The Open-Source Monitoring Landscape
Michael Merideth

Sr. Director of IT, VictorOps

mike@victorops.com, @vo_mike

mailto:mike@victorops.com

My History and Background

Working in IT since the mid go’s
Mostly at startups in the Colorado Front Range area
Along for the ride during the “dot com boom”

Build my career using open-source tools

Since the 90’s now, there’s been a sharp division in tools and methodology between the enterprise space and the startup and small business communities. Obviously, smaller businesses, especially in the tech sector, were early and eager adopters of open-
source technology, and much quicker to learn to rely on open-source tool chains in business-critical applications.

Up at the enterprise level, at the public companies, they’re only now fully-embracing Linux as a business-critical tool, and | think that’s largely because “the enterprise” is starting to be defined by companies that either came up in the dot com era, like
Google, or built the dot com era, like Sun, or Dell, or let’s say RedHat.

So, the “enterprise” had their toolchain, built on commercial solutions like HPUX and OpenView and so on, and the startup community, the “dot com” community had a completely different toolchain, based on Linux, based on open standards and protocols,
built with open-source components like GNU, and Apache, and ISC Bind and so on. I'm lucky enough that I've been able to spend my career in the startup sphere, working with that open-source toolchain. | started working in IT in the mid 90’s in the
Colorado front range, and I’'ve spent my time since then working for and consulting at early-stage startups and other “non enterprise” shops. I've been able to see first-hand as the OSS toolchain has gone from seat-of-the-pants flying to mature, stable,
mission-critical solutions (with seat-of-the-pants mode still available for the adventurous of course).

I've always been interested in monitoring and telemetry, and the ways it can help make life easier for people like me, so | really have my dream job now, working for VictorOps in Boulder, Colorado. We spend a lot of time integrating our product with
monitoring tools, which gives me an opportunity to see a lot of what’s out there, and hear from our customers about what they’re using and how it’s working for them.

Open-Source Monitoring

Started out as shell scripts

big brother P2 last update
% EHE Q@ Fri Dec 23 05:55:59 EST 2005

and "Big Brother” =3

demo.bb4.com
servers
tahoe.quest.com

Better tools emerged in -

mtl.bb4.com

www.unix.sh

www.root.sh

h 7 www.login.sh
the late 9o’s i
bsd.bb4.com

motu.bb4.com

www.motu.ca

bbhp.bb4.com

I bad.name.bb4.com
For l I lUCh Ofthe 2000 S not bbagent.bb‘t.com
I bbclient.bb4.com
jackpot.maclawran.ca
rob.host.gw - .
pls105306.pls.quest.com - - - - - - - - - - - - - - -

much changed in the space

Now things are shaking up!

So that’s why I’'m here to talk to you about open-source monitoring today. When | started in IT, the free monitoring options were a little thin on the ground, and most of us were running scripts out of cron and using other homegrown solutions to get the job
done. Here you can see a screenshot of “Big Brother”, which was a common OSS tool at the time. Isn’t that nice? | love the grid view, which assumes that every service runs on every host. That’s just good design.

In the late 90’s, better open-source monitoring tools started to emerge and get adopted. And for several years after that, not much changed. A great deal has been happening in the monitoring space lately though. | think it’s in response to the rise of

virtualization and cloud hosting, and in response to the rise of DevOps business methodologies. Some older, more established solutions are making changes, or getting challenged by new approaches, and | think a line is being drawn between a more
enterprise-like all-in-one approach to monitoring solutions and a more modular approach.

Monitoring categories

There’s three main categories in monitoring where I’'m going to be concentrating my focus here. First is traditional functional monitoring, the type of product that pages you when your website goes down. Nagios is an obvious example of a functional
monitoring product.

Monitoring categories

Functional

Then we have time-series data collection, where we’re more frequently generating graphs than generating alerts, though there certainly can be overlap. Cacti and Graphite are examples here.

Monitoring categories

Functional

Finally we have event processing, where we’re looking at log content and other near log-type events, and this might get visualized like time series data, or it might generate an alert like a functional monitoring system. Logstash is a good example in this
category.

So you can see there’s a lot of overlap to these categories, and most organizations are using a combination of all three. I'll be examining some projects that take on a single category here, and a few that attempt a broader scope.

Why OSS Monitoring?

The practice of Systems Administration is changing
quickly
DevOps
Infrastructure as Code

Virtualization

Cloud Hosting and Elastic Environments

Commercial solutions can’t keep up!

First, though, | want to talk about why open-source monitoring is so important.

Business methodologies are changing, from the ground up. | don’t know about you, but the day-to-day practice of my job looks radically different than it looked five years ago. DevOps, systems management frameworks and “infrastructure as code” change
the picture of how | want my management tools to work together. Virtualization and cloud hosting mean that network architectures have been changing as well, and even the definition of “on-premise” is evolving. But what hasn’t changed is the absolute
requirement of availability. That means failure detection, that means capacity planning, that means predictive analysis, all while working at “elastic” scale.

Proprietary tools have a tough time in this environment. Maybe the licensing model doesn't work with a constantly changing network size, or maybe it isn’t realistic about multi-site setups. Availability features of the software itself become a “premium”
feature. Maybe something about the product makes network architecture demands that you simply cannot meet. And of course commercial solutions are frequently not excited about integrating with competitors’ products. So, the commercial tool
becomes a constraining force in the DevOps workflow, and you either lose velocity because of it, or you limit your use of the tool, and pay a price in quality. Open-source tools tend to integrate more easily with systems management frameworks like Puppet
and Chef, as well as with other monitoring tools. They can be deployed experimentally without making a big financial commitment. You don’t have to worry about “return on investment” if you only want to use a subset of features. So, open-source tools
can become a process accelerator rather than getting in the way.

What about SaaS?

There are some great options out there

New

It can be a great way to get started Relic.

It can be a great second-line of defense
Cost can scale very quickly

[4
Even in a cloud-hosted environment, p'ngdom

you will still need “on premise”

monitoring N\Oﬂitor

Now there’s a ton of new SaaS offerings in the monitoring space. At VictorOps we’re happy to work with them all of course, and they can provide great point solutions, especially in the early product development stages. I’'m also a big fan of using external
monitoring services to provide a second line of defense in case your primary monitoring solution fails, and they can also be a great way to see how you’re performing from different parts of the world. However they tend to be priced by the data point, so as

you scale up you tend to wind up going from watching everything to watching a statistically significant sample, to watching a statistically insignificant sample, and it’s the same problem as enterprise software. You under-monitor, and you sacrifice quality. So,
if you’re scaling up at all, you can use managed services, but you’re still going to want “on-premise” solutions that you can scale at will.

Functional Monitoring Tools

All right, so let’s start looking at the opens-source tools that are out there, starting with functional monitoring. This isn’t a comprehensive list of every project out there, so your personal favorite might not be represented. But these are some of the projects
that | thought were interesting or important for one reason or another.

