dWS

Wait! What's going on inside
my database?

PostgreSQL and Optimizing Database Performance

Jeremy Schneider

SCaLE 21x
3-14-2024 adws

About PostgreSQL

1970: Mathematician Edgar F. Codd, working as researcher
for IBM, publishes “A Relational Model of Data for Large
Shared Data Banks”

1973: Michael Stonebraker and Eugene Wong at University
of California Berkeley seek funding and begin development
of a relational database called INGRES

1986: Michael Stonebraker and Lawrence A. Rowe at
University of California Berkeley publish “The Design of
POSTGRES" — a new database that is the successor to INGRES

1994: Andrew Yu and Jolly Chen at University of California
Berkeley add support for the SQL language

1996: Transition to non-university core team of volunteers, @ o TR R R s

official release under new name POSTGRESQL

Andy Pavl
g @:ndg,p:/:go e
My Stonebraker history book arrived. |

started reading and it's full of gems. My fav
so far:

Wei Hong is an early @PostgreSQL dev. He
learned about databases in China by typing
in the entire Ingres source code by hand from

printout found in random boxes. /cc
@mikeolson

The Postgres and
Illustra Codelines

Wei Hong

Iworked on Postgres from 1989-1992, on Illustra from 1992-1997, and then on off-
shoots of Postgres on and off for several years after that. Postgres was such a big part
of my life that I named my cats after nice-sounding names in it: Febe (Frontend-
Backend, pronounced Phoebe) and Ami (Access Method Interface, pronounced

base in 1985. At the time, open-source software was not allowed to be released
to China. Yet, my advisor and I stumbled across a boxful of line-printer printouts
of the entire Ingres codebase. We painstakingly re-entered the source code into a
computer and managed to make it work, which eventually turned into my master’s
thesis. Most of the basic data structures in Postgres evolved from Ingres. I felt at
home with Postgres code from the beginning. The impact of open-source Ingres
and Postgres actually went well beyond the political barriers around the world for
that era.

9:30 AM - 28 Feb 2019

aws

N’

About PostgreSQL

= (G & https://www.postgresql.org/docs/current/features.html w ABP

PostgreSQL supports most of the major features of SQL:2011. Out of 179 mandatory features
required for full Core conformance, PostgreSQL conforms to at least 160. In addition, there is
a long list of supported optional features. It might be worth noting that at the time of writing,
no current version of any database management system claims full conformance to Core
SQL:2011.

In the following two sections, we provide a list of those features that PostgreSQL supports,
followed by a list of the features defined in SQL:2011 which are not yet supported in
PostgreSQL. Both of these lists are approximate: There might be minor details that are
nonconforming for a feature that is listed as supported, and large parts of an unsupported
feature mieht in fact he implemented. The main bodv of the documentation alwavs contains

aws

About Database Performance

Wait-EventsLogs

USE Method
:Perf Met od-R

Observab1 1 Flame Graphs a
asbb 0ates

YAPPG BoPs,
&“TSA Method

eBPF MonitoringGDB

I[u n

aws

“Whttisaneed

File Number

\ q (oq Order Number

Systems Reference Library

This pub\icaﬁon provides insta“aﬁon manage’s, system programmers.
o tors with the ir\fonnaﬁpn vequired to plan for, install, and use

SMF is an optional feature of the 1BM system/ 360 Operating System
that can be selected at system generaﬁon for the Multiprogr amming
with a Fixed number of Tasks (MFT) of Mun'\pmgramming with 2
Variable number of Tasks (MVT) option of the operating em.

Ry e T S]ob-managemom. and dah-manaeomont
agem=n ines that can monitor the

About Database Performance

@® Not Secure

www.brendangregg.com/linuxperf.html

Documentation

Linux Performance Analysis in 60,000 Milliseconds shows the first ten commands to use in an
investigation (video, PDF). Writtegaaaausal fand e parfonance cngincating teay 2 N atfliv 00

@ Not Secure

My post Performance Tuning Li;

2015), www.brendangregg.com/usemethod.htm|

W

A post on Linux Load Averages: |

the uninterruptible sleep state (20] O‘t h er M eth @) d O | O g i es

A gdb Debugging Full Example (]

Generating flame graphs on Linux

CPU Flame Graphs While the USE Method may find 80% of server issues, latency-
Memory Flame Graphs based methodologies (eg, Method R) can approach finding
Posts about éBPF, bec, and bpfirag 100% of all issues. However, these can take much more time if

T inny eRPFE (2015)

you are unfamiliar with software internals. They may be more

suited for database administrators or application developers,
whao alreadv have this familiaritv The TISE Method is mare

ABP

e

aws

About Database Performance

/‘QC‘A KRM Gra\(

E\lq\ J oc“w\ci goﬂwwc
)

/ and Hardware

Vead o/

¢uStomer

@ e
/

’rhfougkpu"‘ - RESP"“(Q T‘“Q X ({Mtvll!u(r

Sealobiliby @ Ceom odd Mw?)

Ea\c‘vency’? (Hw wSL?>

IeoA A,\p ¥olk ovd Co,\/ M.‘\‘Ia‘b

%&Po v\g\ ;V\C:\‘ “~o PIOL\CMS

Gﬁei Expeﬁen(©
v

eesponfe -‘_‘.MQ

Cowo\\mh n

acroess AQPM*MQ*'H
0\(.;023 \IQ'\AQIS
acrots expens aws

About Database Performance

1990’'s Manager:

“Dear DBA: Expert consultants
have taught us that if the Buffer
Cache Hit Ratio (BCHR) is below
90% then the system
immediately needs an expensive
tuning engagement.

Please report any databases that
have BCHR < 90%."

Delfador Chibi by Peileppe
Ccco

aws

About Database Performance

G (O Not Secure

14/03/2002 Custom Hit Ratio

o‘m (@ Not Secure | www.oracledba.cd

01
Choose any hit ratio

1

27

@ Home Page

In these days where people are still mistakenly w
to bump up your hit ratio to any value desired. Th
used.

create or replace

procedure choose_a hit ratio(p_ratio number
v_phy number;
v_db number;

0.uk/tip nina.htm 3.1

SQL> exec choose_a hit ratio(85);
Current ratio is: 82.30833

Another 29385 consistent gets needed...
Current ratio is: 86.24548

PL/SQL procedure successfully completed.
SQL> exec choose_a hit ratio(90,true);
Current ratio is: 86.24731

Another 79053 consistent gets needed...
PL/SQL procedure successfully completed.
SQL> exec choose_a hit ratio(90);

Current ratio is: 86.24731
Another 79053 consistent gets needed...

v_con number;
v _count number:

Current ratio is: 90.5702

aws

About Database Performance

You Probably Don't Tune Right

The “credit” for this should go to a number of people. I remember that Mark
Porter was involved, and Keshevan Srinivasan did most of the actual instru-

Chapter 2

Correct Instrumentation Is Key

In {1e mid 1980s IB 1 realized that no matter how many counters
2’5 ull pure guesswork (hence luck or lack thereof) whether a pe
managed to identify and remove the correct (in other words, the biggest) bottl

lookeu it

neck of a given application or business unit.

Cn thov inctriimantad tha whale mainframe envirnnment includineg DR?2

mentation of the code. There were probably others involved but it has been so
many years that I don’t remember it clearly anymore.

Around 1991 or 1992 Juhn Loaiza and others from Oracle development were

L nather

forced to ISt diiient the Oracle kernel in the same way. Here's the story, as told to
me by Juan (he’s now vice president in Oracle kernel development). It is also my
tribute to one of the truly great minds inside Oracle Development.

Nergaard, Mogens et al. Oracle Insights:
Tales of the Oak Table. Berkeley, CA:

I think what you are referring to are the wait statistics that were implemented
developed because we were running a benchmark that we
rm. We had spent several weeks trying to figure out what
no success. The symptoms were clear—the system was

Apress/OakTable Press, 20(+4=

Oracl Troublesji
Insigl Oracle

Tales of the Perform

Cost-Ba sQL R Forecasi

Ora(EEGEL¥AY, Oracle

Fundamen M Perform;

YYet Another Performance Profiling Method
(Or YAPP-Method)

JJJJJJJJ

couldn’t figure out why.

tistics and ratios and kept coming up with theories, the
le of them were right. So we wasted weeks tuning and fix-

aws

About Database Performance

(@) W

=1, plot range is 0 to 4

0.4 0.6 0.8 d

(b)
1, plot range is 0 to 32

P

hdl ari0.6 0.8 1

iph plotted using two df feal scales.
ing two different vertical scale
‘ﬁ occurs atp = g_g and that the knee i the

R 5

Fgure 9-16. The knee is the utilization val
Eqisalently, the knee is the p value at whil
tine curve

M/M/m {]

U

Ra

(@
o Disk

Response time degradatio
(total queueing delay)

—_
K t
time

Figure 9-2. Executing only one application fu?’c;;
apacty (case a). The presence of other workload
athe expense of degraded response time for our of

waits again for the same reason. The amoui]
the system in its unloaded state (case a) to)
precisely the total duration that our servic|
Tesource,

How much response time degradation can
Sstem? The tool that is designed to answe
esiscalled queueing theory.

The emphasized portion of ¢

Millsap, Cary V. Optimizing Oracle Performance.

ot what this statement says 1€ 1S.

Oracle wait times

The confusion begins with the name “wait event.” It’s an ufxforrunatc choice of ter.
minology, because the mere name encourages people [o.bcilleve that the duration of
an Oracle kernel event is a queueing delay. However, it is not. As you learned in
Chapter 7, the elapsed time of a wait event actually includes lots of individual com-
ponents. The response time components for a single OS read call are depicted in

Figure 9-9.

his statement is false. A so-called Oracle wajt event jg

Queueing Theory

t0 = gettimeofday;

@ Disk Subsystem

Oracle “wait time”
ela = t1 - t0;

xleueing theory is a branch of mathematics dedicated to explaining th]ﬂ bThﬂ"‘c‘h(";
lEuei) f al relations|
o g systems. The sequence diagram demonstrates a fundamental

B ATV

Rssyw

sheamount of

Sebastopol, CA: OReilly, 2003. p225, 240, 258-259

ORELLY"

“How long
the SQL
takes to run”

See also:

Shallahamer, Craig.
Forecasting Oracle
Performance. Berkeley,
CA: Apress, 2007.

aws

About Database Performance

Date: Tue, 5 Mar 2019 13:12:51 -0800

(JB's notebook, 2004)

From: John Beresniewicz
To: Jeremy Schneider

since you asked. ..

