
Coding Isn't Programming

Leslie Lamport

Microsoft Researcher Emeritus

0

What This Talk is About

You probably expect me to talk about concurrency.

I have nothing new to say about that, and I'm tired of saying the

same old stu�.

I've realized that some things that I've learned about writing

concurrent programs apply to all programs.

So I'm going to talk about programming.

0

What This Talk is About

You probably expect me to talk about concurrency.

I have nothing new to say about that, and I'm tired of saying the

same old stu�.

I've realized that some things that I've learned about writing

concurrent programs apply to all programs.

So I'm going to talk about programming.

0

What This Talk is About

You probably expect me to talk about concurrency.

I have nothing new to say about that, and I'm tired of saying the

same old stu�.

I've realized that some things that I've learned about writing

concurrent programs apply to all programs.

So I'm going to talk about programming.

0

What This Talk is About

You probably expect me to talk about concurrency.

I have nothing new to say about that, and I'm tired of saying the

same old stu�.

I've realized that some things that I've learned about writing

concurrent programs apply to all programs.

So I'm going to talk about programming.

0

What This Talk is About

You probably expect me to talk about concurrency.

I have nothing new to say about that, and I'm tired of saying the

same old stu�.

I've realized that some things that I've learned about writing

concurrent programs apply to all programs.

So I'm going to talk about programming.

0

Algorithms

I'm here because I wrote concurrent algorithms, not concurrent

programs.

An algorithm is not a program, it's higher-level, more abstract.

We shouldn't write algorithms in a programming language.

Programming languages are complicated.

Algorithms are neither executed nor large.

1

Algorithms

I'm here because I wrote concurrent algorithms, not concurrent

programs.

An algorithm is not a program, it's higher-level, more abstract.

We shouldn't write algorithms in a programming language.

Programming languages are complicated.

Algorithms are neither executed nor large.

1

Algorithms

I'm here because I wrote concurrent algorithms, not concurrent

programs.

An algorithm is not a program, it's higher-level, more abstract.

We shouldn't write algorithms in a programming language.

Programming languages are complicated.

Algorithms are neither executed nor large.

1

Algorithms

I'm here because I wrote concurrent algorithms, not concurrent

programs.

An algorithm is not a program, it's higher-level, more abstract.

We shouldn't write algorithms in a programming language.

Programming languages are complicated.

Algorithms are neither executed nor large.

1

Algorithms

I'm here because I wrote concurrent algorithms, not concurrent

programs.

An algorithm is not a program, it's higher-level, more abstract.

It can be implemented in many programming languages.

We shouldn't write algorithms in a programming language.

Programming languages are complicated.

Algorithms are neither executed nor large.

1

Algorithms

I'm here because I wrote concurrent algorithms, not concurrent

programs.

An algorithm is not a program, it's higher-level, more abstract.

We shouldn't write algorithms in a programming language.

Programming languages are complicated.

Algorithms are neither executed nor large.

1

Algorithms

I'm here because I wrote concurrent algorithms, not concurrent

programs.

An algorithm is not a program, it's higher-level, more abstract.

We don't have to write algorithms in a programming language.We

shouldn't write algorithms in a programming language.

Programming languages are complicated.

Algorithms are neither executed nor large.

1

Algorithms

I'm here because I wrote concurrent algorithms, not concurrent

programs.

An algorithm is not a program, it's higher-level, more abstract.

We shouldn't write algorithms in a programming language.

Programming languages are complicated.

Algorithms are neither executed nor large.

1

Algorithms

I'm here because I wrote concurrent algorithms, not concurrent

programs.

An algorithm is not a program, it's higher-level, more abstract.

We shouldn't write algorithms in a programming language.

Programming languages are complicated.

Algorithms are neither executed nor large.

1

Algorithms

I'm here because I wrote concurrent algorithms, not concurrent

programs.

An algorithm is not a program, it's higher-level, more abstract.

We shouldn't write algorithms in a programming language.

Programming languages are complicated.

They have to be e�ciently executed.

They have to handle large programs.

Algorithms are neither executed nor large.

1

Algorithms

I'm here because I wrote concurrent algorithms, not concurrent

programs.

An algorithm is not a program, it's higher-level, more abstract.

We shouldn't write algorithms in a programming language.

Programming languages are complicated.

They have to be e�ciently executed.

They have to handle large programs.

Algorithms are neither executed nor large.

1

Algorithms

I'm here because I wrote concurrent algorithms, not concurrent

programs.

An algorithm is not a program, it's higher-level, more abstract.

We shouldn't write algorithms in a programming language.

Programming languages are complicated.

Algorithms are neither executed nor large.

1

Algorithms

I'm here because I wrote concurrent algorithms, not concurrent

programs.

An algorithm is not a program, it's higher-level, more abstract.

We shouldn't write algorithms in a programming language.

Programming languages are complicated.

Algorithms are neither executed nor large.

1

What language should we use?What language should we use?

Don't get hung up on languages.

Think about ideas, not the language they're expressed in.

1

What language should we use?

Don't get hung up on languages.

Think about ideas, not the language they're expressed in.

1

What language should we use?

Don't get hung up on languages.

Think about ideas, not the language they're expressed in.

1

Concurrent Programs

Contain multiple threads of control that can be executed

concurrently.

Concurrent programs are very hard to get right.

Debugging doesn't work.

2

Concurrent Programs

Contain multiple threads of control that can be executed

concurrently.

Concurrent programs are very hard to get right.

Debugging doesn't work.

2

Concurrent Programs

Contain multiple threads of control that can be executed

concurrently.

Distributed programs are ones in which the threads

are executed on di�erent computers.

Concurrent programs are very hard to get right.

Debugging doesn't work.

2

Concurrent Programs

Contain multiple threads of control that can be executed

concurrently.

Concurrent programs are very hard to get right.

Debugging doesn't work.

2

Concurrent Programs

Contain multiple threads of control that can be executed

concurrently.

Concurrent programs are very hard to get right.

Debugging doesn't work.

2

Concurrent Programs

Contain multiple threads of control that can be executed

concurrently.

Concurrent programs are very hard to get right.

Actions of di�erent threads can be interleaved in many ways.

This implies a huge number of possible executions.

Hard to think of all the ways they can go wrong.

Debugging doesn't work.

2

Concurrent Programs

Contain multiple threads of control that can be executed

concurrently.

Concurrent programs are very hard to get right.

Actions of di�erent threads can be interleaved in many ways.

This implies a huge number of possible executions.

Hard to think of all the ways they can go wrong.

Debugging doesn't work.

2

Concurrent Programs

Contain multiple threads of control that can be executed

concurrently.

Concurrent programs are very hard to get right.

Actions of di�erent threads can be interleaved in many ways.

This implies a huge number of possible executions.

Hard to think of all the ways they can go wrong.

Debugging doesn't work.

2

Concurrent Programs

Contain multiple threads of control that can be executed

concurrently.

Concurrent programs are very hard to get right.

Debugging doesn't work.

2

Concurrent Programs

Contain multiple threads of control that can be executed

concurrently.

Concurrent programs are very hard to get right.

Debugging doesn't work.

Can't be sure you've checked all relevant cases.

A program can work �ne, and a change that alters the

relative execution rates of the threads can reveal a bug.

Fixing one bug is likely to introduce a new bug.

2

Concurrent Programs

Contain multiple threads of control that can be executed

concurrently.

Concurrent programs are very hard to get right.

Debugging doesn't work.

Can't be sure you've checked all relevant cases.

A program can work �ne, and a change that alters the

relative execution rates of the threads can reveal a bug.

Fixing one bug is likely to introduce a new bug.

2

Concurrent Programs

Contain multiple threads of control that can be executed

concurrently.

Concurrent programs are very hard to get right.

Debugging doesn't work.

Can't be sure you've checked all relevant cases.

A program can work �ne, and a change that alters the

relative execution rates of the threads can reveal a bug.

Fixing one bug is likely to introduce a new bug.

2

Concurrent Programs

Contain multiple threads of control that can be executed

concurrently.

Concurrent programs are very hard to get right.

Debugging doesn't work.

Can't be sure you've checked all relevant cases.

A program can work �ne, and a change that alters the

relative execution rates of the threads can reveal a bug.

Fixing one bug is likely to introduce a new bug.

2

Concurrent Programs

Contain multiple threads of control that can be executed

concurrently.

Concurrent programs are very hard to get right.

Debugging doesn't work.

Can't be sure you've checked all relevant cases.

A program can work �ne, and a change that alters the

relative execution rates of the threads can reveal a bug.

Fixing one bug is likely to introduce a new bug.

2

Concurrent Programs

Contain multiple threads of control that can be executed

concurrently.

Concurrent programs are very hard to get right.

Debugging doesn't work.

2

How to Write a Concurrent Program

Figure out what part of what the program does involves

concurrency.

Find a correct algorithm to do that part.

Implement the algorithm.

3

How to Write a Concurrent Program

Figure out what part of what the program does involves

concurrency.

Find a correct algorithm to do that part.

Implement the algorithm.

3

How to Write a Concurrent Program

Figure out what part of what the program does involves

concurrency.

The part that synchronizes the threads.

Usually a small part of what the program does.

Find a correct algorithm to do that part.

Implement the algorithm.

3

How to Write a Concurrent Program

Figure out what part of what the program does involves

concurrency.

The part that synchronizes the threads.

Usually a small part of what the program does.

Find a correct algorithm to do that part.

Implement the algorithm.

3

How to Write a Concurrent Program

Figure out what part of what the program does involves

concurrency.

Find a correct algorithm to do that part.

Implement the algorithm.

3

How to Write a Concurrent Program

Figure out what part of what the program does involves

concurrency.

Find a correct algorithm to do that part.

Implement the algorithm.

3

How to Write a Concurrent Program

Figure out what part of what the program does involves

concurrency.

Find a correct algorithm to do that part.

Maybe it's in a textbook.

Maybe it's almost like one in a textbook.

Maybe it's brand new.

Hard for the same reason concurrent programs are

hard to get right.

But algorithms are simpler than programs.

Implement the algorithm.

3

How to Write a Concurrent Program

Figure out what part of what the program does involves

concurrency.

Find a correct algorithm to do that part.

Maybe it's in a textbook.

Maybe it's almost like one in a textbook.

Maybe it's brand new.

Hard for the same reason concurrent programs are

hard to get right.

But algorithms are simpler than programs.

Implement the algorithm.

3

How to Write a Concurrent Program

Figure out what part of what the program does involves

concurrency.

Find a correct algorithm to do that part.

Maybe it's in a textbook.

Maybe it's almost like one in a textbook.

Maybe it's brand new.

Hard for the same reason concurrent programs are

hard to get right.

But algorithms are simpler than programs.

Implement the algorithm.

3

How to Write a Concurrent Program

Figure out what part of what the program does involves

concurrency.

Find a correct algorithm to do that part.

Maybe it's in a textbook.

Maybe it's almost like one in a textbook.

Maybe it's brand new.

Hard for the same reason concurrent programs are

hard to get right.

But algorithms are simpler than programs.

Implement the algorithm.

3

How to Write a Concurrent Program

Figure out what part of what the program does involves

concurrency.

Find a correct algorithm to do that part.

Maybe it's in a textbook.

Maybe it's almost like one in a textbook.

Maybe it's brand new.

Hard for the same reason concurrent programs are

hard to get right.

But algorithms are simpler than programs.

Implement the algorithm.

3

How to Write a Concurrent Program

Figure out what part of what the program does involves

concurrency.

Find a correct algorithm to do that part.

Implement the algorithm.

3

How to Write a Concurrent Program

Figure out what part of what the program does involves

concurrency.

Find a correct algorithm to do that part.

Implement the algorithm.

3

How to Write a Concurrent Program

Figure out what part of what the program does involves

concurrency.

Find a correct algorithm to do that part.

Implement the algorithm.

That's coding.

