
Jeremy Schneider

SCaLE 21x
3-14-2024

Wait! What’s going on inside
my database?
PostgreSQL and Optimizing Database Performance

CC BY
Shisma

Wikimedia Commons

About PostgreSQL

1970: Mathematician Edgar F. Codd, working as researcher
for IBM, publishes “A Relational Model of Data for Large
Shared Data Banks”
1973: Michael Stonebraker and Eugene Wong at University
of California Berkeley seek funding and begin development
of a relational database called INGRES
1986: Michael Stonebraker and Lawrence A. Rowe at
University of California Berkeley publish “The Design of
POSTGRES” – a new database that is the successor to INGRES
1994: Andrew Yu and Jolly Chen at University of California
Berkeley add support for the SQL language
1996: Transition to non-university core team of volunteers,
official release under new name POSTGRESQL 1985

About PostgreSQL

About Database Performance

About Database Performance

About Database Performance

and Hardware

About Database Performance

1990’s Manager:

“Dear DBA: Expert consultants
have taught us that if the Buffer
Cache Hit Ratio (BCHR) is below
90% then the system
immediately needs an expensive
tuning engagement.

Please report any databases that
have BCHR < 90%.”

Delfador Chibi by Peileppe
CC0

About Database Performance

1990’s Manager:

“Dear DBA: Expert consultants
have taught us that if the Buffer
Cache Hit Ratio (BCHR) is below
90% then the system
immediately needs an expensive
tuning engagement.

Please report any databases that
have BCHR < 90%.”

Delfador Chibi by Peileppe
CC0

Nørgaard, Mogens et al. Oracle Insights:
Tales of the Oak Table. Berkeley, CA:
Apress/OakTable Press, 2004. p76-77.

About Database Performance

About Database Performance
Millsap, Cary V. Optimizing Oracle Performance.
Sebastopol, CA: OReilly, 2003. p225, 240, 258-259

R = S + W

“How long
the SQL
takes to run”

See also:
• Shallahamer, Craig.

Forecasting Oracle
Performance. Berkeley,
CA: Apress, 2007.

About Database Performance

Active Session Sampling

(JB’s notebook, 2004)

Images & Quotes
Used With Permission

Published 2004Published 2003

What about PostgreSQL?

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Mariinsky Theatre, St. Petersburg
by Sandra Cohen-Rose and Colin Rose (Montreal, Canada)
 CC BY-SA

Mariinsky Theatre, St. Petersburg
by Sandra Cohen-Rose and Colin Rose (Montreal, Canada)
 CC BY-SA

 Wait Events

Mariinsky Theatre, St. Petersburg
by Sandra Cohen-Rose and Colin Rose (Montreal, Canada)
 CC BY-SA

Wait Events

Mariinsky Theatre, St. Petersburg
by Sandra Cohen-Rose and Colin Rose (Montreal, Canada)
 CC BY-SA

Wait Events
Millsap, Cary V. Optimizing Oracle Performance.
Sebastopol, CA: OReilly, 2003. p225, 240, 258-259

R = S + W

“How long
the SQL
takes to run”

See also:
• Shallahamer, Craig.

Forecasting Oracle
Performance. Berkeley,
CA: Apress, 2007.

Mariinsky Theatre, St. Petersburg
by Sandra Cohen-Rose and Colin Rose (Montreal, Canada)
 CC BY-SA

Wait Events

Active Session Sampling

(JB’s notebook, 2004)

Images & Quotes
Used With Permission

Mariinsky Theatre, St. Petersburg
by Sandra Cohen-Rose and Colin Rose (Montreal, Canada)
 CC BY-SA

Wait Events
• 1990s: Database kernel instrumentation:

• Counters and tools to snapshot/compare them

• Events (log a message under certain circumstances)

• 1992: Unable to solve a performance problem, as a last resort,
engineers added event code in version 7.0.12 capable of emitting
trace messages when the database waited for something

• First exposed in V$SESSION_WAIT and later in V$SESSION
(equivalent of pg_stat_activity)

• PostgreSQL built on concepts that had become standard across
the industry

Mariinsky Theatre, St. Petersburg
by Sandra Cohen-Rose and Colin Rose (Montreal, Canada)
 CC BY-SA

Wait Events

“But why are these events called wait events?
…
In short, when a session is not using the CPU, it may be
waiting for a resource, an action to complete, or simply
more work. Hence, events that associated with all such
waits are known as wait events.”