The story of how the group that designed the Performance Page came to be
is somewhat interesting as it involves myself, Kyle Hailey, Gaja
Vaidyanatha and James Morle being hired as a kind of "design Tiger Team”
by a VP at Oracle within the EM organization who needed to expose DB

Manageability (marketed as Diagnostic and Tuning Packs) through
DB TIME = are under the' cunve Enterprise Manager a team of experienced
outsiders with successful product experience (at Savant and Quest) was

x —_ 7 recruited to be the designers and usability experts. We were there
Helght = # of Sessions because we had been DBAs, knew their mindset, had created successful
Width = seconds products in the space, and had good design sensibilities. I joined the
B group last (or maybe James came after) in October 2002, having learned
Are? under curve = DB Time of the opportunity by serendipitously running into Gaja in a hotel gym
in San Juan, Puerto Rico where he was on the last day of his stay and my
wife and I had just arrived and were touring the facility.

Images & Quotes
Used With Permission

DB Time = znactive sessions(ti) * At
0

DB Time = sum of active time in database

B oo et 720

Active Session Samplin

12

A Practitioner’s Guide to Optimizing Response Time

. AT
A Better Way to Optimize

For many people, Oracle performance is a very difficult problem. Since 1990, I've
worked with thousands of professionals engaged in performance improvement
projects for their Oracle systems. Oracle performance improvement projects appear
0 progress through standard stages over time. I think the names of those stages are
stored in a vault somewhere bencath Geneva, If remember correctly, the stages are:

consumer on so many professionally managed systems? Apparently, Oracle sys-
tem performance is a very difficult problem.

These are smart people. How could their projects be so messed up? Apparently, Ora-

cle system optimization is very difficult. How else can you explain why so many

projects at 5o many companies that don’t talk to cach other end up in horrible pre-

dicaments that are so similar?

“You're Doing It Wrong”

One of my hobbies involves building rather largish things out of wood. This hobby
involves the use of heavy machines that, given the choice, would prefer o eat my fin-
gers instead of a piece of five-quarters American Black Walnut. One of the most fun
things about the hobby for me s to read about a new technique that improves accu-
racy and saves time, while dramatically reducing my personal risk of accidental death
and dismemberment. For me, getting the “D’oh, I'm doing it wrong!” sensation is a
pleasurable thing, because it means that I'm on the brink of learning something that
will make my life noticeably better. The net effect of such events on my emotional
well-being is overwhelmingly positive. Although I'm of course a little disappointed

S R

Three Important Advances

In the Preface, 1 began with the statement

s for the most part, a solved problem

This statement stands in stark contrast to the gloomy picture I painted at the begin=

" that, “For many people, Oracle system performance is a very
planation. It i this

Optimizing Oracle response time

ning of this chapte 7
difficult problem.” The contrast, of course, has a logical e

dded impact, effciency, measurability, predic-

Several technological advances have a o, measurtliy, S

cive capacity. reliabilty, determinism, inteness, and practica
e performance optimizaion
i particula, believe that three important advances are primarily responsible for the
improvements we have today. Curiously, while these advances are new to most pro-
fessionals who work with Oracle products, none of these advances is really “new.”
Each is used extensively by optimization analysts in non-Oracle fields; some have:
been in use for over a century.

User Action Focus

‘The first important advance in Oracle optimization technology follows from a sim-

system cannot, Once you have identified a user action that requires optimizarion,
then your first job is to collect operational data exactly for that user action.

more, and noless.

no

Response Time Focus

For a couple of decades now, Oracle performance analysts have labored under the
assumption that there’s really no objective way to measure Oracle response tim.
[Ault and Brinson (2000), 27 In the perceived absence of objective ways to measure
response time, analysts have settled for the next-best thing: event counts, And.of
course from event counts come ratios. And from ratios come all sorts of a

: rguments
about which *tuning” actions are important, and which ones are nor

However, users don't care about event counts and ratios and arguments; they.
about response time: the duration that begins when they request something anq i
when they get their answer. No matter how much complexity you build atop an
timing-free event-count data, you are fundamentally doomed by the followiny |myy
capable truth, the subject of the second important advance: %

You can't tell how long something took by counting how many times it hanpened

RICHMOND SHEE
Senior Database Architect, Sprint
Corporation

KIRTIKUMAR DESHPANDE
Senior Oracle Database Administrator,
Verizon Information Services

GOPALAKRISHNAN
Prinoipal Consultant, Oracle

Chapter 1: Intre

The OId Fashion of Oracle
Performance Optimization

me say you need to know what lfe was like in the old days before you can really

e yardstick to monitor database performance.
To fully appreciate the OWI tuning methodology, you must be aware of the problems
and limitations of the hit ratio-based tuning method. For many of us, this is a trip
down memory lane, but for those of you who didn't grow up in the ratios-based
tuning era, you may embrace this as a piece of your predecessor's history.

Since the beginning of Oracle RDBMS, Oracle DBAs were taught to tune the
database and instance by watching a few ratio numbers. The idea was to keep
all database elements operating within acceptable ranges or limits. Some of the
memorable ratios are the buffer cache hit ratio, library cache hitimiss ratio (Oracle7.0),
and latch get/miss ratio. Who can forget these commandments?

B Thou shalt keep thy buffer cache hit ratio in the upper 90 percentile.

W Thy data dictionary misses must be under 10 percent at alltimes, and thy
library cache shall not covet thy data dictionary—it shall have its own ratios.

B Thy SQL area gethitratio and pinhitratio must also be in the 90 percentile at
all imes. Furthermore, the ratio of reloads to pins must not be more than 1
percent. If thy ratios are bad, thou shalt increase the shared pool size but
thou shalt not steal the memory from the buffer cache. And while you are
adding memory to the shared pool, throw some memory at the bufer cache.
also. It will increase the cache-hit atio.

Thy willing-to-wait latch hit raios shalt be close to 1. 1f not, thou may
increase the SPIN_COUNT but thou must be careful not to kil thy CPUs.
And 50 on.

Lost yet? We are. Life can be much simpler, not to mention beter.

Why Are Cache-Hit Ratios
Grossly Inefficient?

The hit ratio philosophy is not peculiar to Oracle database administration. It is
widely used and ingrained in many aspects of our daily lives. Take your local city

Published 2004

A Practical Guide to
Performance
Diagnostics & Tuning

Detect and Fix Performance Problems Efficiently

ORIGINAL * AUTHENTIC
———

Chapter 1: - Introduction to Oracle Wait Interface 11

Following s an example output from the preceding query. If you add up all the
numbers in the TIME_SPENT column, you getthe process's snapshot response time.
In this case, i is 3,199,836 centiseconds or about 8.89 hours

Vet Tove,_seae

CPU used when call started

1,358,119

@ file sequential read 1)518,787
Sgueet message from ablink 151,507
@ file scattered read 56,949
SoutNet more daca from dblink 44,075
laten fr 687
free butfor vaits 50567
write conplete wait: 8,570
log file suitch completion 553
aixect path rea £
local write wait 3
g file sync 32
SouNet message to dblink 20
1o parallel read 1
airect path write 13
buffer busy waits 7
file open 2

“The Database Response Time tuning model takes performance tuning to new.
heights by taking you closer to the real end-user performance experience. You
should always have response time in mind when you sif through the bottlenecks.

Paradigm Shift

What do you think is the hardest part about eating. sushi? V}’ouldn'l you agree that.
it requires a paradigm shift? You have to get over the raw-fish mentality. If you are
stuck thinking of sushi as bait, then you will never be a sushi eater. Likewise, the
hardest part of the OWI methodology is not the methodology itself, but the paradigm
<hift. Once you have developed the mentality to focus on response time, you are.
home free. Sounds simple, but many DBAS struggle in the transition, mainly due to
the mental baggage they carry with them from the old school that mainly relied on

Consumption are stllvalid, but those methods must accourt or response time)

What about PostgreSQL?

aws

Wait Events

———— -

Introduction

SMF (System Management Facilities) is a feature of the IBM System/360 Operating
System 0S/VS that provides the means for gathering and recording information that
can be used for billing customers or evaluating system usage. Information is
gathered and recorded by SMF data-collection routines and by user-written exit
routines. Because the data-collection and exit routines are independent of one
another, they may be used in combination or separately.

Note: SMF cannot be used for monitoring system tasks.

SMF data collection routines gather several types of information:

o Accounting information, such ¢ - CPU time * nd device and storage usage.

o Data-set activity information, such as EXCP count and the user of the data set.

« Volume information, such as the space available on direct access volumes and
error statistics for tape volumes.

o System use information, such .= system wait time & 1 1/0 configuration.
The type of data to be collected can be modified by the operator at each initial
program loading (IPL).

Through user written analysis routines and report routines, this information can be
used in a variety of ways. For example, this information can be used to prepare
customer’s bills. The information might also be used to measure system usage
against departmental standards of efficiency and performance.

Wait Events

(@)

=1, plot range is 0 to 4

(b)

1, plot range is 0 to 32

,@lgg widwut

eciable response
P s rightward

P
1

foraph plotted using two different vertical scales.
bop curve occurs at p = 0.8 an

d that the knee it 1

in

time deg™®
dolei

Figire9-16. The knee is the utilization vals
Fauivalently, the knee is the p value at whi

time curve

M/M/m {]

(@
] Disk

+

Response time degradatio
(total queueing delay)

——

| time
Figure 9-2. Executing only one application functio
apacty (case a). The presence of other workload
athe expense of degraded response time for our of

waits again for the same reason. The amou]
the system in its unloaded state (case a) to)

precisely the total duration that our servic|
resource.

How much response time degradation can
Sstem? The tool that is designed to answe
asis called queueing theory.

The emphasized portion of this statement

not what this statement says 1t 1S.

Oracle wait times

Millsap, Cary V. Optimizing Oracle Performance.
Sebastopol, CA: OReilly, 2003. p225, 240, 258-259

is false. A so-called Oracle wajt event i

The contuston begins with the nai’2 “wait event.” It an unfortunate choice of ter-

minology, because the mere name enco

Pe¥pLe to believe that the duration of

an Oracle kernel event is a queueing delay. However, it is not. As you learned in
Chapter 7, the elapsed time of a wait event actually includes lots of individual com-

ponents. The u
Figure 9-9.

o e ompunemsaut 2 single OS read call are depicted in

Uueveing Theory

@

t0 = gettimeofday;

Disk Subsystem

Oracle “wait time”
ela = t1 - t0;

Qeeing theory is a branch of mathematics dedicated to explaining the behavior of

Queue; h al rel
o Ing systems. The sequence diagram demonstrates fundament

S WCUL

R=g4w

Jationship

shaamount of

Optimizing

ORELLY" ze

“How long
the SQL
takes to run”

See also:

+ Shallahamer, Craig.
Forecasting Oracle
Performance. Berkeley,
CA: Apress, 2007.

aws

Wait Events

Date: Tue, 5 Mar 2019 13:12:51 -0800 | (JB S notebook 2004)

From: John Beresniewicz
To: Jeremy Schneider

since you asked. ..