Lot's of languages and tools have been developed for coding.

Programmers are good at coding.

They're not so good at �nding correct algorithms.

3

How to Write a Concurrent Program

Figure out what part of what the program does involves

concurrency.

Find a correct algorithm to do that part.

Implement the algorithm.

That's coding.

Lot's of languages and tools have been developed for coding.

Programmers are good at coding.

They're not so good at �nding correct algorithms.

3

How to Write a Concurrent Program

Figure out what part of what the program does involves

concurrency.

Find a correct algorithm to do that part.

Implement the algorithm.

That's coding.

Lot's of languages and tools have been developed for coding.

Programmers are good at coding.

They're not so good at �nding correct algorithms.

3

How to Write a Concurrent Program

Figure out what part of what the program does involves

concurrency.

Find a correct algorithm to do that part.

Implement the algorithm.

That's coding.

Lot's of languages and tools have been developed for coding.

Programmers are good at coding.

They're not so good at �nding correct algorithms.

3

How to Write a Concurrent Program

Figure out what part of what the program does involves

concurrency.

Find a correct algorithm to do that part.

Implement the algorithm.

3

Abstraction

Something is usually called an algorithm only if

it can be useful in many applications.

The algorithm that describes how concurrency is implemented

in a program is often useful only for that program.

I therefore call it an abstract view, or an abstract program, or

simply an abstraction.

4

Abstraction

Something is usually called an algorithm only if

it can be useful in many applications.

The algorithm that describes how concurrency is implemented

in a program is often useful only for that program.

I therefore call it an abstract view, or an abstract program, or

simply an abstraction.

4

Abstraction

Something is usually called an algorithm only if

it can be useful in many applications.

The algorithm that describes how concurrency is implemented

in a program is often useful only for that program.

I therefore call it an abstract view, or an abstract program, or

simply an abstraction.

4

Abstraction

Something is usually called an algorithm only if

it can be useful in many applications.

The algorithm that describes how concurrency is implemented

in a program is often useful only for that program.

I therefore call it an abstract view, or an abstract program, or

simply an abstraction.

4

How to Write a Concurrent Program

Find an abstract view of the program that describes

how it handles concurrency.

Programmers are taught how to code, not how to abstract.

It involves a new kind of thinking.

Programmers should learn how to do it.

5

How to Write a Concurrent Program

Find an abstract view of the program that describes

how it handles concurrency.

Programmers are taught how to code, not how to abstract.

It involves a new kind of thinking.

Programmers should learn how to do it.

5

How to Write a Concurrent Program

Find an abstract view of the program that describes

how it handles concurrency.

A higher-level abstraction than the code.

Programmers are taught how to code, not how to abstract.

It involves a new kind of thinking.

Programmers should learn how to do it.

5

How to Write a Concurrent Program

Find an abstract view of the program that describes

how it handles concurrency.

Programmers are taught how to code, not how to abstract.

It involves a new kind of thinking.

Programmers should learn how to do it.

5

How to Write a Concurrent Program

Find an abstract view of the program that describes

how it handles concurrency.

Programmers are taught how to code, not how to abstract.

It involves a new kind of thinking.

Programmers should learn how to do it.

5

How to Write a Concurrent Program

Find an abstract view of the program that describes

how it handles concurrency.

Programmers are taught how to code, not how to abstract.

It involves a new kind of thinking.

Programmers should learn how to do it.

5

How to Write a Concurrent Program

Find an abstract view of the program that describes

how it handles concurrency.

Programmers are taught how to code, not how to abstract.

It involves a new kind of thinking.

Thinking before you code.

Thinking at a higher level than code

Programmers should learn how to do it.

5

How to Write a Concurrent Program

Find an abstract view of the program that describes

how it handles concurrency.

Programmers are taught how to code, not how to abstract.

It involves a new kind of thinking.

Thinking before you code.

Thinking at a higher level than code

Programmers should learn how to do it.

5

How to Write a Concurrent Program

Find an abstract view of the program that describes

how it handles concurrency.

Programmers are taught how to code, not how to abstract.

It involves a new kind of thinking.

Programmers should learn how to do it.

5

How to Write a Concurrent Program

Find an abstract view of the program that describes

how it handles concurrency.

Programmers are taught how to code, not how to abstract.

It involves a new kind of thinking.

Programmers should learn how to do it.

5

How to Write a Concurrent Program

Find an abstract view of the program that describes

how it handles concurrency.

Programmers are taught how to code, not how to abstract.

It involves a new kind of thinking.

Programmers should learn how to do it for all programs.

5

What's a Program?

Any piece of code that requires thinking before coding.

Any piece of code to be used by someone who doesn't

want to read the code.

5

What's a Program?

Any piece of code that requires thinking before coding.

Any piece of code to be used by someone who doesn't

want to read the code.

5

What's a Program?

Any piece of code that requires thinking before coding.

Perhaps a complete program

Any piece of code to be used by someone who doesn't

want to read the code.

5

What's a Program?

Any piece of code that requires thinking before coding.

Perhaps a complete program or a method

Any piece of code to be used by someone who doesn't

want to read the code.

5

What's a Program?

Any piece of code that requires thinking before coding.

Perhaps a complete program or a method or a complicated loop.

Any piece of code to be used by someone who doesn't

want to read the code.

5

What's a Program?

Any piece of code that requires thinking before coding.

Any piece of code to be used by someone who doesn't

want to read the code.

5

What's a Program?

Any piece of code that requires thinking before coding.

Any piece of code to be used by someone who doesn't

want to read the code.

5

How to Write an Abstraction

Programs are written for many purposes.

No method is best for all programs.

For most programs, you should write two things:

What the program does.

How the program does it.

5

How to Write an Abstraction

Programs are written for many purposes.

No method is best for all programs.

For most programs, you should write two things:

What the program does.

How the program does it.

5

How to Write an Abstraction

Programs are written for many purposes.

No method is best for all programs.

For most programs, you should write two things:

What the program does.

How the program does it.

5

How to Write an Abstraction

Programs are written for many purposes.

No method is best for all programs.

For most programs, you should write two things:

What the program does.

How the program does it.

5

How to Write an Abstraction

Programs are written for many purposes.

No method is best for all programs.

For most programs, you should write two things:

What the program does.

How the program does it.

5

How to Write an Abstraction

Programs are written for many purposes.

No method is best for all programs.

For most programs, you should write two things:

What the program does.

How the program does it.

5

What language should we use?What language should we use?

Don't get hung up on languages.

If we want to build a tool to check that the how

implies the what, then we need a precise language.

Needed to ensure that a concurrent program does what it should.

Not needed for most programs.

6

What language should we use?

Don't get hung up on languages.

If we want to build a tool to check that the how

implies the what, then we need a precise language.

Needed to ensure that a concurrent program does what it should.

Not needed for most programs.

6

What language should we use?

Don't get hung up on languages.

If we want to build a tool to check that the how

implies the what, then we need a precise language.

Needed to ensure that a concurrent program does what it should.

Not needed for most programs.

6

What language should we use?

Don't get hung up on languages.

If we want to build a tool to check that the how

implies the what, then we need a precise language.

Needed to ensure that a concurrent program does what it should.

Not needed for most programs.

6

What language should we use?

Don't get hung up on languages.

If we want to build a tool to check that the how

implies the what, then we need a precise language.

Needed to ensure that a concurrent program does what it should.

Not needed for most programs.

6

What language should we use?

Don't get hung up on languages.

If we want to build a tool to check that the how

implies the what, then we need a precise language.

Needed to ensure that a concurrent program does what it should.

I designed TLA+ for that.

Not needed for most programs.

6

What language should we use?

Don't get hung up on languages.

If we want to build a tool to check that the how

implies the what, then we need a precise language.

Needed to ensure that a concurrent program does what it should.

Not needed for most programs.

6

A Trivial Example

Write a function to compute the largest element in an

array of 32-bit integers.

Too simple to require much thinking before coding.

If I were really compulsive, I might write:

What: Return the largest element in an integer array A.

How: Examine A[0], A[1], . . . in turn, letting x be

the largest value found, and return x .

7

A Trivial Example

Write a function to compute the largest element in an

array of 32-bit integers.

Too simple to require much thinking before coding.

If I were really compulsive, I might write:

What: Return the largest element in an integer array A.

How: Examine A[0], A[1], . . . in turn, letting x be

the largest value found, and return x .

7

A Trivial Example

Write a function to compute the largest element in an

array of 32-bit integers.

Too simple to require much thinking before coding.

If I were really compulsive, I might write:

What: Return the largest element in an integer array A.

How: Examine A[0], A[1], . . . in turn, letting x be

the largest value found, and return x .

7

A Trivial Example

Write a function to compute the largest element in an

array of 32-bit integers.

Too simple to require much thinking before coding.

If I were really compulsive, I might write:

What: Return the largest element in an integer array A.

How: Examine A[0], A[1], . . . in turn, letting x be

the largest value found, and return x .

7

A Trivial Example

Write a function to compute the largest element in an

array of 32-bit integers.

Too simple to require much thinking before coding.

If I were really compulsive, I might write:

What: Return the largest element in an integer array A.

How: Examine A[0], A[1], . . . in turn, letting x be

the largest value found, and return x .

7

A Trivial Example

Write a function to compute the largest element in an

array of 32-bit integers.

Too simple to require much thinking before coding.

If I were really compulsive, I might write:

What: Return the largest element in an integer array A.

How: Examine A[0], A[1], . . . in turn, letting x be

the largest value found, and return x .

7

Here's the code, written in Rust

fn ArrayMax(A: &[i32]) -> i32 {

let mut x = A[0];

let mut i = 1;

while i < A.len() {

if A[i] > x {

x = A[i];}

i += 1; }

x }

Raise your hand if you see the bug.

It's not a coding bug. It's a bug in the What.

7

Here's the code, written in Rust (which I don't know)

fn ArrayMax(A: &[i32]) -> i32 {

let mut x = A[0];

let mut i = 1;

while i < A.len() {

if A[i] > x {

x = A[i];}

i += 1; }

x }

Raise your hand if you see the bug.

It's not a coding bug. It's a bug in the What.

7

Here's the code, written in Rust

fn ArrayMax(A: &[i32]) -> i32 {

let mut x = A[0];

let mut i = 1;

while i < A.len() {

if A[i] > x {

x = A[i];}

i += 1; }

x }

Raise your hand if you see the bug.

It's not a coding bug. It's a bug in the What.

7

Here's the code, written in Rust

fn ArrayMax(A: &[i32]) -> i32 {

let mut x = A[0];

let mut i = 1;

while i < A.len() {

if A[i] > x {

x = A[i];}

i += 1; }

x }

Raise your hand if you see the bug.

It's not a coding bug. It's a bug in the What.

7

Here's the code, written in Rust

fn ArrayMax(A: &[i32]) -> i32 {

let mut x = A[0];

let mut i = 1;

while i < A.len() {

if A[i] > x {

x = A[i];}

i += 1; }

x }

Raise your hand if you see the bug.

It's not a coding bug. It's a bug in the What.

7

What: Return the largest element in an integer array A.,

or an error value if A has no element.

If A has no element, then there is no largest one.

There's an obvious �x to the What and to the How :

fn ArrayMax(A: &[i32]) -> Result<i32, &'static str> {

if A.is_empty() {

return Err("EmptyArray"); }

let mut x = A[0];

let mut i = 1;

while i < A.len() {

if A[i] > x {

x = A[i];}

i += 1; }

Ok(x) }

8

What: Return the largest element in an integer array A.,

or an error value if A has no element.

If A has no element, then there is no largest one.

There's an obvious �x to the What and to the How :

fn ArrayMax(A: &[i32]) -> Result<i32, &'static str> {

if A.is_empty() {

return Err("EmptyArray"); }

let mut x = A[0];

let mut i = 1;

while i < A.len() {

if A[i] > x {

x = A[i];}

i += 1; }

Ok(x) }

8

What: Return the largest element in an integer array A.,

or an error value if A has no element.