Nagios

Everybody Loves Nagios:

MUCh better than its Nagios [m—————— O ———

OK: Memry Usage 56% - Tota; 511 M8, Usad 267 M8,

S MemoyUsage K 01262007 14:5529 0d 4n 53m 235 174 S
* Documentation BiNG oK 01262007 14:56:14 0d 4h 50m 235 114 PING OK - Packetloss = 0%, RTA = 0.16 ms
Root Parion oK 01:26:2007 14:57:09 0d 4h Som 335 /4 DISK OK (243816 kB (5%) free on devisdz2]
SWAP Usage oK 01262007 14:5744 0d 4n Som 33s 114 Swap ok - (nu) 0% (0 out of 16386)
p re e C e S S O rS *Tactical Overview TofalProcesses OK 01262007 14:5629 0d 4h Som 33 174 OK-95 processes ruming
*/Service Detail
oricsiDeta e 01-26-2007 14:50:04 0d Oh 44m 34s 474 Critical Xen VMs Usage - Total NB: 0 - detected VMs:
DO ARAMAAMIN :cccciot . Chock Users oK 01262007 14:59:54 0d 0h 15m 33 /4 USERS OK -2 users cuentl logged in
:t:: G‘:i';‘"‘ary Curent Load oK 01262007 14:55:34 0d Oh 14m 53s 114 OK - load average: 0.30, 0.60, 044
. . OK: Memary Usage 37% - Tolat 511 MB, Used: 190 M8,
tatus Map MemoyUsage K 01:262007 14:56:19 04 Oh 14m 135 14 B
8 Ssrvice Froblonia RootParition oK 01:26:2007 14:5749 0d 0h 12m 435 /4 DISK OK (3948940 k& (94%) e on /devisdaz]
®Host Problonis SWAP Usage oK 01262007 145634 0d 0h 11m 535 1/4 Swap ok - (nu) 0% (0 out of 16386)
®Netwoik Oulsges ToalProcesses OK 01262007 14:59:09 0 Oh 16m 22 114 OK-250 processes running
Xen Vitual Machine i Warming Xen VMs Usage - Toal NB: 1 - defected VMs:
.. @ Gonuments e WARNING 01262007 1455:54 0d Oh 1m 335 414 it
*Downtime
r I V I n e (o S S e r r l O Webprod05 e PING oK 01262007 14:55:39 0d Oh 24m 585 1/4 PING OK - Packetloss = 0%, RTA = 025 ms
Process Info Xen Vitual Machine [0 S e OK: Xen Hypervisor webprod0S* is running 4 Xen VMs:
*Performance Info Monitor Xer-ymi xen-ym2 xen-vm3 xen-vmé
©Scheduling Queue I e TI Ty oK 01:26-2007 14:56:09 0d Oh 17m 235 1/4 USERS OK - 1 users currently logged in
Reporting Gurent Load oK 01262007 1455754 0d 3h 16m 21s 14 OK-load average: 154, 1.09, 045
. OK: Memary Usage 8% - Total: 5195 M8, Used: 676 M8,
® Memory Usage. 12
Trends MemoyUsage K 01262007 14:58:39 04 3n 15m 415 174 L
p U I I I S a I I a = 0 n S 2 Avalabilly EING oK 01262007 1450:15 0d 3h 15m 21s 174 PING OK - Packet Ioss = 0%, RTA = 049 ms
lert Histogram Root Partiion oK 01262007 14:59:59 04 3n 14m 515174 DISK OK [4196260 k& (99°%) free on udev]
lert History SWAP Usage oK 01262007 14:55:44 0d3h 14m 1s 1/4 Swap ok - (null) 0% (0 out of 2055)
lert Summary ToalProcesses | OK 01262007 145729 0d oh 18m3s 174 e e T
* Notifications
*Event Log xenmp s Check Users oK 01262007 14:57:15 04 3h Tm41s /4 USERS OK -0 users curenty logged n
CurentLoad oK 01262007 14:57:59 04 3h Tm 15 14 OK-load average: 0.00, 0.00, 0.00
- Configuration Z
e U I I e rs Oo a n] B e e OK Memory Usage 6%-Toa 1623 M8, Used:54 B,
* View Config e ree
PiNG oK 01:26:2007 14:59:19 0d Oh 45m 145 /4 PING OK - Packetloss = 0%, RTA = 043 ms
Root Parition oK 01262007 150005 0d 1h 15m ds 114 DISK OK [524220 kB (99%) ree on udev]
SWAP Usage oK 01262007 14:5549 04 3h Sm 41s 114 Swap ok - (i) 0% (0 out of 2055)

TotalProcesses K, 01262007 14:56:34 0d3h 9m 1s 174 OK - 52 processes unning

pO p U I a I’ Image Source: linuxscrew.com

For about 15 years now, the 500 pound gorilla of open-source monitoring has been Nagios. It is the most commonly used integration we see at VictorOps by a wide margin. When it came along, most of us were using “Big Brother” for monitoring, or
homegrown scripts running out of cron. In that world, Nagios was a revelation. It’s strength is that it’s really just a scheduler and event handler, and all the complicated check work is done by a highly modular and portable system of plugins. It’s easy to
write a check plugin for nagios, and given that the checks are standalone programs that are called with a fork and exec, the plugins can be easily re-used by other monitoring daemons like NRPE or by completely different solutions. Plugins have been written
to do complex, deep monitoring of most devices and applications out there, it’s a thriving ecosystem.

The configuration language for Nagios is well understood, even though it can lend itself to some ambiguity and it’s possible for nagios configurations to get impossibly complex. It mainly has the advantage of having been ubiquitous for so long that virtually
everyone in the industry has some experience with Nagios configs. Systems management tools, like Puppet, have built-in capabilities for generating nagios configurations, so it’s relatively easy to build a configuration that automatically picks up changes in
your network architecture. And again, it’s extremely flexible and can be adapted for a lot of different use cases.

http://linuxscrew.com

Nagios

Everybody Hates Nagios:
Many features require add-on software
WebUlI is clunky and inefficient
Not scalable
Not highly-available

Config language is ambiguous and confusing

Nagios is not without its critics. Again, Nagios core is relatively simple software. It schedules checks, parses the output, maybe takes action, and has a basic web interface. It doesn’t generate graphs or track metrics without add-on software. It doesn’t
parse log files or deal with event streams. It doesn’t do automatic discovery. This is all true, but these are all intentional choices that are built in to the architecture, and part of the reason why it’s so modular and flexible, and relatively good at what it does.