The story of how the group that designed the Performance Page came to be
is somewhat interesting as it involves myself, Kyle Hailey, Gaja
Vaidyanatha and James Morle being hired as a kind of "design Tiger Team”
by a VP at Oracle within the EM organization who needed to expose DB
Manageability (marketed as Diagnostic and Tuning Packs) through

UIJ'J%! Irl= ol //|Enterprise Manager a team of experienced
outsiders with successful product experience (at Savant and Quest) was

x —_ 7 recruited to be the designers and usability experts. We were there
Helght = # of Sessions because we had been DBAs, knew their mindset, had created successful
Width = seconds products in the space, and had good design sensibilities. I joined the

B group last (or maybe James came after) in October 2002, having learned
Are? under curve = DB Time | of the opportunity by serendipitously running into Gaja in a hotel gym
in San Juan, Puerto Rico where he was on the last day of his stay and my
wife and I had just arrived and were touring the facility.

DB TIME = are

JB

Images & Quotes
Used With Permission

02 04 06 08x1 12 14 16

DB Time = Z"active sessions(ti) * At
0

DB Time = sum of active time in database

I oot s 720

Active Session Sampling

aws
—

Wait Events

« 1990s: Database kernel instrumentation:
« Counters and tools to snapshot/compare them
« Events (log a message under certain circumstances)

* 1992: Unable to solve a performance problem, as a last resort,
engineers added event code in version 7.0.12 capable of emitting
trace messages when the database waited for something

 First exposed in V$SESSION_WAIT and later in V$SESSION
(equivalent of pg_stat_activity)

« PostgreSQL built on concepts that had become standard across
the industry

aws

Wait Events

“But why are these events called wait events?

In short, when a session is not using the CPU, it may be
waiting for a resource, an action to complete, or simply
more work. Hence, events that associated with all such
waits are known as wait events.”

Shee, Richmond, Kirtikumar Deshpande, and K. Gopalakrishnan. Oracle Wait Interface a Practical
Guide to Performance Diagnostics & Tuning. New York: London, 2004. p16

aws

Wait Events

High-Level Idea:

Caveats:

* OS scheduling/runqueue
 Measurement overhead
 Non-database CPU time

adWws

\/‘7

Wait Events

Samnlinc Prafler for Pastorec

Lists:

From
To:
Subjel
Date:
Mess,
Viewy
Lists:

Hell

I th
We h
(log
For

exte
plat
usin

[1]
[2]

Ther
The
Each

P

_stat_lwlocks view - lwlocks statistics

Listg

Fror
To:

Subj
Datg
Mes|
View
Listg

Hi

I'v
LWL
wit

Now
rel

Wit

pos
1w

EC: Timine Fvents |

Dynamic LWLock tracing via pg_stat_Iwlock (proof of concept)

Lists:
From Li
To:
Subje Fr
Date: Td
Mess SDL
Views| M‘
Lists: :
Vi
. Li
Hi,
I hay Hj
alway sd
instq X
19
Sincg ?:
suggq
bettq cd
What R4
From P4
perf
Orac Fri
sens Td
Sy
In]

proposal: lock_time for pg_stat_database

From: lldus Kurbangaliev <i(dot)kurbangaliev(at)postgrespro(dot)ru>
To: Pg Hackers <pgsql-hackers(at)postgresql(dot)org>

Subject: Waits monitoring

Date: 2015-07-08 15:52:09
Message-ID:559D4729.9080704@postgrespro.ru

Views: Raw Message | Whole Thread | Download mbox

Lists: pgsql-hackers

Hello.

Currently, PostgreSQL offers many metrics for monitoring. However, detailed
monitoring of waits is still not supported yet. Such monitoring would

let dba know how long backend waited for particular event and therefore
identify

bottlenecks. This functionality is very useful, especially for highload
databases. Metric for waits monitoring are provided by many popular
commercial

DBMS. We currently have requests of this feature from companies migrating to
PostgreSQL from commercial DBMS. Thus, I think it would be nice for
PostgreSQL

to have it too.

Main problem of monitoring waits is that waits could be very short and it's
hard to implement monitoring so that it introduce very low overhead.

For instance, there were couple of tries to implement LWLocks monitoring for
PostgreSQL:

http://www.postgresql.org/message-id/flat/CAG95seUg-
qxqz¥mwtk6wGg8HFezUp3d6c+AZ4m QZD+y+bF3zA(at)mail (dot)gmail (dot)com

http://www.postgresql.org/message-id/flat/4FE8CA2C(dot)3030809 (at)uptime (dot)jp#4FE8CA2C (dot)30308(

Attached patch implements waits monitoring for PostgreSQL. Following of
monitoring was implemented:

1) Historv of waits (bv sampling)

aws

Wait Events

“ Jeremy Schneider
Re: Waits useless on MySQL? @jers

From: *Jonah H. Harris® <jonah.harris@xooxooo> An epic slice of EDB and Postgres history around wait events:
To: gogala.mladen@xxxxxxxXxx

Date: Mon, 20 Feb 2023 15:51:00 -0500
"I finally won the argument and decided to code it that night out of sheer

In 2007, | was working on trying to get EnterpriseDB/Postgres to the point I AR
gontyingto g g rage ... management ended-up renaming it as they felt my original name

where we could run an audited TPC-C. While there was no way in hell that

was going to actually happen, | got tired of dealing with the lack of wasn't fit for publication”
instrumentation and trying to track down where the slowdowns were without
using profiling/debugging-compiled builds that didn't reflect what we were freelists.org/post/oracle-1/

actually trying to run. Accordingly, | wanted to add Oracle-style walit
instrumentation to it, which ended-up being a multi-hour long argument with
our sponsored Postgres community members, who felt it wasn't needed and 9:43 PM - Aug 2, 2023 - 1,268 Views
didn’t see the point. "Who needs that when you have sar, top, vmstat,
etc.," they said :(. Anyway, with the support of Korry Douglas (who now
leads the Babelfish architecture at AWS), | finally won the argument and
decided to code it that night out of sheer rage. As | generally code

better a little buzzed, | grabbed a nearby bottle of tequila and margarita Like most things, the open-source database community of hackers doesn't
mix and got to work. The next morning, all the major components were generally understand the needs of DBAs/developers trying to solve a
instrumented. | named the instrumentation system MARGARITA (Managed problem; they tend to always look at things as if everyone has intimate
Array-based Reporting, Grading, and Aggregating Runtime Instrumentation and knowledge of the OS performance/tracing tools and the database itself. Most
Tracing Architecture.) Management ended-up renaming it DRITA, as they felt of the open-source databases don't really have anything that substantial

my original name wasn't fit for publication. A few months later Peter instrumentation-wise. MySQL and InnoDB have some instrumentation, but it's
Steinheuser wrote a simple AWR clone on top of it. | don't know if they not exactly what's needed. MySQL also uses Fred Fish's well-known

still have it, but it was better than what exists in community Postgres
today.

dbug library all over the place, which also has support for tracing - but
it doesn't expose that to the SQL level IIRC, just as a local file-dump.

Jonah H. Harris

aws

_/‘7

Wait Events

Ia & https://www.postgresql.org/docs/9.5/monitoring-stats.html

timestamp
state_change with time Time when the state was last changed
zone
waiting boolean True if this backend is currently waiting on a lock
Current overall state of this backend. Possible values are:
* active: The backend is executing a query.
* idle: The backend is waiting for a new client command.
* idle in transaction: The backend is in a transaction, but
state text

* idle in transaction (aborted): This state is similar to .
of the statements in the transaction caused an error.

* fastpath function call: The backend is executing a fast:

* disabled: This state is reported if track_activities is disabled

aws

\‘/‘7

Wait Events

Significant Commits: Version 9.6
« Aab65de0 - 11 Sep 2015 - Autogenerate lwlocknames.[c|h]
* 53beOb1 - 10 Mar 2016 — Heavy/Lightweight Locks, Buffer Pins

Version 10
« 6f3bd98 — 4 Oct 2016 - Latches & Sockets, Clients, Main Loops
e 249cf07 - 18 Mar 2017 -1/0
* Fc70a4b - 26 Mar 2017 - Background and Auxiliary Processes

Version 11
e 1804284 - 20 Dec 2017 - Parallel-Aware Hash Joins

aws

Wait Events

Version

Version

Version

12

Add a wait event for fsync of WAL segments (Konstantin
Knizhnik)

Ensure that TimelineHistoryRead and TimelineHistoryWrite wait
states are reported in all code paths that read or write timeline
history files (Masahiro Ikeda)

13

Rename various wait events to improve consistency (Fujii Masao,
Tom Lane)

Report a wait event while creating a DSM segment with
posix_fallocate() (Thomas Munro)

Add wait event VacuumDelay to report on cost-based vacuum
delay (Justin Pryzby)

Add wait events for WAL archive and recovery pause (Fujii
Masao)

The new events are BackupWaitWalArchive and RecoveryPause.
Add wait events RecoveryConflictSnapshot and
RecoveryConflictTablespace to monitor recovery conflicts
(Masahiko Sawada)

Improve performance of wait events on BSD-based systems
(Thomas Munro)

14

Add wait event WalReceiverExit to report WAL receiver exit wait
time (Fujii Masao)

Wake up for latch events when the checkpointer is waiting
between writes. This improves responsiveness to backends
sending sync requests. The change also creates a proper wait
event class for these waits. (Thomas Munro)

Version 1

5

Add wait events for local shell commands. The new wait events
are used when calling archive_command,
archive_cleanup_command, restore_command and
recovery_end_command. (Fujii Masao)

Correct the name of the wait event for SLRU buffer 1/0 for
commit timestamps. This wait event is named CommitTsBuffer
according to the documentation, but the code had it as
CommitTSBuffer. Change the code to match the documentation,
as that way is more consistent with the naming of related wait
events. (Alexander Lakhin)

Re-activate reporting of wait event SLRUFlushSync. Reporting of
this type of wait was accidentally removed in code refactoring.
(Thomas Munro)

Version 16

Add wait event SpinDelay to report spinlock sleep delays (Andres
Freund)

Create new wait event DSMAllocate to indicate waiting for
dynamic shared memory allocation. Previously this type of wait
was reported as DSMFillZeroWrite, which was also used by
mmap() allocations. (Thomas Munro)

Allow parallel application of logical replication. Wait events
LogicalParallelA%%yMain, LogicalParallelApplyStateChange, and
LogicalApplySendData were also added. Column leader_pid was
added to system view pg_stat_subscription to track parallel
activity. (Hou Zhijie, Wang Wei, Amit Kapila)

Have wal_retrieve_retry_interval operate on a per-subscription
basis. Previously the retry time was applied globally. This also
adds wait events >LogicalRepLauncherDSA and
LogicalRepLauncherHash. (Nathan Bossart)

Version 17

Support custom wait events for wait event type "Extension”
(Masahiro lkeda)

aws

Wait Events

Gaps after migrating to Open Source/Community PostgreSQL
1. SQL/Session/Wait Tracing

2. Wait Event Counters and Cumulative Times (and LWLock counters), both
instance and session level

3. Wait Event Arguments (object, block, etc)
Comprehensive tracking of CPU time (POSIX rusage; avail session level)

5. Ability to find previous SQL for COMMIT/ROLLBACK
* Needed to identify which transaction is committing

6. On-CPU State

» SQL Execution Stage (parse/plan/execute/fetch)

» SQL Execution Plan Identifier in pg_stat_statements

* Current plan node

Progress on long operations (e.g. large seqgscan)

8. Better runtime visibility into PLs aws
)

=

B

By Antony Griffiths (Flickr), CC BY

| can haz Wait Events?