If A has no element, then there is no largest one.

There's an obvious �x to the What and to the How :

fn ArrayMax(A: &[i32]) -> Result<i32, &'static str> {

if A.is_empty() {

return Err("EmptyArray"); }

let mut x = A[0];

let mut i = 1;

while i < A.len() {

if A[i] > x {

x = A[i];}

i += 1; }

Ok(x) }

8

What: Return the largest element in an integer array A,

or an error value if A has no element.

If A has no element, then there is no largest one.

There's an obvious �x to the What and to the How :

fn ArrayMax(A: &[i32]) -> Result<i32, &'static str> {

if A.is_empty() {

return Err("EmptyArray"); }

let mut x = A[0];

let mut i = 1;

while i < A.len() {

if A[i] > x {

x = A[i];}

i += 1; }

Ok(x) }

8

What: Return the largest element in an integer array A,

or an error value if A has no element.

If A has no element, then there is no largest one.

There's an obvious �x to the What and to the How :

fn ArrayMax(A: &[i32]) -> Result<i32, &'static str> {

if A.is_empty() {

return Err("EmptyArray"); }

let mut x = A[0];

let mut i = 1;

while i < A.len() {

if A[i] > x {

x = A[i];}

i += 1; }

Ok(x) }

8

What: Return the largest element in an integer array A,

or an error value if A has no element.

If A has no element, then there is no largest one.

There's an obvious �x to the What and to the How :

fn ArrayMax(A: &[i32]) -> Result<i32, &'static str> {

if A.is_empty() {

return Err("EmptyArray"); }

let mut x = A[0];

let mut i = 1;

while i < A.len() {

if A[i] > x {

x = A[i];}

i += 1; }

Ok(x) }

8

Abstraction

Let's now see how abstraction removes coding details and helps us

understand why the program does the right thing.

Remember, we wouldn't really do this on such a tiny example.

But it will illustrate how abstraction works.

9

Abstraction

Let's now see how abstraction removes coding details and helps us

understand why the program does the right thing.

Remember, we wouldn't really do this on such a tiny example.

But it will illustrate how abstraction works.

9

Abstraction

Let's now see how abstraction removes coding details and helps us

understand why the program does the right thing.

Remember, we wouldn't really do this on such a tiny example.

But it will illustrate how abstraction works.

9

Abstraction

Let's now see how abstraction removes coding details and helps us

understand why the program does the right thing.

Remember, we wouldn't really do this on such a tiny example.

But it will illustrate how abstraction works.

9

Abstracting the What

What: Return the largest element in an integer array A

or an error value if A has no element.

10

Abstracting the What

What: Return the largest element in an integer array A

or an error value if A has no element.

The function call/return is a coding detail.

We're interested in how the largest element of A is found.

10

Abstracting the What

What: Return the largest element in an integer array A

or an error value if A has no element.

The function call/return is a coding detail.

We're interested in how the largest element of A is found.

10

Abstracting the What

What: Set x to the largest element in an integer array A

or an error value if A has no element.

The function call/return is a coding detail.

We're interested in how the largest element of A is found.

10

Abstracting the What

What: Set x to the largest element in an integer array A

or an error value if A has no element.

Why just integers?

10

Abstracting the What

What: Set x to the largest element in an array A of numbers

or an error value if A has no element.

Why just integers?

10

Abstracting the What

What: Set x to the largest element in an array A of numbers

or an error value if A has no element.

Why an array?

I assume we're interested in the elements, not how they're arranged.

It's a multiset, not a set, because it can contain multiple copies of

the same element.

10

Abstracting the What

What: Set x to the largest element in an array A of numbers

or an error value if A has no element.

Why an array?

I assume we're interested in the elements, not how they're arranged.

It's a multiset, not a set, because it can contain multiple copies of

the same element.

10

Abstracting the What

What: Set x to the largest element in a multiset A of numbers

or an error value if A has no element.

Why an array?

I assume we're interested in the elements, not how they're arranged.

It's a multiset, not a set, because it can contain multiple copies of

the same element.

10

Abstracting the What

What: Set x to the largest element in a multiset A of numbers

or an error value if A has no element.

Why an array?

I assume we're interested in the elements, not how they're arranged.

It's a multiset, not a set, because it can contain multiple copies of

the same element.

10

A

What: Set x to the largest element in a multiset A of numbers

or an error value if A has no element.

I don't like this part because it complicates the code.

Can we �nd a di�erent What that's just as good

but has a simpler implementation?

10

A

What: Set x to the largest element in a multiset A of numbers

or an error value if A has no element.

I don't like this part because it complicates the code.

Can we �nd a di�erent What that's just as good

but has a simpler implementation?

10

A

What: Set x to the largest element in a multiset A of numbers

or an error value if A has no element.

I don't like this part because it complicates the code.

Can we �nd a di�erent What that's just as good

but has a simpler implementation?

10

Of course this is silly for such a simple example.

But when I wrote a program, often I would:

� Decide what I wanted the program to do.

� Realize coding it would be a lot of work.

� Figure out what I really needed it to do.

The result was a What that might not have everything I wanted,

but had everything I needed.

This took time, but it saved much more time writing the code.

11

Of course this is silly for such a simple example.

The complication is about two lines of code.

But when I wrote a program, often I would:

� Decide what I wanted the program to do.

� Realize coding it would be a lot of work.

� Figure out what I really needed it to do.

The result was a What that might not have everything I wanted,

but had everything I needed.

This took time, but it saved much more time writing the code.

11

Of course this is silly for such a simple example.

But when I wrote a program, often I would:

� Decide what I wanted the program to do.

� Realize coding it would be a lot of work.

� Figure out what I really needed it to do.

The result was a What that might not have everything I wanted,

but had everything I needed.

This took time, but it saved much more time writing the code.

11

Of course this is silly for such a simple example.

But when I wrote a program, often I would:

� Decide what I wanted the program to do.

� Realize coding it would be a lot of work.

� Figure out what I really needed it to do.

The result was a What that might not have everything I wanted,

but had everything I needed.

This took time, but it saved much more time writing the code.

11

Of course this is silly for such a simple example.

But when I wrote a program, often I would:

� Decide what I wanted the program to do.

� Realize coding it would be a lot of work.

� Figure out what I really needed it to do.

The result was a What that might not have everything I wanted,

but had everything I needed.

This took time, but it saved much more time writing the code.

11

Of course this is silly for such a simple example.

But when I wrote a program, often I would:

� Decide what I wanted the program to do.

� Realize coding it would be a lot of work.

� Figure out what I really needed it to do.

The result was a What that might not have everything I wanted,

but had everything I needed.

This took time, but it saved much more time writing the code.

11

Of course this is silly for such a simple example.

But when I wrote a program, often I would:

� Decide what I wanted the program to do.

� Realize coding it would be a lot of work.

� Figure out what I really needed it to do.

The result was a What that might not have everything I wanted,

but had everything I needed.

This took time, but it saved much more time writing the code.

11

Of course this is silly for such a simple example.

But when I wrote a program, often I would:

� Decide what I wanted the program to do.

� Realize coding it would be a lot of work.

� Figure out what I really needed it to do.

The result was a What that might not have everything I wanted,

but had everything I needed.

This took time, but it saved much more time writing the code.

11

Of course this is silly for such a simple example.

But when I wrote a program, often I would:

� Decide what I wanted the program to do.

� Realize coding it would be a lot of work.

� Figure out what I really needed it to do.

The result was a What that might not have everything I wanted,

but had everything I needed.

This took time, but it saved much more time writing the code.

11

Of course this is silly for such a simple example.

But when I wrote a program, often I would:

� Decide what I wanted the program to do.

� Realize coding it would be a lot of work.

� Figure out what I really needed it to do.

The result was a What that might not have everything I wanted,

but had everything I needed.

This took time, but it saved much more time writing the code.

11

What: Set x to the largest element in a multiset A of numbers
Set x to the smallest number � all elements of A

or an error value if A has no element.

We want to eliminate this, which requires modifying this.

12

What: Set x to the largest element in a multiset A of numbers
Set x to the smallest number � all elements of A

or an error value if A has no element.

We want to eliminate this, which requires modifying this.

12

What: Set x to the largest element in a multiset A of numbers
Set x to the smallest number � all elements of A

A

We want to eliminate this, which requires modifying this.

12

What: Set x to the largest element in a multiset A of numbers
Set x to the smallest number � all elements of A

A

We want to eliminate this, which requires modifying this.

How to do that is not obvious to most programmers.

It's obvious to me because I was educated as a mathematician,

so I know what the largest element of an empty set should equal.

12

What: Set x to the largest element in a multiset A of numbers
Set x to the smallest number � all elements of A

A

We want to eliminate this, which requires modifying this.

How to do that is not obvious to most programmers.

It's obvious to me because I was educated as a mathematician,

so I know what the largest element of an empty set should equal.

12

What: Set x to the largest element in a multiset A of numbers.
Set x to the smallest number � all elements of A

A

We want to eliminate this, which requires modifying this.

How to do that is not obvious to most programmers.

It's obvious to me because I was educated as a mathematician,

so I know what the largest element of an empty set should equal.

12

What: Set x to the largest element in a multiset A of numbers.
Set x to the smallest number � all elements of A.

We want to eliminate this, which requires modifying this.

Here's how.

The two are equivalent if A is not empty.

But what if A is empty?

12

What: Set x to the largest element in a multiset A of numbers.
Set x to the smallest number � all elements of A.

We want to eliminate this, which requires modifying this.

Here's how.

The two are equivalent if A is not empty.

But what if A is empty?

12

What: Set x to the largest element in a multiset A of numbers.
Set x to the smallest number � all elements of A.

We want to eliminate this, which requires modifying this.

Here's how.

The two are equivalent if A is not empty.

But what if A is empty?

12

What: Set x to the smallest number � all elements of A.

If A is empty, then every number is � all elements of A.

13

What: Set x to the smallest number � all elements of A.

If A is empty, then every number is � all elements of A.

13

What: Set x to the smallest number � all elements of A.

If A is empty, then every number is � all elements of A.

Why is this true?

13

What: Set x to the smallest number � all elements of A.

If A is empty, then every number is � all elements of A.

I'm richer than everyone living in Bodie, CA.

I'm poorer than everyone living in Bodie, CA.

No one lives in Bodie, CA.

This is simple (mathematical) logic.

To think rationally, you have to understand simple logic.

Programmers should think rationally.

13

What: Set x to the smallest number � all elements of A.

If A is empty, then every number is � all elements of A.

I'm richer than everyone living in Bodie, CA.

I'm poorer than everyone living in Bodie, CA.

No one lives in Bodie, CA.

This is simple (mathematical) logic.

To think rationally, you have to understand simple logic.

Programmers should think rationally.

13

What: Set x to the smallest number � all elements of A.

If A is empty, then every number is � all elements of A.

I'm richer than everyone living in Bodie, CA.

I'm poorer than everyone living in Bodie, CA.

No one lives in Bodie, CA.

This is simple (mathematical) logic.

To think rationally, you have to understand simple logic.

Programmers should think rationally.

13

What: Set x to the smallest number � all elements of A.

If A is empty, then every number is � all elements of A.

I'm richer than everyone living in Bodie, CA.

I'm poorer than everyone living in Bodie, CA.

No one lives in Bodie, CA.

This is simple (mathematical) logic.

To think rationally, you have to understand simple logic.

Programmers should think rationally.

13

What: Set x to the smallest number � all elements of A.

If A is empty, then every number is � all elements of A.

I'm richer than everyone living in Bodie, CA.

I'm poorer than everyone living in Bodie, CA.

No one lives in Bodie, CA.

This is simple (mathematical) logic.

To think rationally, you have to understand simple logic.

Programmers should think rationally.

13

What: Set x to the smallest number � all elements of A.