There are some more general and legitimate complaints. The web interface is clunky and dated, and hasn’t changed substantially in years. Version 3, the version that’s in widest use right now, and is in the repos of the major Linux distributions, is a bit of a
resource hog and has trouble scaling past a few thousand data points. It’s not cluster-aware or designed for high availability. It doesn’t lend itself well to multi-datacenter use or horizontal scaling. Nagios’s configuration language is well-known, but widely

criticized for for being ambiguous and confusing.

Nagios

Fork’s A-Comin’
Community dissatisfaction with pace of development
Differing views on product scope and architecture

2009: Icinga fork is announced ;‘ic"] GA

Shinken follows quickly

Naemon is a newer fork Shinkenm

In 2015, things are getting interesting...

The add-on ecosystem has addressed a lot of those complaints, but there was growing dissatisfaction in the community about the pace of development of the core Nagios project and the fact that Ethan Galstad, the original developer and the CEO of Nagios
Enterprises, was acting as a sole gatekeeper for changes to the core codebase. Some people in the community had different ideas about product scope and what features should be included, and others had different ideas about the overall product
architecture. In 2009, over ten years after Nagios’s original release as NetSaint, a group of developers announced a fork of the Nagios project called “Icinga”, and it has been gaining in popularity ever since. More recently, the Shinken and Naemon projects
have appeared as well. All four of these projects have taken radically different views on design, architecture, scope, and monetization strategy.

Now, as with all software projects where human developers and egos are involved, there has been no shortage of digital ink spilled about the political controversy surrounding these forks, and there have been critical statements made by all the parties about
one another. That’s well-covered online, so | won’t wade in to it here. Read all the accounts before you form an opinion, that’s my advice. The only opinion | have is about whether the controversy affects me personally, and for me that’s a “no”.

As a user of open-source software, | think the forking of Nagios has been a big positive. Icinga version 1 brought a lot of long-needed improvements to the web Ul, and added support for additional database backends, among other things. At the same time

it’s motivated Nagios to add more developers to the core project, and to quicken the pace of development. So the users of both projects have benefitted. | think we’ll need to wait and see what the ultimate impact will be of the Shinken and Naemon
projects.

There are big changes happening right now though. Both Nagios and Icinga introduced new versions in 2014 that put them on a wildly divergent path. Nagios 4 and Icinga 2 are both major rewrites, with Icinga 2 going so far as to adopt a new configuration
language. If Icinga was perceived as “Nagios with nicer Ul” before, it is now a substantially different product with different design and architecture goals.

Icinga 2

Totally rewritten from the ground up

New command-line interface

Several built-in modules

Reload config without interrupting checks
Totally new configuration language

Includes a tool for converting Nagios configs

Icinga 2 is a complete ground-up rewrite. It provides a new cli management interface with access to program and monitoring configuration objects. Several common add-on features (database integration, performance data collection) are now built-in

modules that can be enabled or disabled as desired from the CLI. It includes several performance features, including the ability to reload configuration data without interrupting running checks, and if you work in a shop that updates Nagios config a lot, you
know that’s a big deal.

The configuration language is completely changed from the Nagios standard. They do include a tool for converting Nagios-format configs to the new Icinga 2 format. The config language is said to adopt a “one best way” design philosophy, with the idea of

eliminating the ambiguity that can arise in a Nagios configuration. It’s object-based and rule driven, which means after initial templates are defined, managing changes in configuration should be simple. | love the look of Icinga 2. We’re piloting it at
VictorOps right now, and we may be adopting it for production use.

@ Problems

& Overview
O History
il Reporting
System
& Documentation

& bernd

Icinga2

Current Incidents

Service Problems

Recently

Services

1 service-flapping-3 on testflap-8
2 test-flap-8 (checked by hotspot.internet-for-guests.com) CRITICAL: randorn service-flapping-3
unchanged
! service-flapping-1 on test-flap-3
test-flap-3 (checked by hotspot.internet-for-guests.com) CRITICAL: randorn service-flapping-1
sl citical
service-flapping-2 on test-flap-6
test-flap-6 (checked by hotspot. for-
o critical
B
o

om) CRITICAL: random flapp

) CRITICAL: random service-

service-flapping-2 on test-random-6
24 19n dom-6 (checked by hotspot. i
SoR2/3 flapping-2 critical
1 service-unknown-1 on test-unreachable-1
Lt 1 (checked by hotspot. f
service-unknown-1
'
service-unknown-2 on test-unreachable-1
Lo 1 (checked by hotspot. f
service-unknown-2
! service-unknown-3 on test-unreachable-1
Lo 1 (checked by hotspot.
service-unknown-3

! service-unknown-4 on test-unreachable-1

UNKNOWN: unknown

UNKNOWN: unknown

UNKNOWN: unknown

E

o 1 (checked by hotspot. UNKNOWN: unknown
service-unknown-4
! service-unknown-1 on test-unreachable-10
Lo 10 (checked by hotspot.i -for-) UNKNOWN: unknown

service-unknown-1

! service-unknown-2 on test-unreachable-10
10 (checked by hotspot.i for-
service-unknown-2

Host Problems

) UNKNOWN: unknown

! test-down-5 (8 unhandled services)
e test-down-5 (checked by hotsoot.internet-for-guests.com) DOWN: down hostcheck

oK
20190

oK
26190

[
2615
oK
26190
oK
2619n
oK
20190
oK
20190
oK
2615

oK
20190

oK
2619

service-flapping-3 on test-random-1
dom-1 (checked by hotspot.i for-g:
flapping-3 recovered

.com) REVOVERED: random service-

service-flapping-1 on test-random-9
'd (checked by hotspot.i for-gl
flapping-1 recovered

.com) REVOVERED: random service-

service-flapping-3 on test-random-10 (Down)
test-random-10 (checked by hotspot.i f

.com) OK: random flapping
ok

service-flapping-1 on test-random-6

(checked by hotspot. -for-guests.com) OK: randomn service-flapping-1
ok
service-flapping-1 on test-flap-4
test-flap-4 (checked by hot: m) OK: random flapping-1 ok
service-flapping-3 on test-random-7

(checked by hotspot. -for-guests.com) OK: random service-flapping-3
ok
service-flapping-2 on test-random-2

(checked by hotspot.i -for-guests.com) OK: random service-flapping-2

ok

service-flapping-1 on test-flap-7 (Down)
test-flap-7 (checked by hotspot.internet-for-guests.com) OK: random service-flapping-1 ok

service-flapping-3 on test-flap-3
test-flap-3 (checked by hotspot.internet:for-guests.com) OK: random service-flapping-3 ok

service-flapping-3 on test-flap-9 (Down)
flap-9 (ch by hotspot. for

m) OK: random flapping-3 ok

Here’s a screenshot of Icinga running the new Icinga-web 2 webUI. You can see it’s a much more modern-looking interface than Nagios, but design is just part of it. They’ve made some relatively minor changes to the way you interact with multiple services

or multiple hosts at a time, that have produced big productivity gains over the Nagios Ul.