Solving Problems with Wait Events in PostgreSQL

aws
~—"

Solving Problems With Wait Events

Repository of Historical Perf Data (from pg_stat_activity)

Scope (time, user, activity/application, pid, etc)
Top SQL / Top Wait Events
EXPLAIN ANALYZE with Buffers, 10 timing, etc

Investigate WAIT EVENT & STEP Taking The Most TIME

dWs

\/7

Solving Problems With Wait Events

Repository of Historical Perf Data (from pg_stat_activity)

Scope (time, user, activity/application, pid, etc)

Top SQL / Top Wait Events

EXPLAIN ANALYZE with Buffers, 10 timing, etc

Investigate WAIT EVENT & STEP Taking The Most TIME

aws

v"

Solving Problems With Wait Events

[NON] & PostgresQL: Documentation: X =+ v

@ PostgresQL: Documentation: X & - C & postgresqgl.org/docs/current/monitoring-stats.html d Y % 0O

@ postgresql.org/docs/current/m¢ wait_event type text

i un The type of event for which the backend is waiting, if any; otherwise NULL. See Table 28.4.
28.2.3. pg_stat_activity

wait_event text
The pg_stat_activity view will have o Wait event name if backend is currently waiting, otherwise NULL. See Table 28.5 through Table 28.13.

process. state text

_ Current overall state of this backend. Possible values are:
Table 28.3. pg_stat_activity View

. active: The backend is executing a query.
. idle: The backend is waiting for a new client command.
Column Type
. . idle in transaction: The backend isin a transaction, but is not currently executing a query.
Lmi el . idle in transaction (aborted): This state issimilarto idle in transaction, exceptone of
datid oid the statements in the transaction caused an error.
OID of the database this backer . fastpath function call: The backend is executing a fast-path function.
. disabled: This state is reported if track_activities is disabled in this backend.

datname name

Name of the database this back backend_xid xid
Top-level transaction identifier of this backend, if any; see Section 74.1.
pid integer
. ki in xi
Process ID of this backend backend_xmin xid

The current backend's xmin horizon.
leader pid integer
query_id bigint
Identifier of this backend's most recent query. If state is active this field shows the identifier of the currently
executing query. In all other states, it shows the identifier of last query that was executed. Query identifiers are not
computed by default so this field will be null unless compute_query_id parameter is enabled or a third-party

Process ID of the parallel group
worker if this process is a parall
apply worker, or does not partic

usesysid oid module that computes query identifiers is configured.
ik h et query text
Text of this backend's most recent query. If state is active this field shows the currently executing query. In all a‘ " !S

other states, it shows the last query that was executed. By default the query text is truncated at 1024 bytes; this >
value can be changed via the parameter track_activity_query_size. N—

Solving Problems With Wait Events

Wait Events for active connections in pg_stat_activity - server 1 loop 1/2

g
g 5
<
o
g
g
E
4
3
2
1
0
W o o N O O 310 n10 RO O
3101 919‘5@9#6334‘&0?;‘3%,’%?1.5&3& h,gxl()@x“«d’gx‘51$c,\‘> 3’»“7565\:5&}516‘ 5\}\ é;a\ 5 @e" Y u‘o@ go" 1,\90}3 d&}*ﬂ’ N\“%.L\p‘b%,)g@_‘we‘*
o \(,ofo O g 0P 0 1\;5 305 2@ 07 0 15»?! o 1» ﬁel %5‘5 %P LN 9B° 0800y
°f°°!°°!°96°!°°f°°l°°f°°!°°ﬁ°!° ofo‘L 1»;01 *961196401%69% °f°”’°f°”’ ofo*cf&efoefo
NP9 G P 7 P (7 R P doﬂdoodo {ldo Gdo 006 gdogdo a®” P
time (epoch)

mCPU |O:DataFileExtend ~ m10:DataFileRead I0:WalSync m LWLock:WALWrite

s&ﬁ“ﬂ 5
c;o"f"ﬂ«o"f" e e

while true; do
psql --csv -Xtc ”
SELECT extract(epoch from now()), query,
wait_event type, wait_event
FROM pg_stat_activity
WHERE application_name='pgbench'
and state='active’;

sleep 15
done >wait_events.csv

o
’5*,}369\'611@ x-m‘* 0@ }q;ﬁl »:15"@ %&4,@5 }.;99 5‘5"10 & 0@\
@08 9> o > 0‘: E:
e 2 cjog’ 29 ’5‘5 *h“ hﬁ * * l\

aws

Solving Problems With Wait Events

Repositories of Historical Performance Data
(Active Session Sampling of Wait Events)

« https://wiki.postgresql.org/wiki/Monitoring

« Amazon RDS Performance Insights
* RDS for PostgreSQL 10+

« Aurora PostgreSQL-Compatible Edition 9.6+
(v10 Wait Events were backported)

« Rolling 7 days of history is free. Up to 2 years on paid tier.

aws

Solving Problems With Wait Events

Repository of Historical Perf Data (from pg_stat_activity)

Scope (time, user, activity/application, pid, etc)

Top SQL / Top Wait Events

EXPLAIN ANALYZE with Buffers, 10 timing, etc

Investigate WAIT EVENT & STEP Taking The Most TIME

dWs

v"

Solving Problems With Wait Events

Wendolene | S (€1 D |D|D|D|D|D|D o6l 0| 0|0 BEY S FCFE D‘ D|D l
Alexander | D T D D | s bele D ysag
Wallace > - =Ts0s D Screenshot 2023-02-25 at 21.54.56.png ¥
Gromit | S PERC] CLC]C b ol count o | state a wait_event 8
Nikolas % TR bigint text text
Shaun | D 1 478 idle ClientRead
% ,'o th g 17 idlein transaction ClientRead

2 active
Figure 3-7. Collecting data that are scoped improperly on the time dimension also conceals the

2
3
nature of Wallace’s performance problem, even though the data were collected for the correct 4 1 AutoVacuumMain
5
6

action scope . .
3 1 active WalSenderMain

52 | Chapter3: Targeting the Right Diagnostic Data jer_s @ 5 daysago

Millsap, Cary V. Optimizing Oracle Performance.
Sebastopol, CA: OReilly, 2003. p52

jer_s &% 5 days ago

v Can you do event+count(*), where active, group by event?
v Also a count of idle in transaction

aws

\-/‘7

Solving Problems With Wait Events

Repository of Historical Perf Data (from pg_stat_activity)
Scope (time, user, activity/application, pid, etc)
Top SQL / Top Wait Events

EXPLAIN ANALYZE with Buffers, 10 timing, etc

Investigate WAIT EVENT & STEP Taking The Most TIME

aws

v"

Solving Problems With Wait Events

0 e m PostgreSQL: Documentation X +

&

C @& postgresqgl.org/docs/16/using-explain.html h % » 0O

Prev Up Chapter 14. Performance Tips Home Next

14.1. Using EXPLAIN

14.1.1. EXPLAIN Basics
14.1.2. EXPLAIN ANALYZE
14.1.3. Caveats

PostgreSQL devises a query plan for each query it receives. Choosing the right plan to match the query structure and the
properties of the data is absolutely critical for good performance, so the system includes a complex planner that tries to

choose good plans. You can use the EXPLAIN command to see what query plan the planner creates for any query. Plan-

reading is an art that requires some experience to master, but this section attempts to cover the basics.

Examples in this section are drawn from the regression test database after doing a VACUUM ANALYZE, using 9.3 development
sources. You should be able to get similar results if you try the examples yourself, but your estimated costs and row counts
might vary slightly because ANALYZE's statistics are random samples rather than exact, and because costs are inherently
somewhat platform-dependent.

The examples use EXPLAIN's default “text” output format, which is compact and convenient for humans to read. If you want
to feed EXPLAIN's output to a program for further analysis, you should use one of its machine-readable output formats (XML,
JSON, or YAML) instead.

14.1.1. EXPLAIN Basics

The structure of a query plan is a tree of plan nodes. Nodes at the bottom level of the tree are scan nodes: they return raw
rows from a table. There are different types of scan nodes for different table access methods: sequential scans, index scans,
and bitmap index scans. There are also non-table row sources, such as VALUES clauses and set-returning functions in FROM,

aws

\\.-/‘7

Solving Problems With Wait Events

(one of many options)

New explain | explain.depesz.c X +

(& @& explain.depesz.com M * 0O =

explain.depesz.com

PostgreSQL's explain analyze made readable

M oW expiain

Optional title for plan:

Paste output of | EXPLAIN (ANALYZE, BUFFERS, ...) your query; | here:

| want this plan to be visible on the history page.

(J I want this plan to be obfuscated before saving. (Note that this makes plans
much harder to understand for others, so use only when absolutely necessary.)

Submit

Optionally paste your query here: aWS

Solving Problems With Wait Events

1. 0130 3458595 11.0 1,000 1 = Limit (cost=10,004.33.2,864,124.58 rows=1,000 width=8) (actual time=7.950..3,458.595 rows=1,000 loops=1)

2. 0484 3458465 113 1,000 1 = Nested Loop (cost=10,004.33..3,803,130.15 rows=1,329 width=8) (actual time=7.950..3,458.465 rows=1,000 loops=1)
Join Filter: (ps.fk_bildirim_konusu_id = bk.id)

3. 730851 3457981 113 1,000 1 = Gather (cost=10,004.33..3,802,240.00 rows=1,329 width=12) (actual time=7.884..3,457.981 rows=1,000 loops=1)

Workers Planned: 7
Workers Launched: 7

4. 0.194 2,727.130 121 3,160 8 = Nested Loop (cost=4.33..3,792,107.10 rows=190 width=12) (actual time=11.230..2,727.130 rows=395 loops=8)
/8

5. 0.208 2,711.151 121 3,160 8 =+ Nested Loop Anti Join (cost=3.89..3,792,011.51 rows=189 width=16) (actual time=10.980..2,711.151 rows=395 loops=8)
/8

6. 1.200 2,690.439 1181 7,808 8 = Hash Join (cost=3.31..3,779,129.86 rows=17,691 width=24) (actual time=6.650..2,690.439 rows=976 loops=8)
/8

Hash Cond: (psd.fk_push_sablon_id = ps.id)

Join Filter: ((pk.servis_deneme_sayisi < ps.max_servis_deneme_sayisi) AND ((pg.gonderilecek_zaman + ps.push_gecerlilik_suresi) >= now() AND
(COALESCE((pk.servise_teslim_zamani)::timestamp with time zone, ((now() - ps.servise_tekrar_gonderim_suresi) + ps.servise_tekrar_gonderim_suresi)) <= now())