If A is empty, then every number is � all elements of A.

I'm richer than everyone living in Bodie, CA.

I'm poorer than everyone living in Bodie, CA.

No one lives in Bodie, CA.

This is simple (mathematical) logic.

To think rationally, you have to understand simple logic.

Programmers should think rationally.

13

What: Set x to the smallest number � all elements of A.

If A is empty, then every number is � all elements of A.

13

What: Set x to the smallest number � all elements of A.

If A is empty, then every number is � all elements of A.

If A is empty, then x is set to the smallest number.

Mathematicians (sometimes) de�ne �1 to be the smallest number.

So this What implies that if A is empty, then x is set to

the number �1.

13

What: Set x to the smallest number � all elements of A.

If A is empty, then every number is � all elements of A.

If A is empty, then x is set to the smallest number.

Mathematicians (sometimes) de�ne �1 to be the smallest number.

So this What implies that if A is empty, then x is set to

the number �1.

13

What: Set x to the smallest number � all elements of A.

If A is empty, then every number is � all elements of A.

If A is empty, then x is set to the smallest number.

Mathematicians (sometimes) de�ne �1 to be the smallest number.

So this What implies that if A is empty, then x is set to

the number �1.

13

The How

let B = A and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

I used an ad hoc combination of programming-language notation

and English

14

The How

let B = A and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

I used an ad hoc combination of programming-language notation

and English

14

The How

let B = A and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

I used an ad hoc combination of programming-language notation

and English

14

The How

let B = A and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

I used an ad hoc combination of programming-language notation

and English

14

The How

let B = A and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

This is nondeterministic; there are many possible executions.

I used an ad hoc combination of programming-language notation

and English

14

The How

let B = A and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

I used an ad hoc combination of programming-language notation

and English

14

The How

let B = A and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

I used an ad hoc combination of programming-language notation

and English

14

The How

let B = A and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

I used an ad hoc combination of programming-language notation

and English

14

The How

let B = A and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

I used an ad hoc combination of programming-language notation

and English

14

The How

let B = A and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

I used an ad hoc combination of programming-language notation

and English

14

The How

let B = A and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

I used an ad hoc combination of programming-language notation

and English

14

A

let B = A and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

How can we convince someone that this implements the What?

I believe most programmers could only show that some executions

compute the right value of x .

But we must show every execution computes the right value of x .

Seeing how to do this requires thinking about executions.

15

A

let B = A and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

How can we convince someone that this implements the What?

I believe most programmers could only show that some executions

compute the right value of x .

But we must show every execution computes the right value of x .

Seeing how to do this requires thinking about executions.

15

A

let B = A and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

How can we convince someone that this implements the What?

I believe most programmers could only show that some executions

compute the right value of x .

But we must show every execution computes the right value of x .

Seeing how to do this requires thinking about executions.

15

A

let B = A and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

How can we convince someone that this implements the What?

I believe most programmers could only show that some executions

compute the right value of x .

But we must show every execution computes the right value of x .

Seeing how to do this requires thinking about executions.

15

A

let B = A and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

How can we convince someone that this implements the What?

I believe most programmers could only show that some executions

compute the right value of x .

But we must show every execution computes the right value of x .

Seeing how to do this requires thinking about executions.

15

What is an Execution?

An obvious answer:

A sequence of steps.

Each step is the execution of a part of the code.

A usually better answer:

A sequence of states.

A step is a pair of consecutive states that describes
execution of a part of the code.

To see how we describe an execution this way,

we look at one possible execution.

We suppose A has two copies of 2 and one copy of 3.

Let's write this multiset as ff2; 2; 3gg or ff2; 3; 2gg or ff3; 2; 2gg.

I'll write it this way 16

What is an Execution?

An obvious answer:

A sequence of steps.

Each step is the execution of a part of the code.

A usually better answer:

A sequence of states.

A step is a pair of consecutive states that describes
execution of a part of the code.

To see how we describe an execution this way,

we look at one possible execution.

We suppose A has two copies of 2 and one copy of 3.

Let's write this multiset as ff2; 2; 3gg or ff2; 3; 2gg or ff3; 2; 2gg.

I'll write it this way 16

What is an Execution?

An obvious answer:

A sequence of steps.

Each step is the execution of a part of the code.

A usually better answer:

A sequence of states.

A step is a pair of consecutive states that describes
execution of a part of the code.

To see how we describe an execution this way,

we look at one possible execution.

We suppose A has two copies of 2 and one copy of 3.

Let's write this multiset as ff2; 2; 3gg or ff2; 3; 2gg or ff3; 2; 2gg.

I'll write it this way 16

What is an Execution?

An obvious answer:

A sequence of steps.

Each step is the execution of a part of the code.

A usually better answer:

A sequence of states.

A step is a pair of consecutive states that describes
execution of a part of the code.

To see how we describe an execution this way,

we look at one possible execution.

We suppose A has two copies of 2 and one copy of 3.

Let's write this multiset as ff2; 2; 3gg or ff2; 3; 2gg or ff3; 2; 2gg.

I'll write it this way 16

What is an Execution?

A usually better answer:

A sequence of states.

A step is a pair of consecutive states that describes
execution of a part of the code.

To see how we describe an execution this way,

we look at one possible execution.

We suppose A has two copies of 2 and one copy of 3.

Let's write this multiset as ff2; 2; 3gg or ff2; 3; 2gg or ff3; 2; 2gg.

I'll write it this way

16

What is an Execution?

A usually better answer:

No rule applies to all programs. A sequence of states.

A step is a pair of consecutive states that describes
execution of a part of the code.

To see how we describe an execution this way,

we look at one possible execution.

We suppose A has two copies of 2 and one copy of 3.

Let's write this multiset as ff2; 2; 3gg or ff2; 3; 2gg or ff3; 2; 2gg.

I'll write it this way

16

What is an Execution?

A usually better answer:

A sequence of states.

A step is a pair of consecutive states that describes
execution of a part of the code.

To see how we describe an execution this way,

we look at one possible execution.

We suppose A has two copies of 2 and one copy of 3.

Let's write this multiset as ff2; 2; 3gg or ff2; 3; 2gg or ff3; 2; 2gg.

I'll write it this way

16

What is an Execution?

A usually better answer:

A sequence of states.

A step is a pair of consecutive states that describes
execution of a part of the code.

To see how we describe an execution this way,

we look at one possible execution.

We suppose A has two copies of 2 and one copy of 3.

Let's write this multiset as ff2; 2; 3gg or ff2; 3; 2gg or ff3; 2; 2gg.

I'll write it this way

16

What is an Execution?

A usually better answer:

A sequence of states.

A step is a pair of consecutive states that describes
execution of a part of the code.

To see how we describe an execution this way,

we look at one possible execution.

We suppose A has two copies of 2 and one copy of 3.

Let's write this multiset as ff2; 2; 3gg or ff2; 3; 2gg or ff3; 2; 2gg.

I'll write it this way

16

What is an Execution?

A usually better answer:

A sequence of states.

A step is a pair of consecutive states that describes
execution of a part of the code.

To see how we describe an execution this way,

we look at one possible execution.

We suppose A has two copies of 2 and one copy of 3.

Let's write this multiset as ff2; 2; 3gg or ff2; 3; 2gg or ff3; 2; 2gg.

I'll write it this way

16

What is an Execution?

A usually better answer:

A sequence of states.

A step is a pair of consecutive states that describes
execution of a part of the code.

To see how we describe an execution this way,

we look at one possible execution.

We suppose A has two copies of 2 and one copy of 3.

Let's write this multiset as ff2; 2; 3gg or ff2; 3; 2gg or ff3; 2; 2gg.

I'll write it this way

16

What is an Execution?

A usually better answer:

A sequence of states.

A step is a pair of consecutive states that describes
execution of a part of the code.

To see how we describe an execution this way,

we look at one possible execution.

We suppose A has two copies of 2 and one copy of 3.

Let's write this multiset as ff2; 2; 3gg or ff2; 3; 2gg or ff3; 2; 2gg.

I'll write it this way

16

What is an Execution?

A usually better answer:

A sequence of states.

A step is a pair of consecutive states that describes
execution of a part of the code.

To see how we describe an execution this way,

we look at one possible execution.

We suppose A has two copies of 2 and one copy of 3.

Let's write this multiset as ff2; 2; 3gg or ff2; 3; 2gg or ff3; 2; 2gg.

I'll write it this way

16

let B = ff2; 3; 2gg and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

�
B =?

x =?

�

17

let B = ff2; 3; 2gg and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

�
B =?

x =?

�

A state will describe the values of B and x and perhaps other stu�.

17

let B = ff2; 3; 2gg and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

�
B =?

x =?

�

A state will describe the values of B and x and perhaps other stu�.

I'll just show the values of B and x .

17

let B = ff2; 3; 2gg and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

�
B =?

x =?

�

What are their initial values?

An obvious answer: some standard initial value we'll call �?� .

17

let B = ff2; 3; 2gg and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

�
B =?

x =?

�

What are their initial values?

An obvious answer: some standard initial value we'll call �?� .

17

let B = ff2; 3; 2gg and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

�
B =?

x =?

�

We �rst execute this statement.

The obvious representation is as these two steps.

17

let B = ff2; 3; 2gg and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

�
B =?

x =?

�

We �rst execute this statement.

The obvious representation is as these two steps.

17

let B = ff2; 3; 2gg and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

�
B =?

x =?

�
!

�
B = ff2; 3; 2gg

x =?

�

We �rst execute this statement.

The obvious representation is as these two steps.

17

let B = ff2; 3; 2gg and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

�
B =?

x =?

�
!

�
B = ff2; 3; 2gg

x =?

�
!

�
B = ff2; 3; 2gg

x =�1

�

We �rst execute this statement.

The obvious representation is as these two steps.

17

let B = ff2; 3; 2gg and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

�
B =?

x =?

�
!

�
B = ff2; 3; 2gg

x =?

�
!

�
B = ff2; 3; 2gg

x =�1

�

To understand this abstract program, we want an execution

to be as simple as possible.

This means making an execution have as few steps as possible.

17

let B = ff2; 3; 2gg and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

�
B =?

x =?

�
!

�
B = ff2; 3; 2gg

x =?

�
!

�
B = ff2; 3; 2gg

x =�1

�

To understand this abstract program, we want an execution

to be as simple as possible.

This means making an execution have as few steps as possible.

17

let B = ff2; 3; 2gg and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

�
B =?

x =?

�
!

�
B = ff2; 3; 2gg

x =?

�
!

�
B = ff2; 3; 2gg

x =�1

�

To understand this abstract program, we want an execution

to be as simple as possible.

This means making an execution have as few steps as possible.

17

let B = ff2; 3; 2gg and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

�
B =?

x =?

�
!

�
B = ff2; 3; 2gg

x =?

�
!

�
B = ff2; 3; 2gg

x =�1

�

These two steps are of no interest.

So we let this statement de�ne the initial state.

17

let B = ff2; 3; 2gg and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

�
B = ff2; 3; 2gg

x = �1

�

These two steps are of no interest.

So we let this statement de�ne the initial state.

17

initially B = ff2; 3; 2gg and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

�
B = ff2; 3; 2gg

x = �1

�

These two steps are of no interest.

So we let this statement de�ne the initial state.

And we can rewrite it like this.

17

initially B = ff2; 3; 2gg and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

�
B = ff2; 3; 2gg

x =�1

�

What's the next state?

Code doesn't say what constitutes a step.

Is executing this statement one step?

Or are choosing the element of B and setting i separate steps?

17

initially B = ff2; 3; 2gg and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

�
B = ff2; 3; 2gg

x =�1

�

What's the next state?

Code doesn't say what constitutes a step.

Is executing this statement one step?

Or are choosing the element of B and setting i separate steps?

17

initially B = ff2; 3; 2gg and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

�
B = ff2; 3; 2gg

x =�1

�

What's the next state?