Nagios 4

Lightweight worker processes to spawn checks
APl improvements
Some features have been obsoleted

Faster development and more core developers

Nagios 4 is also a major rewrite, but obviously sticking much more closely to the original Nagios paradigm. Nagios core now spawns lightweight worker processes that handle check execution, and that has greatly increased efficiency. Nagios has also made
improvements in APIs and event handling, and obsoleted some features that were never fully implemented in previous versions of Nagios like failure prediction, or that had become difficult to maintain, like the embedded Perl interpreter.

Nagios has also added new developers to the Nagios Core team, and a succession strategy is being worked out. They’ve signaled that they intend to increase the pace of development on the core product.

Nagios 4

N H 0 Current Network Status Host Status Totals Service Status Totals
a glOS bas; Ungaled FQT)FEb 20d02:31:06 uTC 2015 Up Down L Pending Ok Warning Unknown Critical Pending
-_— jpdated every 90 seconds
Nagios® Cor™ 4.0 - wu.nagios.org Eo] o Jo] [Ele I o o e]
General Logged in as nagiosadmin All Problems All Types All Problems All Types
Home

. View History For all hosts
Documentation View Nofifications For Al Hosts
View Host Status Detail For All Hosts
Current Status
Tactical Overview
Map
Hosts LimitResults: 100 &)
Services Host *¥ Service *¥ Status #% Last Check *¥ Duration *¥ Attempt #% Status Information
H°§Lﬁ:;’:r';s localhost Current Load oK 0220215022912 4d10h11m21s 14 OK - load average: 0.00, 0.01, 0.05
Grid Current Users oK 0220201502:20:49 4d10h10m43s 1/4 USERS OK - 0 users currently logged in
Service Groups HTTP % [oK 02-20201502:30:26 4d 10h 10m 6s 114 HTTP OK: HTTP/1.1 200 OK - 1353 bytes in 0.001 second response time
Summary PING oK 02-20-2015 02:25:55 4d 10h 9m 28s 14 PING OK - Packet loss = 0%, RTA = 0.08 ms

Grid
Problems Root Partition oK 0220-201502:2643 4d10h8m51s 14 DISK OK - free space: / 20523 MB (90% inode=94%):

Services (Unhandled) SSH % [ok 02-20-2015 02:27:21 4d 10 8m 13s 14 SSH OK - OpenSSH_6.6.1p1 Ubuntu-2ubuntu2 (protocol 2.0)
Hosts (Unhandled) Swap Usage oK 02-20-2015 02:27:58 4d 10h 7m 36s 114 SWAP OK - 100% free (8189 MB out of 8189 MB)

R _Nf;"’mkhomages Total Processes oK 02-20-2015 02:28:31 4d 10n 6m 585 14 PROCS OK: 50 processes with STATE = RSZDT
uick Search:

Service Status Details For All Hosts

Results 1 - 8 of 8 Matching Services

Reports
Availability
Trends
Alerts

History

Summary

Histogram
Notifications
Event Log

System
Comments
Downtime
Process Info
Performance Info
Scheduling Queue
Configuration

The nice thing about Nagios 4 is that it accomplishes all this while maintaining configuration fidelity, and in fact the day-to-day operation of Nagios 4 is essentially unchanged from earlier versions. This means that if you’re using Puppet to manage your
Nagios configuration, you can upgrade to Nagios 4 quite easily and enjoy the performance benefits without a ton of work. On the downside, the webUI still hasn’t evolved significantly from Nagios 3, and is starting to feel really dated. Lots of common tasks
are tedious and difficult from the Ul. They have changed the default look-and-feel from “black” to “white”, so it’s a more readable interface, but it’s still frames and tables.

Shinken

Complete reimplilention in

Python

Modular architecture with

multiple processes

Config-compatible with Nagios

Shinken aims to have it both ways, being a complete reimplementation of Nagios core as a series of modular Python-based processes, but that maintains legacy Nagios configuration compatibility. They boast very impressive performance numbers, and an
architecture that provides for high-availability and high-scale. That comes at the cost of having a lot of moving parts and a lot of external dependencies. It’s also distributed using the PIP packaging system, and then it has it’s own internal package repository-
like functionality for adding modules to the software. So if you like the idea of layers upon layers of package managers and dependencies, then Shinken may be for you.

There’s also a commercial Shinken Enterprise product, which includes some additional features not included in the community edition. So if you like the idea of PAYING for external dependencies and extra package managers, be sure to check that out.

Naemon

Forked from Nagios 4
Aims to add frequently requested features
Non-commercial entity in control

Explicit goal of a more open development process

Finally I'll mention Naemon, which is a more recent fork, this one based on the Nagios 4 codebase. The goal of the project is to introduce a lot of the same community-driven feature requests that Icinga and Shinken do, but also with an explicit goal to have
a non-commercial entity managing the project and ensuring an inclusive development process. So if you find that the politics around using Nagios or Icinga or Shinken really bother you, then Naemon might be a good choice. They just hit their 1.0 release a
bit over a week ago so that project is really just getting going.

Commercial Nagios Derivatives ¥

Groundwork
Opsview
Others, I'm sure

If you want to pay for

Image source: Cafepress

Nagios, pay Nagios

There are some explicitly commercial products out there that are based on Nagios as well; Groundwork and Opsview are two examples. | don’t see a lot of value in them, they don’t really offer anything over Nagios core except visual cruft and a licensing fee.
If you want to pay to run Nagios, then you can always pay Nagios.

Sensu

Similar scope to Nagios

bandlerx] [handlerZ] [handler1]

sensu-
(=5
client 2
composable framework
=n
client 4
(5
client 5
Sensu-

Architected as a

RabbitMQ
S Redis
api

Image Source: florin.myip.org

Several external

dependencies

There are a couple other projects I'll mention that are focused on functional monitoring:

Sensu has a fairly similar scope and feature set to Nagios, but takes the form of a composable framework of components, including a web interface that can serve as a front-end for several Sensu servers. Like Shinken, it has a lot of external dependencies,
and getting it up and running is no joke, but if you need extreme flexibility or have very specific architectural requirements, it might be for you. At VictorOps we’re seeing a growing number of our customers using Sensu

http://florin.myip.org

Monit *

Runs locally on each server

Thresholds can trigger scripted actions or alerts
Lightweight web interface shows status and stats
M/Monit is a commercial product that offers a

central dashboard

Monit runs as an agent on each monitored host. It can be configured to watch processes, files, or other metrics, and take scripted actions when thresholds get crossed. Monit provides a lightweight web interface for looking at status and statistics. A
commercial product m/monit, can provide a central management point for several hosts running monit, but it’s not a required component. In a managed environment you might have it send events to a Nagios host and in that way decrease poller load, or
avoid some of the security concerns with running NRPE.

