
An Opinionated Proposal to Improve Internet TLSAn Opinionated Proposal to Improve Internet TLS
Certi�cate Management:Certi�cate Management:

Burn It All DownBurn It All Down
Joe Thompson, Clarity Business SolutionsJoe Thompson, Clarity Business Solutions

Intro; Let's Talk

Who's that at the podium?

Almost 30 years in IT (Kubernetes-enabled since

2015)

Past employers: HashiCorp, Mesosphere, CoreOS,

Red Hat, among others

Currently a Consulting Engineer for Clarity

Business Solutions

Pronouns: he/him

Blood type: Ca�eine-positive

Pop-culture references center of gravity: around

1989

: @kensey

How to get in touch:

Kubernetes Slack

LinkedIn

https://claritybizsol.com/
https://claritybizsol.com/
https://www.orion-com.com/contact.html
https://kubernetes.slack.com/
https://www.linkedin.com/in/kensey/

Now about the most important people here -- you!

Who's here at their �rst SCaLE?

Who here has run an internal certi�cate authority?

Who here has ever had to deal regularly with a public certi�cate authority?

Who here enjoyed doing that?

What we're aiming to cover

Where things started

The mess we're currently in

Where we go from here

Warning: this is a rant

I intentionally take a very hard line here: the current situation is untenable

I am not deliberately attempting to be unfair to any party but I'm also not especially concerning

myself with nuance and subtlety here

I touch only the surface level of most of this because the situation is fractally bad: every horrible

piece of it look at has is own deeper levels of horror

I do not authoritatively propose a solution to the problem but I do share some ideas about the

general shape one might have

I was there, Gandalf,
30 years ago...

Let's get in the time machine: early 1995

X-Files was in its second season

I was �nishing my �rst (and as it happened, �nal) full year at UVa

And a bunch of Netscape engineers got together and said "Let's make the whole infrastructure of

Internet security a tottering pile of Jenga bricks"

Not really, but that's basically what happened

Let's back up: what is Netscape trying to do in 1995?

Secure communications across untrusted channels

Fortunately, public-key cryptography has an answer for this: each party has a keypair, one public,

one private

Private keys can sign data and decrypt data encrypted with the public key

Public keys can encrypt data and verify signatures made with the private key

This requires that parties exchange public keys to secure a communication channel in both

directions, but public keys can safely be sent over unsecured channels

Key exchange does nothing to verify identity

If a connection is subverted before security can be established, an attacker can send you its own key

instead of the real second party's

We're really getting ready for e-commerce

Identity veri�cation is critical when money is moving around at the speed of light

Enter the "certi�cate authority" (CA)

A third party that creates a certi�cate of identity that also includes the public key tied to that identity,

and signs that certi�cate with its own key, published in its own self-signed certi�cate of identity

The certi�cate is based on the pre-existing X.509 standard (part of the hundreds of pages of the suite

of standards for the X.500 directory system)

But how do I trust the CA's identity?

Browsers (and operating systems) have preloaded certi�cates from certi�cate authorities deemed

trustworthy

Deemed by who? Based on what criteria?

So how does this work in practice?

Your browser requests a secure connection to a site

The site sends back a certi�cate chain: its own identity certi�cate, plus all the intermediate

certi�cates that signed it

Your browser veri�es the validity of that chain, then veri�es that it anchors to a previously-trusted

root

The key in the certi�cate is then known to be the correct key for the known party and is used to

establish the secured connection

So that works, right?

Of course it does! Because CAs will never ever have any kind of issue that makes them or the

certi�cates they issue untrustworthy

Look, I don't know what to tell you... it was the '90s, we didn't even have SSH yet

Where that ended
up

So what's the problem?

There is no inherent limitation on the scope of certi�cates a CA can issue

CAs make mistakes

CAs take shortcuts to get around issues with data availability to verify identity

CAs sometimes just aren't very good at being CAs

CAs are fooled by bad actors and issue fraudulent certi�cates

CAs are fooled by bad actors (or just) and issue those bad actors their own

CA certi�cates

decide to take the money

CA system vulnerabilities can be exploited to get fraudulent certi�cates, or certi�cates that exploit

client implementation vulnerabilities, issued

https://blog.cryptographyengineering.com/2012/02/28/how-to-fix-internet/

Certi�cates must occasionally be revoked

All the ways of doing that are terrible

CAs can publish a list of revoked certi�cates called a CRL

CRLs can get really big

OCSP allows a browser to query for the validity of one single certi�cate

Potential privacy compromise, requires the responder to be extremely highly available

OCSP Stapling sends a pre-retrieved OCSP response along with the certi�cate so a query is not

necessary

Some clients query anyway

It's not always an innocent mistake

CAs are also vulnerable to insider threats or might be (or become) outright rogue actors, so there

have to be transparency measures

Certi�cate Transparency involves a CA writing every certi�cate it issues to a transparency log

Domain owners then can check the log for malicious certi�cates

What about malicious omission of a malicious certi�cate from a transparency log?