Code doesn't say what constitutes a step.

Is executing this statement one step?

Or are choosing the element of B and setting i separate steps?

17

initially B = ff2; 3; 2gg and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

�
B = ff2; 3; 2gg

x =�1

�

What's the next state?

Code doesn't say what constitutes a step.

Is executing this statement one step?

Or are choosing the element of B and setting i separate steps?

17

initially B = ff2; 3; 2gg and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

�
B = ff2; 3; 2gg

x =�1

�

What's the next state?

Code doesn't say what constitutes a step.

Is executing this statement one step?

Or are choosing the element of B and setting i separate steps?

17

initially B = ff2; 3; 2gg and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

�
B = ff2; 3; 2gg

x =�1

�

What's the next state?

Code doesn't say what constitutes a step.

Is executing this statement one step?

Or are choosing the element of B and setting i separate steps?

17

initially B = ff2; 3; 2gg and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

�
B = ff2; 3; 2gg

x =�1

�

What's the next state?

Code doesn't say what constitutes a step.

Is executing this statement one step?

Or are choosing the element of B and setting i separate steps?

17

initially B = ff2; 3; 2gg and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

�
B = ff2; 3; 2gg

x =�1

�

To keep the abstraction simple, I will make

evaluating the while loop's test and evaluating its body

one step.

I won't bother de�ning a way to make the pseudocode say

that's all one step.

17

initially B = ff2; 3; 2gg and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

�
B = ff2; 3; 2gg

x =�1

�

To keep the abstraction simple, I will make

evaluating the while loop's test and evaluating its body

one step.

I won't bother de�ning a way to make the pseudocode say

that's all one step.

17

initially B = ff2; 3; 2gg and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

�
B = ff2; 3; 2gg

x =�1

�

To keep the abstraction simple, I will make

evaluating the while loop's test and evaluating its body

one step.

I won't bother de�ning a way to make the pseudocode say

that's all one step.

17

initially B = ff2; 3; 2gg and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

�
B = ff2; 3; 2gg

x =�1

�

To keep the abstraction simple, I will make

evaluating the while loop's test and evaluating its body

one step.

I won't bother de�ning a way to make the pseudocode say

that's all one step.

17

initially B = ff2; 3; 2gg and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

�
B = ff2; 3; 2gg

x =�1

�

To keep the abstraction simple, I will make

evaluating the while loop's test and evaluating its body

one step.

I won't bother de�ning a way to make the pseudocode say

that's all one step.

17

initially B = ff2; 3; 2gg and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

�
B = ff2; 3; 2gg

x =�1

�

To keep the abstraction simple, I will make

evaluating the while loop's test and evaluating its body

one step.

I won't bother de�ning a way to make the pseudocode say

that's all one step.

17

initially B = ff2; 3; 2gg and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

�
B = ff2; 3; 2gg

x =�1

�

19

initially B = ff2; 3; 2gg and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

�
B = ff2; 3; 2gg

x =�1

�

Executing the next step can let i equal 2 or 3.

I will let it choose 3.

19

initially B = ff2; 3; 2gg and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

�
B = ff2; 3; 2gg

x =�1

�

Executing the next step can let i equal 2 or 3.

I will let it choose 3.

19

initially B = ff2; 3; 2gg and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

�
B = ff2; 3; 2gg

x =�1

�
!

�
B = ff2; 2gg

x = 3

�

Executing the next step can let i equal 2 or 3.

I will let it choose 3.

19

initially B = ff2; 3; 2gg and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

�
B = ff2; 3; 2gg

x =�1

�
!

�
B = ff2; 2gg

x = 3

�

The next two steps have to choose 2.

19

initially B = ff2; 3; 2gg and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

�
B = ff2; 3; 2gg

x =�1

�
!

�
B = ff2; 2gg

x = 3

�
!

�
B = ff2gg

x = 2

�

The next two steps have to choose 2.

19

initially B = ff2; 3; 2gg and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

�
B = ff2; 3; 2gg

x =�1

�
!

�
B = ff2; 2gg

x = 3

�
!

�
B = ff2gg

x = 2

�
!

�
B = ff gg

x = 2

�

The next two steps have to choose 2.

19

initially B = ff2; 3; 2gg and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

�
B = ff2; 3; 2gg

x =�1

�
!

�
B = ff2; 2gg

x = 3

�
!

�
B = ff2gg

x = 2

�
!

�
B = ff gg

x = 2

�
!

�
B = ff gg

x = 2

�

The next step �nds B empty, so it exits the loop

without changing B or x .

That's an uninteresting step.

So we declare that the execution terminates when B is empty.

19

initially B = ff2; 3; 2gg and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

�
B = ff2; 3; 2gg

x =�1

�
!

�
B = ff2; 2gg

x = 3

�
!

�
B = ff2gg

x = 2

�
!

�
B = ff gg

x = 2

�
!

�
B = ff gg

x = 2

�

The next step �nds B empty, so it exits the loop

without changing B or x .

That's an uninteresting step.

So we declare that the execution terminates when B is empty.

19

initially B = ff2; 3; 2gg and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

�
B = ff2; 3; 2gg

x =�1

�
!

�
B = ff2; 2gg

x = 3

�
!

�
B = ff2gg

x = 2

�
!

�
B = ff gg

x = 2

�

The next step �nds B empty, so it exits the loop

without changing B or x .

That's an uninteresting step.

So we declare that the execution terminates when B is empty.

19

initially B = ff2; 3; 2gg and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

�
B = ff2; 3; 2gg

x =�1

�
!

�
B = ff2; 2gg

x = 3

�
!

�
B = ff2gg

x = 2

�
!

�
B = ff gg

x = 2

�

The execution terminates when B is empty.

I don't know how to say that with code.

But don't get hung up on languages.

Understand what the executions are.

Don't worry about how they're described.

19

initially B = ff2; 3; 2gg and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

�
B = ff2; 3; 2gg

x =�1

�
!

�
B = ff2; 2gg

x = 3

�
!

�
B = ff2gg

x = 2

�
!

�
B = ff gg

x = 2

�

The execution terminates when B is empty.

I don't know how to say that with code.

But don't get hung up on languages.

Understand what the executions are.

Don't worry about how they're described.

19

initially B = ff2; 3; 2gg and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

�
B = ff2; 3; 2gg

x =�1

�
!

�
B = ff2; 2gg

x = 3

�
!

�
B = ff2gg

x = 2

�
!

�
B = ff gg

x = 2

�

The execution terminates when B is empty.

I don't know how to say that with code.

(It's easy to say in TLA+.)

But don't get hung up on languages.

Understand what the executions are.

Don't worry about how they're described.

19

initially B = ff2; 3; 2gg and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

�
B = ff2; 3; 2gg

x =�1

�
!

�
B = ff2; 2gg

x = 3

�
!

�
B = ff2gg

x = 2

�
!

�
B = ff gg

x = 2

�

The execution terminates when B is empty.

I don't know how to say that with code.

But don't get hung up on languages.

Understand what the executions are.

Don't worry about how they're described.

19

initially B = ff2; 3; 2gg and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

�
B = ff2; 3; 2gg

x =�1

�
!

�
B = ff2; 2gg

x = 3

�
!

�
B = ff2gg

x = 2

�
!

�
B = ff gg

x = 2

�

The execution terminates when B is empty.

I don't know how to say that with code.

But don't get hung up on languages.

Understand what the executions are.

Don't worry about how they're described.

19

initially B = ff2; 3; 2gg and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

�
B = ff2; 3; 2gg

x =�1

�
!

�
B = ff2; 2gg

x = 3

�
!

�
B = ff2gg

x = 2

�
!

�
B = ff gg

x = 2

�

The execution terminates when B is empty.

I don't know how to say that with code.

But don't get hung up on languages.

Understand what the executions are.

Don't worry about how they're described.

19

What's a State?

For executions to be a useful way to think about a program:

The possible next states must depend only on the current state,

not on any previous state.

We can choose states this way for abstractions that describe actual

programs because:

Programs are executed on computers.

What a computer does next depends only on its current state

not on any previous state.

19

What's a State?

For executions to be a useful way to think about a program:

The possible next states must depend only on the current state,

not on any previous state.

We can choose states this way for abstractions that describe actual

programs because:

Programs are executed on computers.

What a computer does next depends only on its current state

not on any previous state.

19

What's a State?

For executions to be a useful way to think about a program:

The possible next states must depend only on the current state,

not on any previous state.

We can choose states this way for abstractions that describe actual

programs because:

Programs are executed on computers.

What a computer does next depends only on its current state

not on any previous state.

19

What's a State?

For executions to be a useful way to think about a program:

The possible next states must depend only on the current state,

not on any previous state.

We can choose states this way for abstractions that describe actual

programs because:

Programs are executed on computers.

What a computer does next depends only on its current state

not on any previous state.

19

What's a State?

For executions to be a useful way to think about a program:

The possible next states must depend only on the current state,

not on any previous state.

We can choose states this way for abstractions that describe actual

programs because:

Programs are executed on computers.

What a computer does next depends only on its current state

not on any previous state.

19

What's a State?

For executions to be a useful way to think about a program:

The possible next states must depend only on the current state,

not on any previous state.

We can choose states this way for abstractions that describe actual

programs because:

Programs are executed on computers.

What a computer does next depends only on its current state

not on any previous state.

19

What's a State?

For executions to be a useful way to think about a program:

The possible next states must depend only on the current state,

not on any previous state.

We can choose states this way for abstractions that describe actual

programs because:

Programs are executed on computers.

What a computer does next depends only on its current state

not on any previous state.

19

What's a State?

For executions to be a useful way to think about a program:

The possible next states must depend only on the current state,

not on any previous state.

We can choose states this way for abstractions that describe actual

programs because:

Programs are executed on computers.

What a computer does next depends only on its current state

(and perhaps external inputs)

not on any previous state.

19

What's a State?

For executions to be a useful way to think about a program:

The possible next states must depend only on the current state,

not on any previous state.

We can choose states this way for abstractions that describe actual

programs because:

Programs are executed on computers.

What a computer does next depends only on its current state,

not on any previous state.

19

initially B = ff2; 3; 2gg and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

�
B = ff2; 3; 2gg

x =�1

�
!

�
B = ff2; 2gg

x = 3

�
!

�
B = ff2gg

x = 2

�
!

�
B = ff gg

x = 2

�

For our simple example:

The state has to describe only the values of B and x .

The variable i is used only to indicate how the step that ends in

the current state changes B . Its value doesn't a�ect future states.

Had I not eliminated the step representing an execution of

the while statement with B empty, the state would also have

needed to indicate whether the execution had terminated.

19

initially B = ff2; 3; 2gg and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

�
B = ff2; 3; 2gg

x =�1

�
!

�
B = ff2; 2gg

x = 3

�
!

�
B = ff2gg

x = 2

�
!

�
B = ff gg

x = 2

�

For our simple example:

The state has to describe only the values of B and x .

The variable i is used only to indicate how the step that ends in

the current state changes B . Its value doesn't a�ect future states.

Had I not eliminated the step representing an execution of

the while statement with B empty, the state would also have

needed to indicate whether the execution had terminated.

19

initially B = ff2; 3; 2gg and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

�
B = ff2; 3; 2gg

x =�1

�
!

�
B = ff2; 2gg

x = 3

�
!

�
B = ff2gg

x = 2

�
!

�
B = ff gg

x = 2

�

For our simple example:

The state has to describe only the values of B and x .

The variable i is used only to indicate how the step that ends in

the current state changes B . Its value doesn't a�ect future states.

Had I not eliminated the step representing an execution of

the while statement with B empty, the state would also have

needed to indicate whether the execution had terminated.

19

initially B = ff2; 3; 2gg and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

�
B = ff2; 3; 2gg

x =�1

�
!

�
B = ff2; 2gg

x = 3

�
!

�
B = ff2gg

x = 2

�
!