Shee, Richmond, Kirtikumar Deshpande, and K. Gopalakrishnan. Oracle Wait Interface a Practical
Guide to Performance Diagnostics & Tuning. New York: London, 2004. p16

Mariinsky Theatre, St. Petersburg
by Sandra Cohen-Rose and Colin Rose (Montreal, Canada)
 CC BY-SA

Wait Events

High-Level Idea:

Caveats:
• OS scheduling/runqueue
• Measurement overhead
• Non-database CPU time

The database is WAITING any time when it’s not running on the CPU

Mariinsky Theatre, St. Petersburg
by Sandra Cohen-Rose and Colin Rose (Montreal, Canada)
 CC BY-SA

Wait Events

Mariinsky Theatre, St. Petersburg
by Sandra Cohen-Rose and Colin Rose (Montreal, Canada)
 CC BY-SA

Wait Events

Mariinsky Theatre, St. Petersburg
by Sandra Cohen-Rose and Colin Rose (Montreal, Canada)
 CC BY-SA

Wait Events

Mariinsky Theatre, St. Petersburg
by Sandra Cohen-Rose and Colin Rose (Montreal, Canada)
 CC BY-SA

Wait Events

Significant Commits: Version 9.6
• Aa65de0 – 11 Sep 2015 – Autogenerate lwlocknames.[c|h]
• 53be0b1 – 10 Mar 2016 – Heavy/Lightweight Locks, Buffer Pins

Version 10
• 6f3bd98 – 4 Oct 2016 – Latches & Sockets, Clients, Main Loops
• 249cf07 – 18 Mar 2017 – I/O
• Fc70a4b – 26 Mar 2017 – Background and Auxiliary Processes

Version 11
• 1804284 – 20 Dec 2017 – Parallel-Aware Hash Joins

Mariinsky Theatre, St. Petersburg
by Sandra Cohen-Rose and Colin Rose (Montreal, Canada)
 CC BY-SA

Version 12
• Add a wait event for fsync of WAL segments (Konstantin

Knizhnik)
• Ensure that TimelineHistoryRead and TimelineHistoryWrite wait

states are reported in all code paths that read or write timeline
history files (Masahiro Ikeda)

Version 13
• Rename various wait events to improve consistency (Fujii Masao,

Tom Lane)
• Report a wait event while creating a DSM segment with

posix_fallocate() (Thomas Munro)
• Add wait event VacuumDelay to report on cost-based vacuum

delay (Justin Pryzby)
• Add wait events for WAL archive and recovery pause (Fujii

Masao)
• The new events are BackupWaitWalArchive and RecoveryPause.
• Add wait events RecoveryConflictSnapshot and

RecoveryConflictTablespace to monitor recovery conflicts
(Masahiko Sawada)

• Improve performance of wait events on BSD-based systems
(Thomas Munro)

Version 14
• Add wait event WalReceiverExit to report WAL receiver exit wait

time (Fujii Masao)
• Wake up for latch events when the checkpointer is waiting

between writes. This improves responsiveness to backends
sending sync requests. The change also creates a proper wait
event class for these waits. (Thomas Munro)

Version 15
• Add wait events for local shell commands. The new wait events

are used when calling archive_command,
archive_cleanup_command, restore_command and
recovery_end_command. (Fujii Masao)

• Correct the name of the wait event for SLRU buffer I/O for
commit timestamps. This wait event is named CommitTsBuffer
according to the documentation, but the code had it as
CommitTSBuffer. Change the code to match the documentation,
as that way is more consistent with the naming of related wait
events. (Alexander Lakhin)

• Re-activate reporting of wait event SLRUFlushSync. Reporting of
this type of wait was accidentally removed in code refactoring.
(Thomas Munro)

Version 16
• Add wait event SpinDelay to report spinlock sleep delays (Andres

Freund)
• Create new wait event DSMAllocate to indicate waiting for

dynamic shared memory allocation. Previously this type of wait
was reported as DSMFillZeroWrite, which was also used by
mmap() allocations. (Thomas Munro)

• Allow parallel application of logical replication. Wait events
LogicalParallelApplyMain, LogicalParallelApplyStateChange, and
LogicalApplySendData were also added. Column leader_pid was
added to system view pg_stat_subscription to track parallel
activity. (Hou Zhijie, Wang Wei, Amit Kapila)

• Have wal_retrieve_retry_interval operate on a per-subscription
basis. Previously the retry time was applied globally. This also
adds wait events >LogicalRepLauncherDSA and
LogicalRepLauncherHash. (Nathan Bossart)

Version 17
• Support custom wait events for wait event type "Extension”

(Masahiro Ikeda)

Wait Events

Mariinsky Theatre, St. Petersburg
by Sandra Cohen-Rose and Colin Rose (Montreal, Canada)
 CC BY-SA

Wait Events

Gaps after migrating to Open Source/Community PostgreSQL
1. SQL/Session/Wait Tracing
2. Wait Event Counters and Cumulative Times (and LWLock counters), both

instance and session level
3. Wait Event Arguments (object, block, etc)
4. Comprehensive tracking of CPU time (POSIX rusage; avail session level)
5. Ability to find previous SQL for COMMIT/ROLLBACK

• Needed to identify which transaction is committing
6. On-CPU State

• SQL Execution Stage (parse/plan/execute/fetch)
• SQL Execution Plan Identifier in pg_stat_statements
• Current plan node

7. Progress on long operations (e.g. large seqscan)
8. Better runtime visibility into PLs

I can haz Wait Events?