Managed vs. Discovery

Managed configs work great in an infrastructure-as-

code environment
Also fine for small environments that don‘t change

Auto-discovery solves problems for some larger

shops with heterogenous networks

Network tripwire

All of those solutions are great if you are in a DevOps workflow, and you have a managed infrastructure, using something like Puppet or Chef. The hosts and resources that get monitored are either defined in well-known standard text configuration files, or
can be managed programmatically. So it’s possible to wire them into your systems management framework and get your configuration auto-generated.

Of course, not everybody lives in that world. Auto Discovery is an important feature for a lot of shops. If you work for a larger company that’s making acquisitions, you might find yourself managing an inherited infrastructure with little prior knowledge and
poor documentation. In this case, a tool that can discover the current state of a network and alert you to changes from that state can be an invaluable learning and troubleshooting tool while you're building documentation.

Auto-discovery can also act as a network tripwire, detecting devices that may have been placed on your network without your knowledge. Most monitoring systems with auto-discovery can send a notification when a new device is detected.

OpenNMS ¥

Home

0of 7 100.000% o
e 00of9 100.000%
e

‘Overal Service Avalabilty

wor.

Node ID:

Released in 1999
JVM-based
Efficient ping-based auto-discovery

Native support for SNMP

OpenNMS is an example of a discovery-based monitoring solution that’s been around almost as long as Nagios. They’re here at the conference so I’'m sure many of you have spoken to them. It’s JVM-based so it’s pretty easy to get it deployed and running.
In my experience it runs fine with OpenJDK. Once you’ve tuned the discovery settings it can pick up the state of a network quickly and provide a picture of where everything is running. One thing to note with OpenNMS, and a lot of discovery-based tools, is
that the hosts being discovered have to respond to ICMP to be discovered. So it’s less effective for finding “rogue” equipment on the network, and switch or router ACLs may limit the effectiveness of discovery in distributed networks.

OpenNMS uses SNMP to gather metrics and do local checks on monitored systems. This makes it especially handy if you're managing a lot of network gear or appliance-type devices, like video conferencing systems and so on.

The Assimilation Project

“*Nanoprobe” agents do discovery and monitoring

Zero network footprint discovery listens to ARP traffic,
so nodes don’t need to respond to ping (or anything) to
be discovered

Agents form a self-organizing mesh of redundant

monitors

http://assimilationsystems.com

There’s a brand-new project in the early stages of development called “The Assimilation Project”. It was started by Alan Robertson, who you may know as the founder of the Linux HA project and long time maintainer of Heartbeat. It uses “nanoprobes”, or
basically little agents, that communicate state to a central data store, and these nanoprobes do distributed “zero network footprint” discovery by listening to arp traffic. This means that it can quickly discover your network topology even if your hosts don’t

respond to pings, and since the process is distributed and agent-based, it can discover complex and heterogenous networks (as long as the agents can connect back to the master). Monitoring is also highly distributed and redundant, so the loss of any one
node will not result in the loss of monitoring for any other node.

In a lot of ways it represents a new paradigm in systems monitoring, and I'm probably not doing it justice here. | really encourage you to check out the project website, there are some good illustrations of the core concepts at play, that give you an inkling of
the potential power of this software. If total information awareness is your goal, or you just like messing around with bleeding-edge technology, Assimilation should be on your list.

http://assimilationsystems.com

Zenoss *

Similar scope to OpenNMS

Zenoss sells an enterprise product, but the free
product is community supported

"Zen Pack” plugins provide specialized monitoring

and alerting capabilities

Zenoss is another tool that does discovery. Like OpenNMS, it also does time-series monitoring, and also has event handling capabilities. Hopefully you had a chance to stop and talk to them at their booth during the show; | get the impression that their
community outreach team takes their jobs very seriously. So even though their main focus is a commercial enterprise product, the community version is OSS, and it’s viable.

Zabbix *

Similar scope to OpenNMS

Includes an agent to perform local checks and report
system metrics

Zabbix is a commercial company, but their software

is all OSS

Zabbix is another product that does network discovery, similar to OpenNMS. Zabbix also includes an agent that can be installed on monitored hosts and provides system-level metrics (again, OpenNMS achieves this through SNMP). Zabbix is distributed by a
commercial entity who offer support and consulting, but the software is all distributed under a GPL license.

Time-Series Monitoring

All right, now | want to highlight some projects that are focused on time-series data.

The early Players

MRTG

@ Incoming Traffic in Bytes per Second
W outgoing Traffic in Bytes per Second

Maximal In: 2,014 k (0.16%) Maximal out:
Average In: 1.295 kK (0.10%) Average Out:
current In: 1.042 k (0.08%) cCurrent out:

36N
o
g
o 1020
3
% 6.3 N
s sanliilbiils
E g
0.0 1t Hefinge
10 12 14 15 18 20 22 0 2 4 & 8 10 12 14 16
2.0k
1
2.0 k 1l I
1.0 k
08:00 12:00 18100 00: 00 06: 00 12100

43IHIL30 1301 2 1001044

This category really started with MRTG, and later rrdtool. They produced useful graphs, but were difficult to manage, and didn’t scale well.

Cacti

. Fle Edt View Go Bookmaks Tools Help
RRDtOOl Wlth a @~ b 4@ ¢ O [rerp/webicacticact 0.8 6igraph_view.php?action=treedtree_id=184eat_id=10

console || graphs |

Graghs > Tree Mode Legged = as admin (Logeut) J

& Artington, MA Tree: Dallas, TX-> Host: HOU-52-SW6509-2

nice web-based |z B B S I

® Charicttesvite, VA
Coumtus, GA

= Dattas, TX
I Switches 3
management e :
ost: +:0u-52-5 w5505} H
g E Data Centter Core g
Host: HOU-M-ATM-1 H
Host: HOU-A-ATM-2 02:00 04:00 06:00 000 10:00 12:00 14:00 16:00 1800 20:00 22:00
e Bovtbomd Currt: 300 M bweregei 630 M Wi 5.30 M Tete) Ont: Su-th b
Host: HOU-A4-ATM -4
Wrapper and # Oaytan, 0 WOU-S2-5V6509-2 - Unicast Packets - 1/1
& Detrot, MI omt ! 2
£ Marrisburg, PA ¥ t t i
= Web Hosting Farm £
Host: HAR-CUST-WWWO =
Host: HAR-CUST-WWW1 !
a S Oa r Host: HAR-CUST-WWW2
Host: HAR-CUST-WWW3
I Ustcast Packats In Correst: 360.19 k Awerage: 1.56 N Maxisus 220 W
Masts HAR-CLIST-WWW4 B UMCAST Packets ONt Cerrest: 36343 b Average: 167 N maximm 230N

Most: HAR-CLST-WWWS

& Houstan, T .