�
B = ff gg

x = 2

�

For our simple example:

The state has to describe only the values of B and x .

The variable i is used only to indicate how the step that ends in

the current state changes B . Its value doesn't a�ect future states.

Had I not eliminated the step representing an execution of

the while statement with B empty, the state would also have

needed to indicate whether the execution had terminated.

19

initially B = ff2; 3; 2gg and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

�
B = ff2; 3; 2gg

x =�1

�
!

�
B = ff2; 2gg

x = 3

�
!

�
B = ff2gg

x = 2

�
!

�
B = ff gg

x = 2

�
!

�
B = ff gg

x = 2

�

For our simple example:

The state has to describe only the values of B and x .

The variable i is used only to indicate how the step that ends in

the current state changes B . Its value doesn't a�ect future states.

Had I not eliminated the step representing an execution of

the while statement with B empty, the state would also have

needed to indicate whether the execution had terminated.

19

initially B = ff2; 3; 2gg and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

�
B = ff2; 3; 2gg

x =�1

�
!

�
B = ff2; 2gg

x = 3

�
!

�
B = ff2gg

x = 2

�
!

�
B = ff gg

x = 2

�
!

�
B = ff gg

x = 2

�

For our simple example:

The state has to describe only the values of B and x .

The variable i is used only to indicate how the step that ends in

the current state changes B . Its value doesn't a�ect future states.

Had I not eliminated the step representing an execution of

the while statement with B empty, the state would also have

needed to indicate whether the execution had terminated.

19

Why Is the Abstract Program Correct?

Why does any possible execution terminate with

x equal to the correct value?

At any point in the execution, what can happen

in the future can depend only on the current state.

Therefore, at any point in the execution, the value x can

have when it terminates depends only on the current state.

Why x can only have the correct value when it terminates

must depend on something that's true of every state.

Something true of every state of every execution is called an

invariant of the program.

20

Why Is the Abstract Program Correct?

Why does any possible execution terminate with

x equal to the correct value?

At any point in the execution, what can happen

in the future can depend only on the current state.

Therefore, at any point in the execution, the value x can

have when it terminates depends only on the current state.

Why x can only have the correct value when it terminates

must depend on something that's true of every state.

Something true of every state of every execution is called an

invariant of the program.

20

Why Is the Abstract Program Correct?

Why does any possible execution terminate with

x equal to the correct value?

At any point in the execution, what can happen

in the future can depend only on the current state.

Therefore, at any point in the execution, the value x can

have when it terminates depends only on the current state.

Why x can only have the correct value when it terminates

must depend on something that's true of every state.

Something true of every state of every execution is called an

invariant of the program.

20

Why Is the Abstract Program Correct?

Why does any possible execution terminate with

x equal to the correct value?

At any point in the execution, what can happen

in the future can depend only on the current state.

Therefore, at any point in the execution, the value x can

have when it terminates depends only on the current state.

Why x can only have the correct value when it terminates

must depend on something that's true of every state.

Something true of every state of every execution is called an

invariant of the program.

20

Why Is the Abstract Program Correct?

Why does any possible execution terminate with

x equal to the correct value?

At any point in the execution, what can happen

in the future can depend only on the current state.

Therefore, at any point in the execution, the value x can

have when it terminates depends only on the current state.

Why x can only have the correct value when it terminates

must depend on something that's true of every state.

Something true of every state of every execution is called an

invariant of the program.

20

Why Is the Abstract Program Correct?

Why does any possible execution terminate with

x equal to the correct value?

At any point in the execution, what can happen

in the future can depend only on the current state.

Therefore, at any point in the execution, the value x can

have when it terminates depends only on the current state.

Why x can only have the correct value when it terminates

must depend on something that's true of every state.

Something true of every state of every execution is called an

invariant of the program.

20

You don't understand why a program does the right thing,

unless you know the invariant that ensures it does the right thing.

Here is the invariant for our example, where max (M)

is the smallest number � every element of a multiset M :

max (ffx ;max (B)gg) = max (A)

I don't know how many programmers can �gure out

why this condition holds.

I think you should learn how, because I expect those who can't

to be among the �rst programmers replaced by AI.

22

You don't understand why a program does the right thing,

for example terminating with the right answer,

unless you know the invariant that ensures it does the right thing.

Here is the invariant for our example, where max (M)

is the smallest number � every element of a multiset M :

max (ffx ;max (B)gg) = max (A)

I don't know how many programmers can �gure out

why this condition holds.

I think you should learn how, because I expect those who can't

to be among the �rst programmers replaced by AI.

22

You don't understand why a program does the right thing,

unless you know the invariant that ensures it does the right thing.

Here is the invariant for our example, where max (M)

is the smallest number � every element of a multiset M :

max (ffx ;max (B)gg) = max (A)

I don't know how many programmers can �gure out

why this condition holds.

I think you should learn how, because I expect those who can't

to be among the �rst programmers replaced by AI.

22

Here is the invariant for our example, where max (M)

is the smallest number � every element of a multiset M :

max (ffx ;max (B)gg) = max (A)

I don't know how many programmers can �gure out

why this condition holds.

I think you should learn how, because I expect those who can't

to be among the �rst programmers replaced by AI.

22

Here is the invariant for our example, where max (M)

is the smallest number � every element of a multiset M :

max (ffx ;max (B)gg) = max (A)

I don't know how many programmers can �gure out

why this condition holds.

I think you should learn how, because I expect those who can't

to be among the �rst programmers replaced by AI.

22

Here is the invariant for our example, where max (M)

is the smallest number � every element of a multiset M :

so the program should terminate with x equal to max (A)

max (ffx ;max (B)gg) = max (A)

I don't know how many programmers can �gure out

why this condition holds.

I think you should learn how, because I expect those who can't

to be among the �rst programmers replaced by AI.

22

Here is the invariant for our example, where max (M)

is the smallest number � every element of a multiset M :

max (ffx ;max (B)gg) = max (A)

I don't know how many programmers can �gure out

why this condition holds.

I think you should learn how, because I expect those who can't

to be among the �rst programmers replaced by AI.

22

Here is the invariant for our example, where max (M)

is the smallest number � every element of a multiset M :

max (ffx ;max (B)gg) = max (A)

To show that this is an invariant, we show that it satis�es these two

conditions:

1. It is true of the initial state.

I don't know how many programmers can �gure out

why this condition holds.

I think you should learn how, because I expect those who can't

to be among the �rst programmers replaced by AI.

22

Here is the invariant for our example, where max (M)

is the smallest number � every element of a multiset M :

max (ffx ;max (B)gg) = max (A)

To show that this is an invariant, we show that it satis�es these two

conditions:

1. It is true of the initial state.

I don't know how many programmers can �gure out

why this condition holds.

I think you should learn how, because I expect those who can't

to be among the �rst programmers replaced by AI.

22

Here is the invariant for our example, where max (M)

is the smallest number � every element of a multiset M :

max (ffx ;max (B)gg) = max (A)

To show that this is an invariant, we show that it satis�es these two

conditions:

1. It is true of the initial state.

2. If it's true in any state, then it's true in the next state.

I don't know how many programmers can �gure out

why this condition holds.

I think you should learn how, because I expect those who can't

to be among the �rst programmers replaced by AI.

22

Here is the invariant for our example, where max (M)

is the smallest number � every element of a multiset M :

max (ffx ;max (B)gg) = max (A)

To show that this is an invariant, we show that it satis�es these two

conditions:

1. It is true of the initial state.

2. If it's true in any state, then it's true in the next state.

And to show that the invariant implies correctness, we show:

3. It implies x = max (A) in a terminated state.

I don't know how many programmers can �gure out

why this condition holds.

I think you should learn how, because I expect those who can't

to be among the �rst programmers replaced by AI.
22

Here is the invariant for our example, where max (M)

is the smallest number � every element of a multiset M :

max (ffx ;max (B)gg) = max (A)

1. It is true of the initial state.

I don't know how many programmers can �gure out

why this condition holds.

I think you should learn how, because I expect those who can't

to be among the �rst programmers replaced by AI.

22

Here is the invariant for our example, where max (M)

is the smallest number � every element of a multiset M :

max (ffx ;max (B)gg) = max (A)

1. It is true of the initial state.

Because B = A and x = �1,

I don't know how many programmers can �gure out

why this condition holds.

I think you should learn how, because I expect those who can't

to be among the �rst programmers replaced by AI.

22

Here is the invariant for our example, where max (M)

is the smallest number � every element of a multiset M :

max (ffx ;max (B)gg) = max (A)

1. It is true of the initial state.

Because B = A and x = �1, using max (ff�1;max (A)gg) = max (A) .

I don't know how many programmers can �gure out

why this condition holds.

I think you should learn how, because I expect those who can't

to be among the �rst programmers replaced by AI.

22

Here is the invariant for our example, where max (M)

is the smallest number � every element of a multiset M :

max (ffx ;max (B)gg) = max (A)

3. It implies x = max (A) in a terminated state.

I don't know how many programmers can �gure out

why this condition holds.

I think you should learn how, because I expect those who can't

to be among the �rst programmers replaced by AI.

22

Here is the invariant for our example, where max (M)

is the smallest number � every element of a multiset M :

max (ffx ;max (B)gg) = max (A)

3. It implies x = max (A) in a terminated state.

Because B = ff gg,

I don't know how many programmers can �gure out

why this condition holds.

I think you should learn how, because I expect those who can't

to be among the �rst programmers replaced by AI.

22

Here is the invariant for our example, where max (M)

is the smallest number � every element of a multiset M :

max (ffx ;max (B)gg) = max (A)

3. It implies x = max (A) in a terminated state.

Because B = ff gg, using max (ff gg) = �1 and max (ffx ;�1gg) = x .

I don't know how many programmers can �gure out

why this condition holds.

I think you should learn how, because I expect those who can't

to be among the �rst programmers replaced by AI.

22

Here is the invariant for our example, where max (M)

is the smallest number � every element of a multiset M :

max (ffx ;max (B)gg) = max (A)

2. If it's true in any state, then it's true in the next state.

I don't know how many programmers can �gure out

why this condition holds.

I think you should learn how, because I expect those who can't

to be among the �rst programmers replaced by AI.

22

Here is the invariant for our example, where max (M)

is the smallest number � every element of a multiset M :

max (ffx ;max (B)gg) = max (A)

2. If it's true in any state, then it's true in the next state.

I don't know how many programmers can �gure out

why this condition holds.

I think you should learn how, because I expect those who can't

to be among the �rst programmers replaced by AI.

22

Here is the invariant for our example, where max (M)

is the smallest number � every element of a multiset M :

max (ffx ;max (B)gg) = max (A)

2. If it's true in any state, then it's true in the next state.

I don't know how many programmers can �gure out

why this condition holds.

I think you should learn how, because I expect those who can't

to be among the �rst programmers replaced by AI.

22

Here is the invariant for our example, where max (M)

is the smallest number � every element of a multiset M :

max (ffx ;max (B)gg) = max (A)

2. If it's true in any state, then it's true in the next state.

I don't know how many programmers can �gure out

why this condition holds.

I think you should learn how, because I expect those who can't

to be among the �rst programmers replaced by AI.

22

Termination

I explained how to show that x has the correct value when the

abstract program terminates.

I haven't explained how to show that it always terminates.

I don't have time to discuss termination.

If I did, we would see that the program doesn't terminate

for some values of A.

Can you �gure out what values those are?

23

Termination

I explained how to show that x has the correct value when the

abstract program terminates.

I haven't explained how to show that it always terminates.

I don't have time to discuss termination.

If I did, we would see that the program doesn't terminate

for some values of A.

Can you �gure out what values those are?

23

Termination

I explained how to show that x has the correct value when the

abstract program terminates.

I haven't explained how to show that it always terminates.

I don't have time to discuss termination.

If I did, we would see that the program doesn't terminate

for some values of A.