It's up to clients to refuse to accept certi�cates not documented in a log, but there are some

situations where a new certi�cate is valid and should be accepted despite not being in any log yet

To prevent a malicious issuer from colluding with a malicious log to exploit these scenarios,

browsers typically require veri�cation from multiple logs and only query certain logs deemed

trustworthy

Can you control which CAs issue certs for you?

Of course not!

At best, you can publish records in your DNS that follow a scheme called CAA to announce which

certi�cate authorities you authorize to issue your certs

CAA is self-enforced by CAs

There are other threats that only exist because of

this ultimate-trust model
In early 2015 it was revealed that Lenovo laptops shipped with software preinstalled that used its

own CA certi�cate added to the trust store, and an embedded private key, to subvert the security of

TLS connections by essentially locally issuing valid certi�cates for arbitrary domains

Then right after that had been thoroughly discussed in the tech press, Dell did the same thing

OK, so it's a mess, but it mostly works, right? There's

a small set of trusted CAs, we basically know who

they are, we basically know they can be trusted, it's

pretty much �ne, right?

You wish.

https://www.feistyduck.com/ssl-tls-and-pki-history/

Poll: How many public CAs does your system trust?

It's a trick! The set of certs isn't consistent between the various browser and OS trust stores, and the

speci�c certs contained are constantly changing as old CA certs expire, new CAs are added, and (far

too regularly) existing CAs are detrusted for cause.

In general though it's something in the neighborhood of 100-250

How do they get there?

Remember "deemed by who?"

The , that's whoCA/Browser Forum

Who the heck are they?

https://cabforum.org/

It's a big club... and you ain't in it.
- George Carlin (1937-2008)

OK, so if it's this big a problem, why isn't
anybody else talking about it?

Well, they are:

Moxie Marlinspike laid out the issues in and coauthored an IETF

Draft for a protocol known as TACK in 2012

a BlackHat presentation in 2011

DANE (DNS-based Authentication of Named Entities) was published as in 2011RFC 6394

An implementation of DANE called DANE TLSA was published as in 2012RFC 6698

Neither of these really went anywhere, mostly because browser makers didn't implement them

https://www.youtube.com/watch?v=Z7Wl2FW2TcA
https://datatracker.ietf.org/doc/html/rfc6394
https://datatracker.ietf.org/doc/html/rfc6698

Where can we go
and how can we get
there?

OK, so it really is that bad

What do we do?

BURN IT DOWN

It's all hacks built on hacks built on other hacks.

I truly believe it's beyond saving in its current form.

This, but also on top of 100-250 other tiny skinny vertically-stacked blocks named "A certi�cate

authority of unknown trustworthiness" (image credit:)xkcd.com

https://xkcd.com/2347/

What do we replace it with, though?

Good question. I hope you can answer it ("no authoritative solutions", remember?) But in general I

think this is the box solutions need to �t in:

We have to give up the idea that any CA that a small cabal of mostly commercial interests chooses, is

ultimately trusted to issue any certi�cate for any domain on the entire Internet with only their own

good behavior and the unceasing vigilance of every single owner of every domain as enforcement

We have to have some mechanism for detrusting incompetent/rogue CAs immediately (+/-), not with

a delay of "everybody in the world �nally downloads the latest OS/browser updates"

We may have to give up some or all of the entire idea of in-band identity veri�cation based on pre-

trusted authorities

Are people really going to do this?

Ideally, yes. In that scenario very serious conversations, like the ones that took place around the

Spectre/Meltdown CPU vulnerabilities, start happening sooner rather than later. In my opinion this is

at least that serious.

Realistically, I expect everybody to do what people have been doing already: pretend everything is

basically OK and we just need this one more little �x to plug the last hole (till the next last hole comes

along), until something truly catastrophic happens

Wrapping up

Final thoughts

Don't Panic but DO get concerned

Get informed!

Get loud!

Thank you!

Slides:

https://tinyurl.com/burn-tls-down

https://tinyurl.com/burn-tls-down