buiIder | ool L emeem- -2

Host: MIA-RS-C7200-3 § wnrl

 Phoenix, AZ f t V W'MM [wa‘ M}“f“(\j\
Salt Lake Cty, UT f zmxfi\ ’w ;'\; . Vi "

San Diego, CA i !
San Francsce, CA o0

i —— 02:00 0400 08:00 0500 10:00 12:00 14:00 16:00 1800 20,00 22:00

anta Fe, W tsbeusd Current: 2064 K Average: S2.36 K Maximim 230.71 & Tetal fa: 461 CF
 Syracuse, NY W Oosthosnd Current: 31378 k Aversge: 291,76 k Maximim: 582,97 k Tetal Ost: 25.18 CB
® Tampa, AL .
& Trenten, 10 WU-S2-5V6509-2 - Unicast Packets - 1/2 |

qpstTTITIITIIIEIIItITeriiaiirziTari et it o

Done

Cacti came along in the early 2000’s as a web configuration wrapper around RRDtool. It solved a lot of the ease of use problems, but didn’t address the scalability of the RRDtool backend, or the inherent scalability challenges of an SNMP poller-based
graphing tool.

Munin

Overview :: localdomain :: localhost.localdomain
- M UN I N localhost.ocaidomain :: [disk munin network nfs postix processes system time |

Local agents with == -
3’:!2;%‘73,) Disk [0s per device - by day Disk 10s per device - by week
Groups

localdomain I 20
e@»’»@’e‘t@?ﬂaﬁ»@tw'Jm‘l“'Uu ol

write (+)
write (+)

60
s0

Categories = w0

a central poller == -l m
munin [dwmy] 2o i I ‘h T
e (e L UL)
nfs[dwmy]
postix [dwmy]
processes [dwmy]
system [dwmy]

Goes beyond

20

10

10s/second read
10s/second read

0o
Tha1200

uvds 0.00
n root .00/ 3.55

SNMP monitoring

Average [0 Wait (

g

Can produce

Disk usage in percent - by day Disk usage in percent - by week

alerts based on

thresholds

Munin breaks through some of the poller-based scale challenges of an RRDtool-based solution, by using an agent that gathers data locally and transmits it in batches. The master can also pass alerts to Nagios if the agents report threshold violations. Munin

also breaks out of SNMP-based checks by making process and filesystem checks simple in the agent. Out of the box, the agent collects a ton of metrics, so it’s a good way to get a comprehensive look at a system. On the downsite, it’s not known for great
performance, and the agent may be a bit heavy for some people’s tastes.

Graphite

Whisper storage engine is similar to RRDtool, but
can be clustered

Modular framework includes listeners, pollers, and a
visualization layer

New data points automatically created in the

database

More recently, new projects have taken a more modularized approach, which has allowed for more mixing between visualization layers, storage layers, and data sources. The storage back-ends have become very free form, allowing for the creation of
arbitrary objects and key-value pairs.

Graphite is a popular example. It’s a framework that includes a storage engine similar in many ways to RRDtool, a daemon that listens for time series data, and a web-based visualization layer. It’s notably different than Cacti and Munin because it doesn’t
include a poller, it listens for connections and passively accepts data, automatically creating new tables when new data sources connect. So provisioning new hosts is effortless. Lots of compatible tools have been created to feed it data, including SNMP
pollers, so more traditional setups and data sources can also be accommodated.

Login

Tree Search Auto-Completer
=) Graphite
_l carbon
_J collectd
| stats

[EI

-3

_| stats_counts
| statsd
4l) User Graphs

-3

Graphite Composer

Graphite - Tree View

.
Documentation
g’ ap l e User Interface: Dashboard | flot (experimental) | events (experimental) |

E‘u -:__J E’ Now showing the past 24 hours

\

i
I

10 R
WIAAIY |

Thu 4PM

collectd buildL.,
collectd. build1.
collectd.build1._
W collectd.build1_

Graph Options~ | | Graph Data

Thu 8PM F
interface:

interface:
interface:

Auto-Refresh

I J‘
il

A

ri 12AM Fri 4AM Fri 8AM Fri 12PM
ho.if_errors.rx

ho.if_errors.tx

ho.if_packst

ho.if_packets.t»

Here’s a look at the graph composer, which allows you to browse through all of your data points, combine them in a single graph, and apply filtering, aggregation, transformations and so forth to the data. Very powerful.

11:20

longterm

3000.0M
2500.0M
2000.0 M|
1500.0M
1000.0M

500.0 M=
o

Dashboard~ Graphs~ | [) Share

11:20

memory-used
W memory-free

graphite-cachel load average

11:40 12:00 12:20

midterm shortterm

graphite-cachel memory

11:40 12:00 12:20 12:40 13:00

memory-buffered [memory-cached

graphite-cachel eth0 packets

11:40

11:20

longterm

3000.0 M.
2500.0 M
2000.0 M
1500.0 M
1000.0 M
500.0 M
[

memory
W memory

Graphite - Dashboard

) Relative Time Range %] Absolute Time Range Now showing the past undefined undefined until undefined undefined ago

graphite-cache2 load average

11:40 12:20

midterm shortterm

graphite-cache2 memory

12:00 12:20 12:40 13:00

memory-buffered [memory-cached

graphite-cache2 eth0 packets

11:40

© [% |2 AutoRefresh every 60 'seconds Last Refreshed: 12:13:34 PM

graphite-cache3 load average

11:20 11:40 12:00 12:20 12:40

longterm midterm shortterm

graphite-cache3 memory
3000.0 M
2500.0 M
2000.0 M|
1500.0M
1000.0 M
500.0 M

12:40 13:00

memory-buffered [memory-cached

graphite-cache3 eth0 packets

And here’s an example of a graphite dashboard. It’s super easy to compose dashboards of several graphs though the web interface.

InfluxDB *

Similar scope to Graphite

Designed for horizontal scale

Easy web API for the listener

SQL-like query language for building graphs

No external dependencies

InfluxDB is a brand-new project with similar scope to Graphite. It’s designed to be easily horizontally scalable and its listener presents a standard http API, making it easier to write data. It also has a SQL-like query language with functions you can use to
build complex graphs or new data sources. It’s simple to install with no external dependencies. The project isn’t calling itself production-ready yet, but it should be soon, and it’s worth keeping an eye on.

Prometheus

Just open-sourced by

SoundCloud

Test Event Processor

2d

Similar to Graphite, but

Ingested Events / sec. [r-10m] Database Operations / sec. [r-10m]

adds alerting

functionality

Rate Limits | sec. [r-10m] Events ingested | sec. by instance [r-10m]

W

Includes a data poller,

but can passively

Image Source: SoundCloud

receive data too

Prometheus is an internal project at SoundCloud that they open-sourced in January.
It is another time-series database similar to InfluxDB, but that adds alerting functionality. It includes its own poller, but can also passively receive data like Graphite and InfluxDB.