Rows Removed by Join Filter: 0

7. 0.522 2,689.102 16525 7,808 8 = Hash Join (cost=2.01..3,777,125.75 rows=636,886 width=44) (actual time=6.021..2,689.102 rows=976 loops=8)
/8 Hash Cond: (pg.fk_push_sablon_detay_id = psd.id)
8. 18.408 2,688.523 1652.5 7,808 8 = Nested Loop (cost=0.57..3,772,620.61 rows=636,886 width=44) (actual time=5.937..2,688.523 rows=976 loops=8)

2,467.848 | 2,467.848 231,160 = Parallel Seq Scan on push_kontrol pk (cost=0.00..2,659,440.94 rows=655,071 width=16) (actual time=0.180..2,467.848 rows=28,895 loops=8)

Filter: (I_bildirim_durum = 0)

Rows Removed by Filter: 11,760,420

10. 202267 202267 0.0 0 231,162 = Index Scan using push_gonderim_pkey on push_gonderim pg (cost=0.57..1.70 rows=1 width=32) (actual time=0.007..0.007 rows=0 loops=231,162)
8 /8 Index Cond: (id = pk.fk_push_gonderim_id)

94,083,360

Filter: (gonderilecek_zaman < now()
Rows Removed by Filter: 1

1. 0.008 0.057 11.0 56 8 = Hash (cost=1.21..1.21 rows=7 width=8) (actual time=0.056..0.057 rows=7 loops=8)

/8 Buckets: 1,024 Batches: 1 Memory Usage: 9kB
12. 0.049 0049 110 56 8 = SeqScan on push_sablon_detay psd (cost=0.00..1.21 rows=7 width=8) (actual time=0.048..0.049 rows=7 loops =

/8
13. 0.025 0137 13 32 8 = Hash (cost=1.21..1.21 rows=3 width=44) (actual time=0.133..0.137 rows=4 loops=8) © exclusive _Jg inclusive O rowsx O mixed

/8

Buckets: 1,024 Batches: 1 Memory Usage: 9kB "
= 'y(2 g) Visible columns:
14, 0112 0112 |13 32 8 Seq.Scan on push_sablon ps (cost=0.00..1.21 rows=3 width=44) (actual time=0.105..0.112 rows=4 loops=8) . .)
P# Eexclusive [inclusive Erowsx Erows [loops
/8 Filter: ((push_en_erken_gonderim_saati < (now():time without time zone) AND (id = ANY ({1,2,3,4,5,100} :integer{)) A G+ 9 G g a & loop
time zone))

15. 20504 20504 110 8 7811 = Index Scan using randevu_pkey on randevu r (cost=0.57..0.70 rows=1 width=8) (actual time=0.021..0.021 rows=1 loops=7, Save settings

/8 Index Cond: (id = pg.fk_randevu_id)

Filter: (baslangic_zamani < (now() + '01:00:00'::interval)) Settings

16. 15.785 15.785 11.0 8 3,157 = Index Only Scan using mobil_cihaz_fk_hasta_id_idx on mobil_cihaz mc (cost=0.44..0.48 rows=1 width=4) (actual time=0.040..0)

e Index Cond: (fk_hesta_Id = pg.f_hesta_k -@_

Heap Felches: 76 1 N130 2 ARR ROR 410 1000 Limit (~nct—10 NNA 32 2 8ARA 124

17. 0.000 0000 1200 1,000 1,000 = Materialize (cost=0.00..1.70 rows=20 width=4) (actual time=0.000..0.000 rows=1 loops=1,000)
18. 0.060 0060 1200 1 1 = SeqScan on bildirim_konusu bk (ost=0.00..1.60 rows=20 width=4) (actual time=0.060..0.060 rows=1 loops=1)

Planning time 17.356 ms aWS

Execution time : 3,459.013 ms N

Solving Problems With Wait Events

L4 Fg pgAdmin 4

< C O O 127001
EAdmin

Filev Objectv Toolsv Helpv

<« c 25 explain.dalibo.com/plan/bc8814ge7cad2g24

@ explain.dalibo.com 4+ New Plan

Execution time: 6.25ms

Query Stats

Planning time: 1.21ms

[Tl rows [estimation buffers

#1Sort -
#2 L Nested Loop 0
#3 | Nested Loop !
#4 | |- Seq Scan '
#5 | L SeqScan '

Triggers:

#6 - Hash Join —
#7 |- Seq Scan —
#8 L Hash '

#9 L Seq Scan ==

Nested Loop
Left

Seq Scan #4
public.rel_users_exams
rel_users_exams

~

Seq Scan
public.exam

Browser S (B Y& Q| Dashboard Properties Statistics SQL Dependencies
> g casts .
% Cataings = m alv| alvim a8|lev| v
> [Event Triggers ge test/postgres@PostgreSQL 10
> §Extensions Query Editor Query History Scratch Pad
> = Foreign Data Wrappers _——
» S Languages 1 select + from pg_tables
ﬁ v % Schemas (2)
v & public
> £l Collations
Example 2 @ plaf > @ Domains
> [yFTS Configurations
> [FTS Dictionaries
> AaFTS Parsers
> (2 FTS Templates DataOutput Explain Messages Notifications
> B Foreign Tables Graphical Analysis ~ Statistics
> {ZFunctions [r—
Sort “@ > [Materialized Views @ xa &

question_1.1id > 1.3Sequences
Jreees

Dependents

v Nolimit

¥ @ incognitc . @

§ geo_test/postgres@PostgreSQL 10 * x

v Ery 5B e A

13

v [Tables (6) l
> F5boundary_claims

pg_class

> S city_points
Nested Loop #2 > 5 country_outlines.
Left

> Erandom_geometries
> Erandom_geometries
> 5 spatial_ref_sys

> (& Trigger Functions

> TiTypes

B B

Hash Join d > [Views Ppg_namespace Hash
Right v &topology
answer_1.question_id = > &1 Collations
question_1.id > & Domains
> [YFTS Configurations amn
N > i FTS Dictionaries |
® > AaFTS Parsers pg.tablespace
exam_1 > [FTS Templates
Seq Scan (Y . #7 Hash > [Foreign Tables
public.answer as answer_1 & Functions
> [Materialized Views
Seq Scan
public.question
question_1

&

: e

Hash Left Join

Hash Left Join

aws

Solving Problems With Wait Events

DSEF for PostgreSQL (DiffStats & ExplainFull) Version: 2023.7.17
clock_timestamp: 2023-08-12 21:02:35.592127+00

[] []) GitHub - ardentperf/dsef: Dif’ X +

& > C & github.com/ardentperf/dsef

pg_version: PostgreSQL 14.7 on aarch64-unknown-linux-gnu, compiled by aarch64-unknown-linux-gnu-gcc (GCC) 9.5.0, 64-bit
aurora_version: 14.7.3

EXPLAIN (ANALYZE,VERBOSE,COSTS,BUFFERS, FORMAT TEXT,SETTINGS,WAL)

howuswNn e

= README.md

DiffStats and ExplainFull (DSEF), »

Detailed SQL reports for 3rd party help & support

DiffStats and ExplainFull can generate detailed reports which are usefy
performance of a SQL statement, and especially for working with 3rd p
in the process. It reduces the amount of back-and-forth requests for in
a great deal of commonly useful data about the performance of a SQL

42
43
44
45
46
47
48
49
50
51
52
53
54
55

I
Sort (cost=12272967.06..12297969.67 rows=10001045 width=73) (actual time=80329.634..80774.050 rows=900000 loops=1)
Output: customer.c_last, customer.c_id, oorder.o_id, oorder.o_entry_d, oorder.o_ol_cnt, (sum(order_line.ol_amount)), oorder.|
Sort Key: (sum(order_line.ol_amount)) DESC, oorder.o_entry_d
Sort Method: external merge Disk: 58176kB
Buffers: shared hit=621435, temp read=834194 written=1092422
-> HashAggregate (cost=8272164.90..9777009.69 rows=10001045 width=73) (actual time=62248.364..79435.828 rows=900000 loops
Output: customer.c_last, customer.c_id, oorder.o_id, oorder.o_entry_d, oorder.o_ol_cnt, sum(order_line.ol_amount), oor]
Group Key: oorder.o_id, oorder.o_w_id, oorder.o_d_id, customer.c_id, customer.c_last
Filter: (sum(order_line.ol_amount) > '200'::numeric)
Planned Partitions: 128 Batches: 969 Memory Usage: 4321kB Disk Usage: 2087960kB
Rows Removed by Filter: 2100000
Buffers: shared hit=621429, temp read=822062 written=1080253
—> Hash Join (cost=456982.40..2402801.42 rows=30003136 width=45) (actual time=2981.143..46782.982 rows=30001892 loop

The extension consists of a number of functions which are installed into the database. T|

Output: customer.c_last, customer.c_id, oorder.o_id, oorder.o_w_id, oorder.o_d_id, oorder.o_entry_d, oorder.o_ol
I

f ti fall into t b d cat . 145 c_zip character(9): stattarget -1, notnull true, null_frac @, avg_width 10, n_dist 9978, corr 0.00668419, hist[101] {00001
unctions fall into two broad categories: 146 mcv {587511111,030111111...897311111,927511111}, mcf {0.00036666667,0.000...33333,0.00033333333}
1. A function that is a wrapper around "EXPLAIN ANALYZE" - besides ensuring that all 147 Index ?ustomer_pkey btree (c_w_id, cfd_id, $_id): pages 11?95, tuples 2.982182e+06, nkeyatts 3, isunique true, J:.scllljstered f
148 Index idx_customer_name btree (c_w_id, c_d_id, c_last, c_first): pages 26825, tuples 2.982182e+06, nkeyatts 4, isunique fals|
diagnostics options are used, it also dumps additional information like server versiof 1,5 1aple public.oorder: pages 24058, tuples 2.990327e+06, allvisible 24042, kind r
full planner statistics for all functions and tables referenced by the SQL. 150 o_w_id integer: stattarget -1, notnull true, null_frac @, avg_width 4, n_dist 100, corr 0.9383225, hist[] NULL
2. A set of functions to capture and report all possible statistics tracked by the databa} °* mev {57,63,78,64,27,55,1...,94,98,96,99,97,100}, mcf {0.011966666,0.0119,...0.0031,0.0018333333}
. . 152 o_d_id integer: stattarget -1, notnull true, null_frac @, avg_width 4, n_dist 10, corr 0.13620295, hist[] NULL
during a test SQL statement execution
153 mev {3,1,2,4,5,8,10,7,6,...,1,2,4,5,8,10,7,6,9}, mcf {0.1047,0.104433335,...7,0.0967,0.09613334}
154 o_id integer: stattarget -1, notnull true, null_frac @, avg_width 4, n_dist 3000, corr 0.0021135833, hist[101] {1,29,59,87
H T
m @ 206 scope | name | units | count | cum_ms | avg_ms
207
208 Session | Stat:LinuxProcess:stat:utime | time | 1| 71570.000 | 71570.000
209 Session | Stat:LinuxProcess:stat:stime | time | 1] 7710.000 | 7710.000
210 Session | Wait:IO:BufFileWrite | waits | 1092422 | 6745.637 | 0.006
pairs Well with: 211 Session | Wait:IO:BufFileRead | waits | 834446 | 965.257 | 0.001 aWS
. 212 Session | Wait:Timeout:PgSleep | waits | 1] 50.260 | 50.260
glthub.com/awslabs/pg—collector 213 Session | Wait:IO:DataFileRead | waits | 15 | 12.756 | 0.850
214 Session | Wait:Client:ClientRead | waits | 3 10.881 | 3.627