Solving Problems with Wait Events in PostgreSQL

By Antony Griffiths (Flickr), CC BY

Solving Problems With Wait Events

Repository of Historical Perf Data (from pg_stat_activity)

Scope (time, user, activity/application, pid, etc)

Top SQL / Top Wait Events

EXPLAIN ANALYZE with Buffers, IO timing, etc

Investigate WAIT EVENT & STEP Taking The Most TIME

Solving Problems With Wait Events

Repository of Historical Perf Data (from pg_stat_activity)

Scope (time, user, activity/application, pid, etc)

Top SQL / Top Wait Events

EXPLAIN ANALYZE with Buffers, IO timing, etc

Investigate WAIT EVENT & STEP Taking The Most TIME

Solving Problems With Wait Events

Solving Problems With Wait Events

while true; do
 psql --csv -Xtc ”
 SELECT extract(epoch from now()), query,
 wait_event_type, wait_event
 FROM pg_stat_activity
 WHERE application_name='pgbench'
 and state='active’;
 "
 sleep 15
done >wait_events.csv

Solving Problems With Wait Events

Repositories of Historical Performance Data
 (Active Session Sampling of Wait Events)

• https://wiki.postgresql.org/wiki/Monitoring

• Amazon RDS Performance Insights
• RDS for PostgreSQL 10+
• Aurora PostgreSQL-Compatible Edition 9.6+

(v10 Wait Events were backported)
• Rolling 7 days of history is free. Up to 2 years on paid tier.

Solving Problems With Wait Events

Repository of Historical Perf Data (from pg_stat_activity)

Scope (time, user, activity/application, pid, etc)

Top SQL / Top Wait Events

EXPLAIN ANALYZE with Buffers, IO timing, etc

Investigate WAIT EVENT & STEP Taking The Most TIME

Solving Problems With Wait Events

Millsap, Cary V. Optimizing Oracle Performance.
Sebastopol, CA: OReilly, 2003. p52

Solving Problems With Wait Events

Repository of Historical Perf Data (from pg_stat_activity)

Scope (time, user, activity/application, pid, etc)

Top SQL / Top Wait Events

EXPLAIN ANALYZE with Buffers, IO timing, etc

Investigate WAIT EVENT & STEP Taking The Most TIME

Solving Problems With Wait Events

Solving Problems With Wait Events
(one of many options)

Solving Problems With Wait Events

Solving Problems With Wait Events

Solving Problems With Wait Events

pairs well with:
github.com/awslabs/pg-collector

Solving Problems With Wait Events

Repository of Historical Perf Data (from pg_stat_activity)

Scope (time, user, activity/application, pid, etc)

Top SQL / Top Wait Events

EXPLAIN ANALYZE with Buffers, IO timing, etc

Investigate WAIT EVENT & STEP Taking The Most TIME

Solving Problems With Wait Events

Solving Problems With Wait Events

Solving Problems With Wait Events

Solving Problems With Wait Events

Scenario:

Small Bank, Lots of Business

Small Bank, Lots of Business
1. BEGIN;

2. UPDATE accounts

 SET abalance = abalance + :delta

 WHERE account = :account;

3. SELECT balance FROM accounts

 WHERE account = :account;

4. UPDATE tellers

 SET balance = balance + :delta

 WHERE teller = :teller;

5. UPDATE branches

 SET balance = balance + :delta

 WHERE branch = :branch;

6. INSERT INTO history

 VALUES (:teller, :branch, :account,

 :delta, CURRENT_TIMESTAMP);

7. END; (COMMIT TRANSACTION)

Our bank is small because we
only have 10 branches

Bank branches (can scale this)

10 tellers

work at
each branch

100,000
accounts

opened at
each branch

Very important for regulators!

audit history

Small Bank, Lots of Business Jim Gray
April fools day 1985

Changed DB field forever

Published ‘anonymously’ in popular industry magazine (not SIGMOD or VLDB)

“There are lies, damn lies, and then there are performance measures.”

