilinx Zynq Linux support

» Vendorkernel

» Reasonably recent 4.x

» Xilinx is trying to keep it in sync with Linus

» Version is usually picked based on Xilinx release cycle
» Some questionable patches in the tree

» Mainline

» PS peripherals supported out of the box
» FPGA part needs patches from ML for Zynq
» ZyngMP support is work in progress

U-Boot on SoCFPGA and Zynq

Altera SoCFPGA
» In Quartus, build project and generate handoff files
> Use qgts-filter.sh in mainline U-Boot to process them
» Build mainline U-Boot to obtain u-boot-with-spl.sfp
» Install u-boot-with-spl.sfp to partition 0xa2 on SD card
> Install u-boot-with-spl.sfp to offset 0x0 on QSPI NOR
» Use fpga command to load FPGA RBF bitstream
Xilinx Zynq
» In Vivado, build project and generate HDF file
» Unzip HDF file to obtain ps*_init*.c and ps*_init*.h
» Copy the ps*_init* files to U-Boot source, build U-Boot
» Install BOOT.BIN to FAT partition on SD card
» Use fpga command to load FPGA BIT bitstream

Vendorkernel FPGA loading horror

v

SoCFPGA: cat bitstream.rbf > /dev/fpga
» Zyng: cat bitstream.rbf > /dev/xdevcfg

v

Enable bridges

v

Access hardware via devmem and hope it works

> Bind drivers and enjoy how things work . ..
But what if someone reprograms the FPGA while the driver uses
it?

» Too bad, GAME OVER

» System hangs or misbehaves

Linux with DTOs

DTO - Device Tree Overlays
» Dynamic device tree
» Kernel can load DT fragments at runtime

» The "live” DT is patched by these fragments

v

Fragments can be loaded via ie. configfs

Drivers are bound based on the DT content

v

Linux DTO demo

=

overlaydir=/sys/kernel/config/device-tree/overlays/mydto
inputdts=/usr/share/dto/overlay.dts

Compile and load DTO

mkdir $overlaydir

dtc -@ -I dts -0 dtb $inputdts > $overlaydir/dtbo

"~ this option indicates we're compiling DT fragment

© W N O e W N

#
Do your stuff here
#

== e
N o= O

Unload DTO
rmdir $overlaydir

[
)

DTO source

/dts-v1/;
/plugin/;
/L

#address-cells = <1>;

#size-cells
fragment@0 {

3

fragment@l {

<0>;

reg = <0>;
target-path = "/soc/ethernet@ff700000";
__overlay__ {

};

#address—-cells = <1>;
#size-cells = <0>;

status = "okay";
phy-mode = "rgmii";

reg = <1>;
target-path = "/soc/i2c@ffc04000/i2¢cswitch@70/i2c@1";
__overlay__ {

#address-cells = <1>;
#size-cells = <0>;
eeprom@51 {
compatible = "at,24c01";
pagesize = <8>;
reg = <0x51>;

Linux FPGA manager

v

Responsible for handling the FPGA part of the SoC
Loads the FPGA bitstream
Manages the bridges between SoC and FPGA

Uses Linux firmware facility to obtain bitstream from FS

v

v

v

v

Well integrated into Linux DM, unlike vendorkernel stuff

Supports Altera SoCFPGA, Xilinx Zynq and Lattice iCE40
(more are coming)

v

v

Supports partial reconfiguration too (here be dragons)

FPGA manager with DTOs

How it works:

>

>

>

>

>

>

>

Describe FPGA content in DTO

DTO must also point to a matching bitstream
Load DTO into the kernel

Kernel programs the FPGA (using FPGA manager)
Kernel enables bridges (using FPGA manager)
Kernel binds drivers based on the DTO content
User is happy!

DTO can be removed:

>

>

>

Kernel unbinds drivers
Kernel disables bridges (using FPGA manager)

FPGA remains programmed and running

FPGA manager DTO

1 /dts-vi/;

2 /plugin/;

3 /74

4 #address-cells = <1>;

5 #size-cells = <0>;

6 fragment@0 {

7 reg = <0>;

8 /* controlling bridge */

9 target-path = "/soc/fpgamgr@eff706000/bridge@0";

10 __overlay__ {

11 #address-cells = <1>;

12 #size-cells = <1>;

13 area@0 {

14 compatible = "fpga-area";

15 #address-cells = <2>;

16 #size-cells = <1>;

17 /* We use one bridge, so one range */

18 ranges = <0 0x00000000 0xff200000 0x00080000>;
19

20 firmware-name = "fpga/default/output_file.rbf";
21

22 a_16550_uart_0: serial@01000 {

23 compatible = "altr,16550-FIF0128", "ns16550a";
24 reg = <0 0x001000 0x00000200>;

25 interrupt-parent = <&intc>;

26 interrupts = <0 40 0>;

27 clock-frequency = <32000000>;

28 fifo-size = <128>;

29 reg-io-width = <4>;

30 reg-shift = <2>;

Conclusion

» All sorts of PL devices available
» Using SoC with FPGA in Linux today is becoming easy
» FPGA manager is great (already) !

The End

Thank you for your attention!

Contact: Marek Vasut <marek.vasut@gmail.com>