Solving Problems With Wait Events

Repository of Historical Perf Data (from pg_stat_activity)
Scope (time, user, activity/application, pid, etc)
Top SQL / Top Wait Events

EXPLAIN ANALYZE with Buffers, 10 timing, etc

Investigate WAIT EVENT & STEP Taking The Most TIME

aws

v"

Solving Problems With Wait Events

1. 0130 3458595 11.0 1,000 1 = Limit (cost=10,004.33.2,864,124.58 rows=1,000 width=8) (actual time=7.950..3,458.595 rows=1,000 loops=1)

2. 0484 3458465 113 1,000 1 = Nested Loop (cost=10,004.33..3,803,130.15 rows=1,329 width=8) (actual time=7.950..3,458.465 rows=1,000 loops=1)
Join Filter: (ps.fk_bildirim_konusu_id = bk.id)

3. 730851 3457981 113 1,000 1 = Gather (cost=10,004.33..3,802,240.00 rows=1,329 width=12) (actual time=7.884..3,457.981 rows=1,000 loops=1)

Workers Planned: 7
Workers Launched: 7

4. 0.194 2,727.130 121 3,160 8 = Nested Loop (cost=4.33..3,792,107.10 rows=190 width=12) (actual time=11.230..2,727.130 rows=395 loops=8)
/8

5. 0.208 2,711.151 121 3,160 8 =+ Nested Loop Anti Join (cost=3.89..3,792,011.51 rows=189 width=16) (actual time=10.980..2,711.151 rows=395 loops=8)
/8

6. 1.200 2,690.439 1181 7,808 8 = Hash Join (cost=3.31..3,779,129.86 rows=17,691 width=24) (actual time=6.650..2,690.439 rows=976 loops=8)
/8

Hash Cond: (psd.fk_push_sablon_id = ps.id)

Join Filter: ((pk.servis_deneme_sayisi < ps.max_servis_deneme_sayisi) AND ((pg.gonderilecek_zaman + ps.push_gecerlilik_suresi) >= now() AND
(COALESCE((pk.servise_teslim_zamani)::timestamp with time zone, ((now() - ps.servise_tekrar_gonderim_suresi) + ps.servise_tekrar_gonderim_suresi)) <= now())

Rows Removed by Join Filter: 0

7. 0.522 2,689.102 16525 7,808 8 = Hash Join (cost=2.01..3,777,125.75 rows=636,886 width=44) (actual time=6.021..2,689.102 rows=976 loops=8)
/8 Hash Cond: (pg.fk_push_sablon_detay_id = psd.id)
8. 18.408 2,688.523 1652.5 7,808 8 = Nested Loop (cost=0.57..3,772,620.61 rows=636,886 width=44) (actual time=5.937..2,688.523 rows=976 loops=8)

2,467.848 | 2,467.848 231,160 = Parallel Seq Scan on push_kontrol pk (cost=0.00..2,659,440.94 rows=655,071 width=16) (actual time=0.180..2,467.848 rows=28,895 loops=8)

Filter: (I_bildirim_durum = 0)

Rows Removed by Filter: 11,760,420

10. 202267 202267 0.0 0 231,162 = Index Scan using push_gonderim_pkey on push_gonderim pg (cost=0.57..1.70 rows=1 width=32) (actual time=0.007..0.007 rows=0 loops=231,162)
8 /8 Index Cond: (id = pk.fk_push_gonderim_id)

94,083,360

Filter: (gonderilecek_zaman < now()
Rows Removed by Filter: 1

1. 0.008 0.057 11.0 56 8 = Hash (cost=1.21..1.21 rows=7 width=8) (actual time=0.056..0.057 rows=7 loops=8)

/8 Buckets: 1,024 Batches: 1 Memory Usage: 9kB
12. 0.049 0049 110 56 8 = SeqScan on push_sablon_detay psd (cost=0.00..1.21 rows=7 width=8) (actual time=0.048..0.049 rows=7 loops =

/8
13. 0.025 0137 13 32 8 = Hash (cost=1.21..1.21 rows=3 width=44) (actual time=0.133..0.137 rows=4 loops=8) © exclusive _Jg inclusive O rowsx O mixed

/8

Buckets: 1,024 Batches: 1 Memory Usage: 9kB "
= 'y(2 g) Visible columns:
14, 0112 0112 |13 32 8 Seq.Scan on push_sablon ps (cost=0.00..1.21 rows=3 width=44) (actual time=0.105..0.112 rows=4 loops=8) . .)
P# Eexclusive [inclusive Erowsx Erows [loops
/8 Filter: ((push_en_erken_gonderim_saati < (now():time without time zone) AND (id = ANY ({1,2,3,4,5,100} :integer{)) A G+ 9 G g a & loop
time zone))

15. 20504 20504 110 8 7811 = Index Scan using randevu_pkey on randevu r (cost=0.57..0.70 rows=1 width=8) (actual time=0.021..0.021 rows=1 loops=7, Save settings

/8 Index Cond: (id = pg.fk_randevu_id)

Filter: (baslangic_zamani < (now() + '01:00:00'::interval)) Settings

16. 15.785 15.785 11.0 8 3,157 = Index Only Scan using mobil_cihaz_fk_hasta_id_idx on mobil_cihaz mc (cost=0.44..0.48 rows=1 width=4) (actual time=0.040..0)

e Index Cond: (fk_hesta_Id = pg.f_hesta_k -@_

Heap Felches: 76 1 N130 2 ARR ROR 410 1000 Limit (~nct—10 NNA 32 2 8ARA 124

17. 0.000 0000 1200 1,000 1,000 = Materialize (cost=0.00..1.70 rows=20 width=4) (actual time=0.000..0.000 rows=1 loops=1,000)
18. 0.060 0060 1200 1 1 = SeqScan on bildirim_konusu bk (ost=0.00..1.60 rows=20 width=4) (actual time=0.060..0.060 rows=1 loops=1)

Planning time 17.356 ms aWS

Execution time : 3,459.013 ms N

Explaining the unexplainable

Solving Problems With Wait Events

x 4

C @ depesz.com/2013/04/27/explaining-the-unexplainable-part-2/#index-scan

How to run short
ALTER TABLE without
long locking

concurrent queries
110 views | 0 comments

How much RAM is
PostgreSQL using?
97 views | 0 comments

Now you can \d table
not only in psql :)
92 views | 0 comments

PostgreSQL

Documentation
Explain Analyze
analyzer

IRC help channel
Mailing Lists search
PG Planet
PostgreSQL Home

Next type of node is “Index Scan".

This type of scan seems to be very straight forward, and most people understand when it is used at least in one

case:

explain analyze select * from pg_class where oid =
QUERY PLAN
Index Scan using pg_class_oid_index on pg_class (cost= ..8.17 rows=1 width=202) (actual time=
Index Cond: (oid = ::0id)
Total runtime:
(3 rows)

..0.007 rows=

Tloops=1)

That is — we have index that matches the condition, so PostgreSQL does:

opens the index

in the index if finds where (in table data) there might be rows that match given condition
opens table

fetches row(s) pointed to by index

if the rows can be returned - i.e. they are visible to current session — they are returned

Solving Problems With Wait Events

aW§ Q. Search in this guide Contact Us English ¥ Create an AWS Account
AWS > Documentation » AmazonRDS » User Guide Feedback 1 Preferenc
RDS for PostgreSQL wait
events

Client:ClientRead

RDS for PostgreSQL wait events

Client:ClientWrite
PDF | RSS

CcPU

10:BufFileRead and

|0:BufFileWrite The following table lists the wait events for RDS for PostgreSQL that most commonly indicate performance problems, and summarizes

the most common causes and corrective actions..

10:DataFileRead
10:WALWrite
Lock:advisory
Lock:extend
Lock:Relation
Lock:transactionid
Lock:tuple

LWLock:BufferMapping
(LWLock:buffer_mapping)

LWLock:BufferlO

LWLock:buffer_content
(BufferContent)

LWLock:lock_manager
(LWLock:lockmanager)

Timeout:PgSleep
Timeout:VacuumbDelay
P Using PostgreSQL extensions

Supported foreign data
wrappers

b Warlkina with Tructad

aws.amazon.co RDS/latest/L

Wait event

Lock:Relation

Lock:transactionid
Lock:tuple

LWLock:BufferMapping
(LWLock:buffer_mapping)

LWLock:BufferlO

LWLock:buffer_content
(BufferContent)

LWLock:lock_manager
(LWLock:lockmanager)

Timeout:PgSleep

Timeout:VacuumDelay

Definition

This event occurs when a query is waiting to acquire a lock on a table or view that's
currently locked by another transaction.

This event occurs when a transaction is waiting for a row-level lock.

This event occurs when a backend process is waiting to acquire a lock on a tuple.

This event occurs when a session is waiting to associate a data block with a buffer in the
shared buffer pool.

This event occurs when RDS for PostgreSQL is waiting for other processes to finish their
input/output (I/0) operations when concurrently trying to access a page.

This event occurs when a session is waiting to read or write a data page in memory while
another session has that page locked for writing.

This event occurs when the RDS for PostgreSQL engine maintains the shared lock's
memory area to allocate, check, and deallocate a lock when a fast path lock isn't possible.

This event occurs when a server process has called the pg_sleep function and is waiting
for the sleep timeout to expire.