Can you �gure out what values those are?

23

Termination

I explained how to show that x has the correct value when the

abstract program terminates.

I haven't explained how to show that it always terminates.

I don't have time to discuss termination.

If I did, we would see that the program doesn't terminate

for some values of A.

Can you �gure out what values those are?

23

Termination

I explained how to show that x has the correct value when the

abstract program terminates.

I haven't explained how to show that it always terminates.

I don't have time to discuss termination.

If I did, we would see that the program doesn't terminate

for some values of A.

Can you �gure out what values those are?

23

Termination

I explained how to show that x has the correct value when the

abstract program terminates.

I haven't explained how to show that it always terminates.

I don't have time to discuss termination.

If I did, we would see that the program doesn't terminate

for some values of A.

Can you �gure out what values those are?

23

Implementing �1

Suppose A is an array of 32-bit integers.

Method 1: Implement �1 as the smallest 32-bit integer.

If that's acceptable, then an implementation that does

not test if A is empty is a satisfactory implementation.

Method 2: Implement �1 as an error value.

The Rust code that tests if A is empty implements

our abstract program.

Few programmers or computer scientist know what it means

for a program to implement an abstract program (or algorithm).

I don't have time to explain what it means.

24

Implementing �1

Suppose A is an array of 32-bit integers.

Method 1: Implement �1 as the smallest 32-bit integer.

If that's acceptable, then an implementation that does

not test if A is empty is a satisfactory implementation.

Method 2: Implement �1 as an error value.

The Rust code that tests if A is empty implements

our abstract program.

Few programmers or computer scientist know what it means

for a program to implement an abstract program (or algorithm).

I don't have time to explain what it means.

24

Implementing �1

Suppose A is an array of 32-bit integers.

Method 1: Implement �1 as the smallest 32-bit integer.

If that's acceptable, then an implementation that does

not test if A is empty is a satisfactory implementation.

Method 2: Implement �1 as an error value.

The Rust code that tests if A is empty implements

our abstract program.

Few programmers or computer scientist know what it means

for a program to implement an abstract program (or algorithm).

I don't have time to explain what it means.

24

Implementing �1

Suppose A is an array of 32-bit integers.

Method 1: Implement �1 as the smallest 32-bit integer.

If that's acceptable, then an implementation that does

not test if A is empty is a satisfactory implementation.

Method 2: Implement �1 as an error value.

The Rust code that tests if A is empty implements

our abstract program.

Few programmers or computer scientist know what it means

for a program to implement an abstract program (or algorithm).

I don't have time to explain what it means.

24

Implementing �1

Suppose A is an array of 32-bit integers.

Method 1: Implement �1 as the smallest 32-bit integer.

If that's acceptable, then an implementation that does

not test if A is empty is a satisfactory implementation.

Method 2: Implement �1 as an error value.

The Rust code that tests if A is empty implements

our abstract program.

Few programmers or computer scientist know what it means

for a program to implement an abstract program (or algorithm).

I don't have time to explain what it means.

24

Implementing �1

Suppose A is an array of 32-bit integers.

Method 1: Implement �1 as the smallest 32-bit integer.

If that's acceptable, then an implementation that does

not test if A is empty is a satisfactory implementation.

Method 2: Implement �1 as an error value.

The Rust code that tests if A is empty implements

our abstract program.

Few programmers or computer scientist know what it means

for a program to implement an abstract program (or algorithm).

I don't have time to explain what it means.

24

Implementing �1

Suppose A is an array of 32-bit integers.

Method 1: Implement �1 as the smallest 32-bit integer.

If that's acceptable, then an implementation that does

not test if A is empty is a satisfactory implementation.

Method 2: Implement �1 as an error value.

The Rust code that tests if A is empty implements

our abstract program.

Few programmers or computer scientist know what it means

for a program to implement an abstract program (or algorithm).

I don't have time to explain what it means.

24

Implementing �1

Suppose A is an array of 32-bit integers.

Method 1: Implement �1 as the smallest 32-bit integer.

If that's acceptable, then an implementation that does

not test if A is empty is a satisfactory implementation.

Method 2: Implement �1 as an error value.

The Rust code that tests if A is empty implements

our abstract program.

Few programmers or computer scientist know what it means

for a program to implement an abstract program (or algorithm).

I don't have time to explain what it means.

24

Real Concurrent Programs

The Why and How should be precise.

Tools should check that the How implements the Why.

Here's an example of how TLA+ works in practice.

24

Real Concurrent Programs

The Why and How should be precise.

Tools should check that the How implements the Why.

Here's an example of how TLA+ works in practice.

24

Real Concurrent Programs

The Why and How should be precise.

Tools should check that the How implements the Why.

Here's an example of how TLA+ works in practice.

24

Real Concurrent Programs

The Why and How should be precise.

Tools should check that the How implements the Why.

Here's an example of how TLA+ works in practice.

24

26

They build Amazon's

cloud infrastructure.

26

The formal method y

they use is TLA+.

26

26

26

26

26

26

26

27

TLA
+

�nds

27

TLA
+

�nds

These are fundamental design �aws

Very expensive to �x after the code is written

because it requires extensive recoding.

But Amazon engineers �nd these �aws before any code is written.

27

TLA
+

�nds

These are fundamental design �aws, not just

simple coding errors.

Very expensive to �x after the code is written

because it requires extensive recoding.

But Amazon engineers �nd these �aws before any code is written.

27

TLA
+

�nds

These are fundamental design �aws.

Very expensive to �x after the code is written

because it requires extensive recoding.

But Amazon engineers �nd these �aws before any code is written.

27

TLA
+

�nds

These are fundamental design �aws.

Very expensive to �x after the code is written

because it requires extensive recoding.

But Amazon engineers �nd these �aws before any code is written.

27

TLA
+

�nds

These are fundamental design �aws.

Very expensive to �x after the code is written

because it requires extensive recoding.

And often not found until the code has been released to users.

But Amazon engineers �nd these �aws before any code is written.

27

TLA
+

�nds

These are fundamental design �aws.

Very expensive to �x after the code is written

because it requires extensive recoding.

But Amazon engineers �nd these �aws before any code is written.

27

Is Abstraction Useful Just for Concurrency?

The code for handling concurrency is important, but it's small.

What about the rest of the program?

I know of just one case in which an entire system system was built

starting with a TLA+ abstraction.

27

Is Abstraction Useful Just for Concurrency?

The code for handling concurrency is important, but it's small.

What about the rest of the program?

I know of just one case in which an entire system system was built

starting with a TLA+ abstraction.

27

Is Abstraction Useful Just for Concurrency?

The code for handling concurrency is important, but it's small.

What about the rest of the program?

I know of just one case in which an entire system system was built

starting with a TLA+ abstraction.

27

Is Abstraction Useful Just for Concurrency?

The code for handling concurrency is important, but it's small.

What about the rest of the program?

I know of just one case in which an entire system system was built

starting with a TLA+ abstraction.

27

Rosetta

European Space Agency spacecraft that explored a comet.

Several of its instruments were controlled by

the Virtuoso real-time operating system.

27

Rosetta

European Space Agency spacecraft that explored a comet.

Several of its instruments were controlled by

the Virtuoso real-time operating system.

27

Rosetta

European Space Agency spacecraft that explored a comet.

Several of its instruments were controlled by

the Virtuoso real-time operating system.

27

The next version of Virtuoso.

Its high-level design is described in TLA+.

Here's an email from Eric Verhulst,

the head of the development team.

The [TLA+] abstraction helped a lot in coming to a much

cleaner architecture (we witnessed �rst-hand the brainwashing

done by years of C programming). One of the results was that

the code size is about 10� less than in [Virtuoso].

28

The next version of Virtuoso.

Its high-level design is described in TLA+.

Here's an email from Eric Verhulst,

the head of the development team.

The [TLA+] abstraction helped a lot in coming to a much

cleaner architecture (we witnessed �rst-hand the brainwashing

done by years of C programming). One of the results was that

the code size is about 10� less than in [Virtuoso].

28

The next version of Virtuoso.

Its high-level design is described in TLA+.

Here's an email from Eric Verhulst,

the head of the development team.

The [TLA+] abstraction helped a lot in coming to a much

cleaner architecture (we witnessed �rst-hand the brainwashing

done by years of C programming). One of the results was that

the code size is about 10� less than in [Virtuoso].

28

The next version of Virtuoso.

Its high-level design is described in TLA+.

Here's an email from Eric Verhulst,

the head of the development team.

The [TLA+] abstraction helped a lot in coming to a much

cleaner architecture (we witnessed �rst-hand the brainwashing

done by years of C programming). One of the results was that

the code size is about 10� less than in [Virtuoso].

28

The next version of Virtuoso.

Its high-level design is described in TLA+.

Here's an email from Eric Verhulst,

the head of the development team.

The [TLA+] abstraction helped a lot in coming to a much

cleaner architecture (we witnessed �rst-hand the brainwashing

done by years of C programming). One of the results was that

the code size is about 10� less than in [Virtuoso].

28

The next version of Virtuoso.

Its high-level design is described in TLA+.

Here's an email from Eric Verhulst,

the head of the development team.

The [TLA+] abstraction helped a lot in coming to a much

cleaner architecture (we witnessed �rst-hand the brainwashing

done by years of C programming). One of the results was that

the code size is about 10� less than in [Virtuoso].

28

The [TLA+] abstraction helped a lot in coming to a much

cleaner architecture (we witnessed �rst-hand the brainwashing

done by years of C programming). One of the results was that

the code size is about 10� less than in [Virtuoso].

You don't produce 10� less code by better coding.

You do it with a cleaner architecture, which comes from

thinking about an abstraction, not about the code.

It doesn't come from thinking in a programming language.

29

The [TLA+] abstraction helped a lot in coming to a much

cleaner architecture (we witnessed �rst-hand the brainwashing

done by years of C programming). One of the results was that

the code size is about 10� less than in [Virtuoso].

You don't produce 10� less code by better coding.

You do it with a cleaner architecture, which comes from

thinking about an abstraction, not about the code.

It doesn't come from thinking in a programming language.

29

The [TLA+] abstraction helped a lot in coming to a much

cleaner architecture (we witnessed �rst-hand the brainwashing

done by years of C programming). One of the results was that

the code size is about 10� less than in [Virtuoso].

You don't produce 10� less code by better coding.

You do it with a cleaner architecture, which comes from

thinking about an abstraction, not about the code.

It doesn't come from thinking in a programming language.

29

The [TLA+] abstraction helped a lot in coming to a much

cleaner architecture (we witnessed �rst-hand the brainwashing

done by years of C programming). One of the results was that

the code size is about 10� less than in [Virtuoso].

You don't produce 10� less code by better coding.

You do it with a cleaner architecture
better high-level design

, which comes from

thinking about an abstraction, not about the code.

It doesn't come from thinking in a programming language.

29

The [TLA+] abstraction helped a lot in coming to a much

cleaner architecture (we witnessed �rst-hand the brainwashing

done by years of C programming). One of the results was that

the code size is about 10� less than in [Virtuoso].

You don't produce 10� less code by better coding.

You do it with a cleaner architecture
better high-level design

, which comes from

thinking about an abstraction, not about the code.

It doesn't come from thinking in a programming language.

29

The [TLA+] abstraction helped a lot in coming to a much

cleaner architecture (we witnessed �rst-hand the brainwashing

done by years of C programming). One of the results was that

the code size is about 10� less than in [Virtuoso].

You don't produce 10� less code by better coding.

You do it with a cleaner architecture
better high-level design

, which comes from

thinking about an abstraction, not about the code.

It doesn't come from thinking in a programming language.

29

Sometimes what a program should do can't be stated precisely.

Here's an example I encountered.

29

Sometimes what a program should do can't be stated precisely.

Here's an example I encountered.