Notice, this new generation of tools is all highly modular and composable. To some extent you can mix the front-ends and back-ends, and some collection tools can be used with just about all of them:

Collectd *

Gathers metrics and emits them to a configurable

destination
Runs as an agent on a variety of architectures

Easy to manage configuration

for example, collectd runs as a lightweight daemon on monitored hosts, gathering metrics based on a built-in plugin library and emitting them at regular intervals to a destination. It’s a great way to feed system statistics like CPU utilization and disk IO to a
time-series database, and can be managed easily by Puppet or Chef.

Statsd *

Middleware to make it easy to get data into Graphite
TCP and UDP listener receives metrics, forwards
them to the Graphite listener

Open-source project from Etsy, inspired by a similar

project from Flickr

statsd is another example. It provides a TCP and UPD listener that can receive metrics in a simple format and forward them on to a backend like Graphite or InfluxDB. It’s an easy way to add instrumentation to in-house software. Etsy released it, inspired by
a similar project from Flickr.

Grafana

Visualization interface
Dashboard composer

Can use multiple

backends simultaneously

Mix and match graphs

from different tools on a

single dashboard

Grafana provides a visualization interface and dashboard composer that can be used with multiple backends, including graphite and InfluxDB. In can embed annotations into time-series graphs, and can build dashboards that include data from different back-
end data stores.

As you can see, there’s a lot of activity happening in this category, and these tools work great in elastic environments and DevOps workflows because the storage engines are so free-form. | expect a lot of changes and a bit of consolidation in this space over
the next few years, but it’s so easy to get value out of these projects quickly that it’s worth doing some experimenting and trying some new things out.

Sidebar: Poller vs. Listener

Polling over a network is inefficient

TCP is more expensive to the originator

Poller connections are longer-lived

Listeners can be used for functional monitoring

Scale demands it, we're going to see more of it

You may have noticed that a lot of the more recent tools have switched from a poller model to a listener model. This makes so much sense with time-series data, but | also think the model has application in functional monitoring. Poller-based monitoring is
just inherently inefficient, since so much of the TCP heavy lifting is concentrated in one place, and frequently the connection has to be held open while the check is run or the metric sampled. Emitting events to a passive listener means more of the TCP work
is distributed, and the check or sample can run before the connection is opened, so you only need to communicate long enough to send the data. In a managed environment, a lot of health checks can be run locally and problems emitted to Nagios or
another event handler. This scales better than poller-based solutions in so many environment, | have to expect we’ll start seeing more of it on the functional side. The Assimilation project has a fascinating approach to this as well; again, | urge you to check it
out on their website.

Okay, on to our third category, Event monitoring

Event Monitoring

The Bad Old Days

LogwatCh QOOO ™ e] (@) 10 EEE

| [% [locTyn K XypHANaN CHCTENH 4epss Web-HHTep. . I % phpsyslog-ng 2.6: REGULAR RESULTS] =

php-syslog-ng Tuesday October 18th, 2005 - 12:15:46

YourIP: 127.0.0.1

L O m O n Network Syslog Monitor
g Search Config Help About

Use this link to reference this query directly: QUERY

SEVERITY LEGEND

BACK TO SEARCH DEBUG INFO NOTICE

Number of Entries Found: 1944 WARNING ERROR CRIT
P h -SVS | od-n JALERTH EMERG |

p y g g [SELECT SQL_CALC_FOUND_ROWS * FROM logs ORDER BY datetime DESC LIMIT 19| =

[Seq[rost [FACiiY [oAteTiMe _ [WessAce]

310 linux3 kern-debug 2005-10-18 11:49:36 PCl: Setting latency timer of device 0000:00:1d.2 to 64

311 linux3 kern-info 2005-10-18 11:49:36 uhci_hcd 0000:00:1d.2: irq 185, io base 0000d000

312 linux3 kern-info 2005-10-18 11:49:36 uhci_hcd 0000:00:1d.2: new USB bus registered, assigned bus number 3

313 linux3 kern-info 2005-10-18 11:49:36 hub 3-0:1.0: USB hub found

314 linux3 kern-info 2005-10-18 11:49:36 hub 3-0:1.0: 2 ports detected

315 linux3 kern-info 2005-10-18 11:49:36 ACPI: PCI interrupt 0000:00:1d.3[A] -> GSI 16 (level, low) -> IRQ 169 |

316 linux3 kern-info 2005-10-18 11:49:36 uhci_hcd 0000:00:1d.3: Intel Corp. 82801EB/ER (ICH5/ICH5R) USB UHCI #4

317 linux3 kern-debug 2005-10-18 11:49:36 PCl: Setting latency timer of device 0000:00:1d.3 to 64

318 linux3 kern-info 2005-10-18 11:49:36 uhci_hcd 0000:00:1d.3: irq 169, io base 0000d400

319 linux3 kern-info 2005-10-18 11:49:36 uhci_hcd 0000:00:1d.3: new USB bus registered, assigned bus number 4

320 linux3 kern-info 2005-10-18 11:49:36 hub 4-0:1.0: USB hub found

321 linux3 kern-info 2005-10-18 11:49:36 hub 4-0:1.0: 2 ports detected

322 linux3 kern-info 2005-10-18 11:49:36 usb 1-2: new full speed USB device using address 2

323 linux3 kern-info 2005-10-18 11:49:36 Bluetooth: Core ver 2.6

324 linux3 kern-info 2005-10-18 11:49:36 NET: Registered protocol family 31

325 linux3 kern-info 2005-10-18 11:49:36 Bluetooth: HCI device and connection manager initialized

326 linux3 kern-info 2005-10-18 11:49:36 Bluetooth: HCI socket layer initialized

327 linux3 kern-warning 2005-10-18 11:49:36 hci_usb: Unknown symbol hci_free_dev

328 linux3 kern-warning 2005-10-18 11:49:36 hci_usb: Unknown symbol hci_alloc_dev

329 linux3 kern-warning 2005-10-18 11:49:36 hci_usb: Unknown symbol hci_unregister_dev

[« i >

4

Event monitoring and visualization is a fairly undeveloped area by contrast, but one that’s starting to heat up. For a long time, if you had limited resources and limited money, you had to rely on hourly or daily runs of logwatch to look for errors in system
logs, or run programs like “logmon” locally, basically watching a file with a tail -f and emailing alerts. Resource intensive and clunky. Splunk came along in the early 2000’s offering an attractive centralized log analysis tool, but with a steep price that put it
out of reach for a lot of small shops that produce a lot of log data.

Other open source log management tools have been produced, like php-syslog-ng, but relational data stores like MySQL struggle with log data and the results offered poor search performance and poor scalability. Php-syslog-ng has been rewritten as
“Logzilla”, by the way, and is now an exclusively commercial product.