This event indicates that the vacuum process is sleeping because the estimated cost limit

has been reached.

t.clientwrite.html

Solving Problems With Wait Events

S Q searn inthis e comtatts e v (EITITD
S > User Guide
> Q searnin i i comats e v (T

¥ PostgreSQL on Amazon RDS
PostgresQL features LWL (LWL) S > Documentation > AmazonRDS > User Guide
; ock:lock_manager ock:lockmanager) |- osaresasonanaaensos))
Connecting to a PostgresQL — g g Example of a scaling problem for the lock manager On this page X
instance or | rss PostgreSQL features
Cannecting to a PostareSQL In this example, a table named purchases stores five years of data, partitioned by day. Each partition has two indexes. The following sequence of events occurs:
» Securing connections with " Supported engine versions
SSL/TLS. § . . retance 1. You query many days worth of data, which requires the database to read many partitions.
This event occurs when the RDS for PostgreSQL engine maintains the shared lock's memory area toalld » securing connections with 5 The datab lock entry for each partition. I partition ind i 1 the ot ook entry for th Context
» Using Kerberos authentication e database creates a lock entry for each partition. If partition indexes are part of the optimizer access path, the database creates a lock entry for them, too. kel causes of ncressed waits
Topics 3. When the number of requested locks entries for the same backend process is higher than 16, which is the value of FP_LOCK_SLOTS_PER_BACKEND, the lock manager uses the non-fast path lock
Using a custom DN server for » Using Kerberos authentication st Actons
outbound network access S rted . Using a custom DNS server for)
Upgrading the PostareSQL DB upported engine versions outbound network access. Modern applications might have hundreds of sessions. If concurrent sessions are querying the parent without proper partition pruning, the database might create hundreds or even thousands of non—
E::m 9 9 « Context Uporading the PastoraSQL B8 fast path locks. Typically, when this concurrency is higher than the number of vCPUs, the LWLock: Lock_manager wait event appears.
o Likely causes of increased waits engine
Upgrading a PostgreSQL DB Upgrading a PostgreSQL DB ® Note
snapshot engine version * Actions snapshot engine version n i isn't i e
pshot engi The LWLock: Lock_manager wait event isn't related to the number of partitions or indexes in a database schema. Instead, it related to the number of non-fast path locks that the
Working with read replicas for Working with read replicas for database must control.
RDS for PostgreSQL RDS for PostgreSQL
b Importing data into Supported engine versions > gt
ostgre
PostgresQL Likely causes of increased waits
This wait event information is relevant for RDS for PostgreSQL version 9.6 and higher. For RDS for Post] Exporting PostgreSQL data to 4
Exporting PostgreSQL data to N " - Ve ! Amazon $3
Amazon S3 For RDS for PostgreSQL version 13 and higher, the name of this wait event is LNLock: lockmanager . + ivoking s Lambds funci When the LWLock: Lock_manager wait event occurs more than normal, possibly indicating a performance problem, the most likely causes of sudden spikes are as follows:
nvoking a Lambda function
» Invoking a Lambda function from RDS for PostgresQL + Concurrent active sessions are running queries that don't use fast path locks, These sessions also exceed the maximum vCPU.
from RDS for PostgreSQL » Common DBA tasks for RDS « A large number of concurrent active sessions are accessing a heavily partitioned table. Each partition has multiple indexes.
» Common DEA tasks for RDS Context forPostaresal + The database is experiencing a connection storm. By default, some applications and connection pool softy ons when the database is slow. This practice makes the problem
o PosaresL ¥ Tuning with wait events for worse. Tune your connection pool software so that connection storms don't oceur.
. RDS for PostaresQL
When you issue a SQL statement, RDS for PostgreSQL records locks to protect the structure, data, and resal + Alarge number of sessions query a parent table without pruning partitions.
v f o Lt fast i " ntal concepts for y . »
;:"5‘:9 T*‘t‘”a‘;g:"‘s or a fast path lock or a path lock that isn't fast. A path lock that isn't fast is more expensive and creates m| e f; ”S"Qt”: “’g’“’s « A data definition language (DDL), data manipulation language (DML), or a maintenance command exclusively locks either a busy relation or tuples that are frequently accessed or modified.
or Postgre or PostareSQL tuning
RDS for PostaresQL wait
Essential concepts for RDS .
for Pssrest Fast path locking)
orrestoreRartnng ClientClientRead Actions
RDS for PostgreSQL wait To reduce the overhead of locks that are taken and released frequently, but that rarely conflict, backen
events following criteria: Clent:CllentWrie If the CPU wait event occurs, it doesn't necessarily indicate a performance problem. Respond to this event only when performance degrades and this wait event is dominating DB load.
: ceu
Client:ClientRead Topics
« They use the DEFAULT lock method. 10:BuffileRead and
Client:ClientWrite . 10:Buffilewrite + Use partition prunin
fent:Clientri « They represent a lock on a database relation rather than a shared relation. P pruning
U 10:DataFileRead + Remove unnecessary indexes
s « They are weak locks that are unlikely to conflict. P— + Tune your queries fo fas path locking
:O‘B:(F::Mf:‘;" « The engine can quickly verify that no conflicting locks can possibly exist. Lockaadvisory + Tune for other wait events
Lockeextend + Reduce hardware bottlenecks
10:DataFileRead The engine can't use fast path locking when either of the following conditions is true:
LockRelation + Use a connection pooler
lo:WALWrite « The lock doesn't meet the preceding criteria. Locktransactionid = Upgrade your RDS for PostgresQL version
Lockadvisory « No more slots are available for the backend process. Lockituple L .
Lockextend WiodkgufferMapping Use partition pruning
- i 2 (WLockbuffer_mappin NG
LockRelation To tune your queries for fast-path lockcing, you can use the following query. Fer-meppine) — , T oncepts syt © o Yl partitioned tables that excludes unneeded partitions from table scans, thereby improving performance. Partiton pruning istumed) (¥
Locktransactionid .
SELECT count(*), pid, mode, fastpath
Locktuple FROM pg_locks
LWLockBufferMapping WHERE fastpath IS NOT NULL
(LWLock:buffer_mapping) GROUP BY 4,3,2 (@) (B

LWy Bty ORDER BY pid. mode: aWS

Scenario:

Small Bank, Lots of Business

aws

Small Bank, Lots of Business

1. BEGIN;
2. UPDATTE accounts
SET abalance = abalance + :delta
WHERE account = :account;
3. SELECT balance FROM accounts
WHERE account = :account;
4. UPPATTE tellers
SET balance = balance + :delta
WHERE teller = :teller;
5. UPDATE branches
SET balance = balance + :delta
WHERE branch = :branch;
6. INSERT INTO history

VALUES (:teller, :branch, :account,

:delta, CURRENT TIMESTAMP);

F. END; (COMMIT TRANSACTION)

our bank Ls small because we
ong have 10 branches

Bank branches (can scale this)

100,000
accounts

| |
o
work at - E opened at

each branch each branch

10 tellers

very meor’ca nt for regulators!

awdit historté] dWs

Small Bank, Lots of Business

A Measure of Transaction Processing Power!
Anon Et Al
February 1985

ABSTRACT

Three benchmarks are defined: Sort, Scan and DebitCredit. The first two benchmarks
measure a system's input/output performance. DebitCredit is a simple transaction
processing application used to define a throughput measure: Transactions Per Second
(TPS). These benchmarks measure the performance of diverse transaction processing
systems. A standard system cost measure is stated and used to define price/performance

metrics.

TABLE OF CONTENTS
Who Needs Performance Metrics?. vvii it it 2
Our Performance and Price Metricsooiiiieiinnnnnnnnnnn. 4
TheSortBenchmark it iininiiiiiiiiniiiieennns 6
TheScanBenchmark. i iiiiinnnnnn 7
The DebitCredit Benchmark

Observations on the DebitCredit Benchmark

1835 15 T]« 11
SUMMAIY . ottt ettt e et et ettt aee e e eanaaeaeaanaaaenens 13
REferenCes . .. oottt ittt e et et et 14

' A condensed version of this paper appears in Datamation, April 1, 1985. This paper was scanned from
the Tandem Technical Report TR 85.2 in 2001 and reformatted by Jim Gray.

DebitCredit Benchmark

The Sort and Scan benchmarks have the virtue of simplicity. They can be ported to a
system in a few hours if it has a reasonable software base - a sort utility, a Cobol
compiler, and a transactional file system. Without this base, there is not much sense
considering the system for transaction processing.

The DebitCredit transaction is a more difficult benchmark to describe or port - it can take
a day or several months to install depending on the available tools. On the other hand, it
is the simplest application we can imagine.

A little history explains how DebitCredit became a de facto standard. In 1973 a large
retail bank wanted to put its 1,000 branches, 10,000 tellers and 10,000,000 accounts
online. They wanted to run a peak load of 100 transactions per second against the system.
They also wanted high availability (central system availability of 99.5%) with two data
centers.

The bank got two bids, one for SM$ from a minicomputer vendor and another for 25M$
from a major-computer vendor. The mini solution was picked and built [Good]. It had a
S0KS$/TPS cost whereas the other system had a 250K$/TPS cost. This event crystallized
the concept of cost/TPS. A generalization (and elaboration) of the bread-and-butter
transaction to support those 10,000 tellers has come to be variously known as the TP],
ET1, or DebitCredit transaction [Gray].

The DebitCredit application has a database consisting of four record types. History
records are 50 bytes, others are 100 bytes.

. 1,000 branches .IMB random access
. 10,000 tellers 1 MB random access
e 10,000,000 accounts 1GB random access
e a90day history 10 GB sequential access
as the flow:
NSACTION

COALT TDAM TIDMTNMAT (100N hiurd oo)

Small Bank, Lots of Business

pgbench --initialize --scale=10 tps
8000
for CLIENT in 1 2 5 10 25 50
100 200 400 800; do 7000
pgbench --client=$CLIENT
--progress=2 --time=30 6000
starting
progress; ne 2>gl nchmark.1l
el done &1 | tee benchma og 5000
progress;
progress; 4000
g:gg:zzzf egrep ' (clients: |progress: 30)'
progress benchmark.log | paste - -
progress: - s : = : : 3000
progress: 18.0 s, 637.5 tps, lat 1.569 ms stddev 0.087
progress: 20.0 s, 634.5 tps, lat 1.576 ms stddev 0.075
progress: 22.0 s, 630.0 tps, lat 1.587 ms stddev 0.342 2000
progress: 24.0 s, 633.5 tps, lat 1.578 ms stddev 0.076
progress: 26.0 s, 625.5 tps, lat 1.599 ms stddev 0.138
progress: 28.0 s, 614.5 tps, lat 1.627 ms stddev 0.559 1000
progress: 30.0 s, 638.0 tps, lat 1.567 ms stddev 0.204
transaction type: <builtin: TPC-B (sort of)>
scaling factor: 10 0

query mode: simple

number of clients: 1

number of threads: 1

duration: 30 s

number of transactions actually processed: 18947
latency average = 1.583 ms

latency stddev = 0.245 ms

tps
tps

631.552734 (including connections establishing)
631.696406 (excluding connections establishing)

1 2 5 10 25 50 100

clients

200

Xeon Ice Lake, 1 socket (processor), 32 cores, 64 threads
512 GiB memory

400 800

aws

The Old Method: Counter and Ratio Metrics

pgbench --client=100 --progress=5 —--time=9999

IVNTURTCOoOo. VUUJ.U O BESRS 1Ldal . JJo 1Mo oLUUTYV ZU.UUI

m— .0, 6195.2 tps,Jlat 16.109 ms stddev 19.276

L n -~
Buffer Cache Hit Ratio

6.0 99.950%

* CPU%

A LA A AR PARANM-L
0 —ooaha— i Wik A AN A e

23:44 23:45 23:46 23:47 99.940% N_A—/\/W

@ os.cpuUtilization.steal @ os.cpuUtilization.guest
@ os.cpuUtilization.irq @ os.cpuUtilization.wait