Small Bank, Lots of Business
pgbench --initialize --scale=10

for CLIENT in 1 2 5 10 25 50
 100 200 400 800; do

 pgbench --client=$CLIENT
 --progress=2 --time=30

done 2>&1 | tee benchmark.log

egrep '(clients:|progress: 30)'
 benchmark.log | paste - -

Xeon Ice Lake, 1 socket (processor), 32 cores, 64 threads
512 GiB memory

The Old Method: Counter and Ratio Metrics
pgbench --client=100 --progress=5 --time=9999

CPU%

while true; do

 psql --csv -Xtc "
 SELECT extract(epoch from now()),
 sum(blks_read) as heap_read,
 sum(blks_hit) as heap_hit,
 sum(blks_hit) / (sum(blks_hit)
 + sum(blks_read)) as ratio
 FROM pg_stat_database;
 " -c "
 SELECT pg_stat_reset();
 "

 sleep 5;
done;

The Right Method: Wait Events

The Right Method: Wait Events
1. BEGIN;

2. UPDATE accounts

 SET abalance = abalance + :delta

 WHERE account = :account;

3. SELECT balance FROM accounts

 WHERE account = :account;

4. UPDATE tellers

SET balance = balance + :delta

 WHERE teller = :teller;

5. UPDATE branches

SET balance = balance + :delta

 WHERE branch = :branch;

6. INSERT INTO history

 VALUES (:teller, :branch, :account,

 :delta, CURRENT_TIMESTAMP);

7. END; (COMMIT TRANSACTION)

Top SQL: UPDATE tellers & UPDATE branches

Top Waits Events: Lock:transactionid & Lock:tuple
 = you have hot records in your table

-- Scheduled job, run every few seconds

UPDATE tellers
 SET balance = (SELECT SUM(delta)
 FROM history
 WHERE h.teller=t.teller
 GROUP BY teller)

UPDATE branches
 SET balance = (SELECT SUM(balance)
 FROM accounts
 WHERE a.branch=b.branch
 GROUP BY branch)

The Right Method: Wait Events

for CLIENT in 1 2 5 10 25 50
 100 200 400 800; do

 pgbench --client=$CLIENT
 --progress=2 --time=30
 --builtin=simple-update

done 2>&1 | tee benchmark-2.log

egrep '(clients:|progress: 30)'
 benchmark-2.log | paste - -

pgbench-step4-step5-job.sql:

UPDATE pgbench_tellers t
 SET tbalance = (SELECT sum(h.delta)
 FROM pgbench_history h
 WHERE h.tid=t.tid
 GROUP BY h.tid)
;
UPDATE pgbench_branches b
 SET bbalance = (SELECT sum(a.abalance)
 FROM pgbench_accounts a
 WHERE a.bid=b.bid
 GROUP BY a.bid)
;

pgbench --initialize --scale=10

pgbench --no-vacuum --client=1 --rate=1
 --progress=5 --time=9999
 --file=pgbench-step4-step5-job.sql

optimized application:
5x speedup

The Right Method: Wait Events
Midjourney: May 2023 Incident

8 TB non-partitioned table
8,000-10,000 QPS
Outbound Logical Replication

Four weeks after minimal downtime
migration to a partitioned table

Two incidents (4 days apart) of
critically elevated application error
rates, caused by severe & sudden
database performance degradation

AAS & Wait Events History used to
quickly identify contention point,
greatly accelerating mitigation.

source: www.kylehailey.com

Average Active Sessions
LWLock:LockManager - 500

Application Error Rate - 1000/sec

More Scenarios
CPU
• Overall rate of work: Review SQL

execution plans, check for plan flips
and optimize total blocks accessed.

DataFileRead, BufferIO
• I/O Read Path: Review SQL

execution plans, check for plan flips
and optimize total blocks accessed.

WALWrite
• I/O Write Path: Check commit rate,

volume of change.

For more info, RDS docs on wait events

transactionid, relation, etc.
• Hot records: check top SQL or pg_locks

during contention, review application flow
of updating records.

BufferContent
• Hot Block in Memory: check foreign keys,

optimize contention (e.g. schema redesign,
fillfactor, etc).

LockManager
• Lock System High Pressure: Check total

number of indexes and partitions involved
in tables used by the query, reduce query
execution rate, use replicas

Solving Problems With Wait Events

Repository of Historical Perf Data (pg_stat_activity)

Scope (time, user, activity/application, pid, etc)

Top SQL / Top Wait Events

EXPLAIN ANALYZE with Buffers, IO timing, etc

Investigate WAIT EVENT & STEP Taking The Most TIME

Thank you!
aws.amazon.com/rds/postgresql