ELK - Logstash

The “ELK" stack is comprised of

Elasticsearch, Logstash, and Kibana

Clusterable, horizontally scalable data

store
Lots of listeners, filters, event handlers

Beautiful easy to use visualization

layer

Recent advances in open-source data stores like Elasticsearch has given rise to Logstash, which provides very similar functionality to Splunk with a completely open-source stack. This is commonly referred to as the “ELK” stack, comprised of Elasticsearch as

the back-end data store, Logstash to receive and process log events, and then pass them to the storage backend, and Kibana, the web-based visualization layer that makes it easy to create dashboards of your log data including histograms and pie charts. As
of 2013, Elasticsearch is the commercial keeper and distributer of the ELK stack components.

Logstash - Kibana

a1 APPTRACI arch
appirack status=APPTRACK_SESSION_CREATE

aday ago to a few seconds ago ~

FILTERING «
© x wsTocRaM

HsTORY

o
o

»Viow | @ZoomOut | @ Create|
0

010100 500

«source_Ip» «source_ports «destip» «apptrack status

54330

Image source: ifconfig-a.com

Here’s a screenshot of the Kibana part of the ELK stack. As you can see, it provides not only ways to examine, search and filter your logs, but also to visualize them in interesting ways.

http://ifconfig-a.com

Nagios Log Server

Nagios-branded ELK stack
Includes user management and security features
Promises easy clustering

No free version

Last fall, Nagios annouced the Nagios Log Server, which is a commercialized version of the ELK stack with multi-user security features and integration with Nagios built-in, and promises easy-to-deploy clustering, something that can be challenging with a
standard Elasticsearch deployment. There’s no free version, but it might be a way to get ELK in the door if you have a manager that frets about software without support, or you simply don’t have time to invest in getting an elasticsearch cluster running.

Graylog 2 ¥

Similar scope to ELK stack

Commercial company releases software as OSS, and

sells support and consulting

External dependencies on MongoDB and

Elasticsearch

graylog2 is a product very similar to the ELK stack, and it’s getting close to a 1.0 release. Similar to Elasticsearch, Graylog Inc. releases all of their code as open-source, and offers production and development support contracts for enterprise users. It has
external dependencies on MongoDB and Elasticsearch.

Event Monitoring

A lot of room for growth
A lot of room for consolidation with time-series
projects

It's still a great time to be alive and generating log

data

| expect to see the event management tools space heat up like the time-series space has, even as the two categories start to see more overlap. Again, | think it will be a while before a clear overall winner emerges in terms of storage backends, visualization
layers, and event handlers, but what’s out there today has plenty of value to offer. If you’re not running Logstash or graylog2 today you owe it to yourself to get it going. Chances are you won’t have to wait long to see a benefit.

Our Categories Again

Functional

Okay, that’s a very quick survey of our three major categories. If | left your favorite project out, let me know, I'll probably want to hear about it! Now, as | said at the start, there’s a lot of overlap between the functionality of the tools in these three
categories, and some of the tools | mentioned could fit in multiple categories. It can be tempting to look for a single solution that captures all of this functionality, and several projects and companies are aiming at a unified solution.

Do-It-All Products

OpenNMS
Zenoss
Zabbix
Nedi

Nagios Enterprises

OpenNMS, Zabbix, and Zenoss don't just do discovery and monitoring, they also graph time-series data, and have asset management and network management functionality built-in.
“Nedi” is a similar project that’s still defining it’'s commercial and release model, but for now is mainly defined by a long list of external dependencies.

Nagios Enterprises is in the process of building a suite of commercial products around Nagios that’s comprised of a lot of different components (like Nagios Log server), but at least gives you a single neck to choke for support | guess

Monolithic vs. Modular

Monolithic:

If all-in-one gets the job done, then great

Good for smaller scale, non-tech-focused companies
Modular:

Agile and DevOps shops require flexibility and

innovation

Good for tech driven and ops-focused companies

Some of these all-in-one products and suites of products can be very attractive, and if you find one that meets all of your needs, then it can save you a lot of time you might otherwise spend composing a monitoring infrastructure out of individual parts. For
a lot of shops that operate at a smaller scale but otherwise have more enterprise-like requirements (i.e. the primary business isn’t technology), it may be a wise approach to look for a single product to do everything, and adapt your workflow to the tool if
you need to.

For shops adopting DevOps methodologies, and managing infrastructure as code, especially those working in elastic environments where architectures and requirements can change over time, there’s tremendous opportunity to combine the latest
generation tools in ways that were difficult or impossible just a few years ago, and produce business value quickly. If you find that one of the monolithic product works for you in that sort of environment, then great, but it’s probable that a mixture of smaller
components will address your specific needs more easily.

The “"Event Stream” Concept

(

scheduler

Sensor state engine

Sensor

storage engine

event stream aggregator

visualizer

Source: @obfuscurity

For a few years now, Jason Dixon, who organizes the “Monitorama” conference which is going to be in Portland this year, has described the “event stream” paradigm in monitoring. Rather than try to reproduce his diagram I've just swiped it from one of his
slide decks. It goes like this: events enter the toolchain. Depending on event type and content, it might get sent to a storage backend for visualization, or aggregated with other events before getting stored. Depending on content, it might change state in a
state engine, trigger an event handler or alerting process, fire off an email or a VictorOps alert. By using small, composable tools in combination, you create the event stream that suits your technology stack and environment.

Nagios-Based Toolchain

Collectd

Graphite

This doesn’t mean necessarily turning your back on institutional knowledge and established tools. Nagios can sit comfortably right in the middle of the event stream.

Icinga 2-Based Toolchain

Icinga2

Collectd

Graphite

Icinga 2 was designed with modularity in mind, and has a built-in support for sending metric data to Graphite. You can do this with Nagios as well, it’s just not quite as easy. Sensu, Shinken, Monit, Collectd, they’re all potential components in a modular
monitoring toolchain. You can pick the pieces that best meet your particular needs, and combine them in a way that they lend value to each other rather than creating islands of data.

smonitoringQPy

The current generation of open-source monitoring tools is giving us easier access to deep insight, better visibility into faults, and amazing interoperability. These solutions are quickly becoming critical sources of not just operational and developmental
intelligence, but of business intelligence that has value outside of technical departments. This helps Dev, DevOps and IT teams more effectively communicate their overall value, and makes life a lot easer managing high-demand 24/7 platforms. The

technology is moving way too fast for “Enterprise” solutions to keep pace, meaning that as a user of open-source monitoring solutions, you don’t have to wonder what you’re missing out on from commercial products. Open-source is now at the vanguard of
monitoring and telemetry software development, and it’s a great time to be involved.

If you have any questions, I'd love to answer them now.

Questions?

mike@victorops.com

@vo_mike

mailto:mike@victorops.com