99.945%

@ os.cpuUtilization.user @ os.cpuUtilization.system while true; do
@ os.cpuUtilization.nice 99.935%
10 latency (Milliseconds) : EBS |0 operations (Per second) psql --csv -Xtc

SELECT extract (epoch from now()),
000 girrent Provisioned 10PS: 25000 S (il FoRE) a9 heap o,

sum(blks_hit) as heap_hit,
sum(blks hit) / (sum(blks hit)
99.930% + sum(blksiread))i as ratio
FROM pg_stat_database;

40

2.0

12,500

-c
SELECT pg_stat_reset();

MaA i A AMAMAAMAAAMALAMAARNAAANAAARNAAAARAASAALS

23:47 23:48 23:49 23:50 23:51 0
@ os.disklO filesystem.awaitavg @ os.disklO.nvme1n1.await.avg 23:47 23:48 23:49 2350 2351 aWS
@ os.diski0.nvme2n1.await.avg @ os.disklO.nvme4n1.await.avg @ os.disklO.rdsdev.readlOsPS.avg sleep 5;

@ os.diskiO.nvme5n1.await.avg @ os.disklO.rdsdev.await.avg ® os.disklO.rdsdev.writelOsPS.avg done;

The Right Method: Wait Events

Database load Sliced by | Waits Mar 10 23:58 UTC Show max vCPU
M Other 0, 0%
LWLock:ProcArray 0, 0%
Average active sessions (AAS) W LWLock:BufferContent 0, 0%
100 M LWLock:LockManager 2, 2% LWLock:ProcArray
B Timeout:VacuumTruncate 1, 1% " LWLock:BufferContent
B 10:WALSync 1, 1% @ LWLock:LockManager
s] 0 Client:ClientRead 3, 3% @ Timeout:VacuumTruncate
o et e EL LR EL S i LWLock:WALWrite 6, 6% @ 10:WALSync
6 é Lock:tuple 27, 28% @ client:ClientRead
| W Lock:transactionid 55, 57% 8 LWLodcWALWrite
40 i B CPU 2, 2% @ Lock:tuple
i Total DB load 97 @ Lock:transactionid
! ® cru
20 : Max vCPUs 64 - - MaxvCPUS

3.01 jPOCRD P Aoz VAN v ALY pearafixs TNTY YR

23:57:20 23:57:40 23:58 2] vlepliekinle) v il 9 00:00:20 00:00:40 00:01

Load by waits (AAS)
I I sss0 UPDATE pgbench_tellers SET tbalance = tbalance + ? WHERE tid = ?

aws
|_-| 37.81 UPDATE pgbench_branches SET bbalance = bbalance +? WHEREbid=? ~_5

The Right Method: Wait Events

1. BEGIN;
2. UPPDATE accounts

SET abalance = abalance + :delta
WHERE account = :account;
2. SeLecT balance FROM accounts

WHERE account = :account;

6. INSERT INTO histo

VALUES (:teller,
:ole
F. END; (COMMIT TRA

-- Scheduled job, run every few seconds

UPDATE tellers
SET balance = (SELECT SUM (delta)
FROM historg
WHERE h.teller=t.teller
GROUP BY teller)

UPDATE branches
SET balance = (seLeCT sSuM (balance)
FROM accounts
WHERE a.branch=b.branch
GROUP BY branch)

Top Waits Events:

v Tuning with wait events for

RDS for PostgreSQL

Essential concepts for
RDS for PostgreSQL
tuning

RDS for PostgreSQL wait
events

Client:ClientRead
Client:ClientWrite
CPU

10:BufFileRead and
10:BufFileWrite

10:DataFileRead
10:WALWrite
Lock:advisory
Lock:extend
Lock:Relation
Lock:transactionid
Lock:tuple

LWLock:BufferMapping
(LWLock:buffer_mapping
)

LWLock:BufferlO
(IPC:BufferlO)
LWLock:buffer_content
(BufferContent)

LWLock:lock_manager

Top SQL: UPDATE tellers & UPDATE branches

Lock:transactionid & Lock:tuple
= you have hot records in your table

> User Guide

Lock:transactionid

PDF | RsS

The Lock:transactionid event occurs when a transaction is waiting for a rc
level lock.

Topics

* Supported engine versions
+ Context
o Likely causes of increased waits

* Actions

Supported engine versions

This wait event information is supported for all versions of RDS for PostgreSQL

Context

The event Lock:transactionid occurs when a transaction is trying to acqui
row-level lock that has already been granted to a transaction that is running at
same time. The session that shows the Lock:transactionid wait event is bl
because of this lock. After the blocking transaction ends in either a COMMIT or
ROLLBACK statement, the blocked transaction can proceed.

The multiversion concurrency control semantics of RDS for PostgreSQL guarant

The Right Method: Wait Events

pgbench-step4-step5-job.sql:

UPDATE pgbench tellers t
SET tbalance = (SELECT sum(h.delta)
FROM pgbench history h
WHERE h.tid=t.tid
GROUP BY h.tid)

UPDATE pgbench branches b
SET bbalance = (SELECT sum(a.abalance)
FROM pgbench accounts a
WHERE a.bid=b.bid
GROUP BY a.bid)

pgbench --initialize --scale=10

pgbench --no-vacuum --client=1 --rate=1
--progress=5 --time=9999
--file=pgbench-step4-step5-job.sql

Tor CLIENT in L 2 5 10 25 50
100 200 400 800; do

pgbench --client=$CLIENT
--progress=2 --time=30
--builtin=simple-update

done 2>&1 | tee benchmark-2.log

egrep '(clients: |progress: 30)'
benchmark-2.log | paste - -

35000

30000

25000

20000

15000

10000

5000

e Original application

optimized application:

5x speedup

10

tps

e Optimized application

25 50
clients

100 200 400 800

aws

N’

The Right Method: Wait Events

Midjourney: May 2023 Incident

8 TB non-partitioned table
8,000-10,000 QPS
Outbound Logical Replication

Four weeks after minimal downtime
migration to a partitioned table

Two incidents (4 days apart) of
critically elevated application error
rates, caused by severe & sudden
database performance degradation

AAS & Wait Events History used to
quickly identify contention point,
greatly accelerating mitigation.

source: www.kylehailey.com

Fetch errors
1k

0.5k

Application Error Rate - 1000/sec

Ok — T
07:25 07:30

readonly [readonly-prompt

Prod: # of queries running group by state
600
400

200

T
07:35 07:40

Average Active Sessions
LWLock:LockManager - 500

0 T T
07:25 07:30

LOCKS

200k

T T
07:35 07:40

100km AANY—X
ok T

T T
07:25 07:30

T T
07:35 07:40

More Scenarios

CPU

* Overall rate of work: Review SQL
execution plans, check for plan flips
and optimize total blocks accessed.

DataFileRead, BufferlO

 |/O Read Path: Review SQL
execution plans, check for plan flips
and optimize total blocks accessed.

WALWrite

* |/O Write Path: Check commit rate,
volume of change.

For more info, RDS docs on wait events

transactionid, relation, etc.

* Hot records: check top SQL or pg_locks
during contention, review application flow
of updating records.

BufferContent

« Hot Block in Memory: check foreign keys,
optimize contention (e.g. schema redesign,
filltfactor, etc).

LockManager

* Lock System High Pressure: Check total
number of indexes and partitions involved
in tables used by the query, reduce query

execution rate, use replicas
aws

Solving Problems With Wait Events

Repository of Historical Perf Data (pg_stat_activity)

Scope (time, user, activity/application, pid, etc)
Top SQL / Top Wait Events
EXPLAIN ANALYZE with Buffers, 10 timing, etc

Investigate WAIT EVENT & STEP Taking The Most TIME

dWs

\/7

PostgreSQL Happiness Hints

Checksums and Huge Pages Enabled

Connection Pooling
¢ Centralized (e.g. pgbouncer) and decentralized (e.g. JDBC) architectures
e Recycle server connections (e.g. server_lifetime)
¢ Limit or avoid dynamic growth when practical — queue at a tier above the DB

Default Limits: Temp Usage, Statement & Idle Transaction Timeout
¢ Timeouts 5-15 minutes or lower, increase at session level if needed

Scaling
¢ Measure conn count in hundreds (not thousands), table count in thousands (not hundreds of

thousands), relation size in GB (not TB), indexes per table in single digits (not double digits)

¢ Higher ranges work, but often require budget for experienced & expensive PostgreSQL staff

* To scale workloads, shard across instances or carefully partition tables

Updates and Upgrades
* PostgreSQL quarterly stable “minors” = security and critical fixes only
e On Aurora: minors can have new development work
* Before major version upgrade, compare plans and latencies of top SQL on upgraded test copy
* Remember to upgrade extensions; it's not automatic
e Stats/analyze after major version upgrade

Logging
* Minimum 1 month retention (on AWS: use max retention and publish to Cloudwatch)
¢ Logautovacuum minimum duration = 10 seconds or lower
* Loglock waits
* Logtemp usage when close to the default limit
* On AWS: autovacuum force logging level = WARNING

version:
jer_s/2022-04-26

Multiple Physical Data Centers (= Multi-AZ on AWS)
Physical Backups

* Minimum 1 month retention
* Regular restore testing

Logical Backups (at least one)
* Scheduled exports/dumps and redrive/replay
* Logical replication

Active Session Monitoring (= Performance Insights on AWS)
* Save snapshots of pg_stat_activity making sure to include wait events
* Keep historical data, minimum 1 month retention (hopefully much more)

SQL and Catalog and Other Database Statistics Monitoring

* Preload pg_stat_statements

* Save snapshots of pg_stat_statements and key statistics
* Execplans (eg. auto_explain or others), relation sizes (bytes & rows incl catalogs), unused indexes
* Rates: tuple fetch & return, WAL record & fpi & byte, DDL, XID, subtransaction, multixact, conn

* Keep historical data, minimum 1 month retention (hopefully much more)

0OS Monitoring (= Enhanced Monitoring on AWS)

* Granularity of 10 seconds or lower (1 second if possible)
* Keep historical data, minimum 1 month retention (hopefully much more)

Alarms
* Average active sessions (= dbload cloudwatch metric on AWS)
* Memory/swap
* Disk space: %space and %inodes (and free local storage on Aurora)
* Hot standby & logical replication lag / WAL size (disk space) on primary
* Unexpected errors in the logs, both database and application tier
* Maximum used transaction IDs (aka time to wraparound)
* Checkpoint: time since latest & warnings in log (doesn’t apply to Aurora)

Thank you!
aws.amazon.com/rds/postgresql

aws