29

TLATEX � the TLA+ pretty-printer

29

TLATEX � the TLA+ pretty-printer

The input:

Foo => /\ a = b

/\ ccc = d

30

TLATEX � the TLA+ pretty-printer

The input:

Foo => /\ a = b

/\ ccc = d

The naive output:

Foo) ^ a = b

^ ccc = d

30

TLATEX � the TLA+ pretty-printer

The input:

Foo => /\ a = b

/\ ccc = d

The naive output:

Foo) ^ a = b

^ ccc = d

The user probably wanted these aligned.

30

TLATEX � the TLA+ pretty-printer

The input:

Foo => /\ a = b

/\ ccc = d

The right output:

Foo) ^ a = b

^ ccc = d

The user probably wanted these aligned.

30

TLATEX � the TLA+ pretty-printer

The input:

/\ aaa + bb = c

/\ iii = jj * k

31

TLATEX � the TLA+ pretty-printer

The input:

/\ aaa + bb = c

/\ iii = jj * k

The naive output:

^ aaa + bb = c

^ iii = jj � k

31

TLATEX � the TLA+ pretty-printer

The input:

/\ aaa + bb = c

/\ iii = jj * k

The naive output:

^ aaa + bb = c

^ iii = jj � k

The user probably didn't wanted these aligned.

31

TLATEX � the TLA+ pretty-printer

The input:

/\ aaa + bb = c

/\ iii = jj * k

The right output:

^ aaa + bb = c

^ iii = jj � k

The user probably didn't wanted these aligned.

31

There is no precise de�nition of correct alignment.

We can't describe precisely what the user wants.

If we can't describe What precisely, abstraction is useless.

Wrong.

The program has to do something.

Not knowing precisely what it should do means

we have to think abstractly about what it will do.

31

There is no precise de�nition of correct alignment.

We can't describe precisely what the user wants.

If we can't describe What precisely, abstraction is useless.

Wrong.

The program has to do something.

Not knowing precisely what it should do means

we have to think abstractly about what it will do.

31

There is no precise de�nition of correct alignment.

We can't describe precisely what the user wants.

If we can't describe What precisely, abstraction is useless.

Wrong.

The program has to do something.

Not knowing precisely what it should do means

we have to think abstractly about what it will do.

31

There is no precise de�nition of correct alignment.

We can't describe precisely what the user wants.

If we can't describe What precisely, abstraction is useless.

Wrong.

The program has to do something.

Not knowing precisely what it should do means

we have to think abstractly about what it will do.

31

There is no precise de�nition of correct alignment.

We can't describe precisely what the user wants.

If we can't describe What precisely, abstraction is useless.

Wrong.

The program has to do something.

Not knowing precisely what it should do means

we have to think abstractly about what it will do.

31

There is no precise de�nition of correct alignment.

We can't describe precisely what the user wants.

If we can't describe What precisely, abstraction is useless.

Wrong.

The program has to do something.

Not knowing precisely what it should do means

we have to think abstractly about what it will do.

31

It's impossible to specify the best pretty-printer.

But the program has to do something.

Writing stream-of-consciousness code doesn't

produce a good program.

31

It's impossible to specify the best pretty-printer.

But the program has to do something.

Writing stream-of-consciousness code doesn't

produce a good program.

31

It's impossible to specify the best pretty-printer.

But the program has to do something.

Writing stream-of-consciousness code doesn't

produce a good program.

31

My Abstraction

6 rules plus de�nitions (in comments).

Example:

A left-comment token is LeftComment aligned

with its covering token.

32

My Abstraction

6 rules plus de�nitions (in comments).

Example:

A left-comment token is LeftComment aligned

with its covering token.

32

My Abstraction

6 rules plus de�nitions (in comments).

Example:

A left-comment token is LeftComment aligned

with its covering token.

32

My Abstraction

6 rules plus de�nitions (in comments).

Example:

A left-comment token is LeftComment aligned

with its covering token.

This is de�ned precisely (mostly in English).

32

Why Did I Write This Abstraction?

It was a lot easier to understand and debug 6 rules

than 850 lines of code.

I did a lot of debugging of the rules, aided by debugging code

to report what rules were being used.

The few bugs in implementing the rules were easy to catch.

Had I just written code, it would have taken me much longer

and not produced formatting as good.

32

Why Did I Write This Abstraction?

It was a lot easier to understand and debug 6 rules

than 850 lines of code.

I did a lot of debugging of the rules, aided by debugging code

to report what rules were being used.

The few bugs in implementing the rules were easy to catch.

Had I just written code, it would have taken me much longer

and not produced formatting as good.

32

Why Did I Write This Abstraction?

It was a lot easier to understand and debug 6 rules

than 850 lines of code.

I did a lot of debugging of the rules, aided by debugging code

to report what rules were being used.

The few bugs in implementing the rules were easy to catch.

Had I just written code, it would have taken me much longer

and not produced formatting as good.

32

Why Did I Write This Abstraction?

It was a lot easier to understand and debug 6 rules

than 850 lines of code.

I did a lot of debugging of the rules, aided by debugging code

to report what rules were being used.

The few bugs in implementing the rules were easy to catch.

Had I just written code, it would have taken me much longer

and not produced formatting as good.

32

Why Did I Write This Abstraction?

It was a lot easier to understand and debug 6 rules

than 850 lines of code.

I did a lot of debugging of the rules, aided by debugging code

to report what rules were being used.

The few bugs in implementing the rules were easy to catch.

Had I just written code, it would have taken me much longer

and not produced formatting as good.

32

Why Did I Write This Abstraction?

It was a lot easier to understand and debug 6 rules

than 850 lines of code.

I did a lot of debugging of the rules, aided by debugging code

to report what rules were being used.

The few bugs in implementing the rules were easy to catch.

Had I just written code, it would have taken me much longer

and not produced formatting as good.

32

What is Typical About This Abstraction

It's at a higher-level than the code.

It could have been implemented in any language.

No method or tool for writing better code would have

helped to write the abstraction.

No method or tool for writing better code would have made the

abstraction unnecessary.

It says nothing about how to write the code.

You write an abstraction to help you think about the problem

before you think about the code.

33

What is Typical About This Abstraction

It's at a higher-level than the code.

It could have been implemented in any language.

No method or tool for writing better code would have

helped to write the abstraction.

No method or tool for writing better code would have made the

abstraction unnecessary.

It says nothing about how to write the code.

You write an abstraction to help you think about the problem

before you think about the code.

33

What is Typical About This Abstraction

It's at a higher-level than the code.

It could have been implemented in any language.

No method or tool for writing better code would have

helped to write the abstraction.

No method or tool for writing better code would have made the

abstraction unnecessary.

It says nothing about how to write the code.

You write an abstraction to help you think about the problem

before you think about the code.

33

What is Typical About This Abstraction

It's at a higher-level than the code.

It could have been implemented in any language.

No method or tool for writing better code would have

helped to write the abstraction.

No method or tool for writing better code would have made the

abstraction unnecessary.

It says nothing about how to write the code.

You write an abstraction to help you think about the problem

before you think about the code.

33

What is Typical About This Abstraction

It's at a higher-level than the code.

It could have been implemented in any language.

No method or tool for writing better code would have

helped to write the abstraction.

No method or tool for writing better code would have made the

abstraction unnecessary.

It says nothing about how to write the code.

You write an abstraction to help you think about the problem

before you think about the code.

33

What is Typical About This Abstraction

It's at a higher-level than the code.

It could have been implemented in any language.

No method or tool for writing better code would have

helped to write the abstraction.

No method or tool for writing better code would have made the

abstraction unnecessary.

It says nothing about how to write the code.

You write an abstraction to help you think about the problem

before you think about the code.

33

What is Typical About This Abstraction

It's at a higher-level than the code.

It could have been implemented in any language.

No method or tool for writing better code would have

helped to write the abstraction.

No method or tool for writing better code would have made the

abstraction unnecessary.

It says nothing about how to write the code.

You write an abstraction to help you think about the problem

before you think about the code.

33

What is Not Typical About This Abstraction

It's quite subtle.

Perhaps 95% of programs require less thought,
so abstractions that are shorter and simpler su�ce.

It's a set of rules.

A set of rules/requirements/axioms is usually a bad abstraction.

It's hard to understand the consequences of a set of rules.

No method is best for all programs.

34

What is Not Typical About This Abstraction

It's quite subtle.

Perhaps 95% of programs require less thought,
so abstractions that are shorter and simpler su�ce.

It's a set of rules.

A set of rules/requirements/axioms is usually a bad abstraction.

It's hard to understand the consequences of a set of rules.

No method is best for all programs.

34

What is Not Typical About This Abstraction

It's quite subtle.

Perhaps 95% of programs require less thought,
so abstractions that are shorter and simpler su�ce.

It's a set of rules.

A set of rules/requirements/axioms is usually a bad abstraction.

It's hard to understand the consequences of a set of rules.

No method is best for all programs.

34

What is Not Typical About This Abstraction

It's quite subtle.

Perhaps 95% of programs require less thought,
so abstractions that are shorter and simpler su�ce.

It's a set of rules.

A set of rules/requirements/axioms is usually a bad abstraction.

It's hard to understand the consequences of a set of rules.

No method is best for all programs.

34

What is Not Typical About This Abstraction

It's quite subtle.

Perhaps 95% of programs require less thought,
so abstractions that are shorter and simpler su�ce.

It's a set of rules.

A set of rules/requirements/axioms is usually a bad abstraction.

It's hard to understand the consequences of a set of rules.

No method is best for all programs.

34

What is Not Typical About This Abstraction

It's quite subtle.

Perhaps 95% of programs require less thought,
so abstractions that are shorter and simpler su�ce.

It's a set of rules.

A set of rules/requirements/axioms is usually a bad abstraction.

It's hard to understand the consequences of a set of rules.

No method is best for all programs.

34

What is Not Typical About This Abstraction

It's quite subtle.

Perhaps 95% of programs require less thought,
so abstractions that are shorter and simpler su�ce.

It's a set of rules.

A set of rules/requirements/axioms is usually a bad abstraction.

It's hard to understand the consequences of a set of rules.

No method is best for all programs.

34

Thinking is always better than not thinking before coding.

Some people say that you shouldn't think too much before coding.

I say that too little thinking is a much more serious and

much more common problem than too much thinking.

34

Thinking is always better than not thinking before coding.

Some people say that you shouldn't think too much before coding.

I say that too little thinking is a much more serious and

much more common problem than too much thinking.

34

Thinking is always better than not thinking before coding.

Some people say that you shouldn't think too much before coding.

I say that too little thinking is a much more serious and

much more common problem than too much thinking.

34

How to Think

Write !

�Writing is nature's way of letting you

know how sloppy your thinking is.�

Guindon

�If you think without writing,

you only think you're thinking.�

Lamport

Writing helps you think better.

Thinking better helps you write better.

It's a virtuous cycle.

35

How to Think

Write !

�Writing is nature's way of letting you

know how sloppy your thinking is.�

Guindon

�If you think without writing,

you only think you're thinking.�

Lamport

Writing helps you think better.

Thinking better helps you write better.

It's a virtuous cycle.

35

How to Think

Write !

�Writing is nature's way of letting you

know how sloppy your thinking is.�

Guindon

�If you think without writing,

you only think you're thinking.�

Lamport

Writing helps you think better.

Thinking better helps you write better.

It's a virtuous cycle.

35

How to Think

Write !

�Writing is nature's way of letting you

know how sloppy your thinking is.�

Guindon

�If you think without writing,

you only think you're thinking.�

Lamport

Writing helps you think better.

Thinking better helps you write better.

It's a virtuous cycle.

35

How to Think

Write !

�Writing is nature's way of letting you

know how sloppy your thinking is.�

Guindon

�If you think without writing,

you only think you're thinking.�

Lamport

Writing helps you think better.

Thinking better helps you write better.

It's a virtuous cycle.

35

How to Think

Write !

�Writing is nature's way of letting you

know how sloppy your thinking is.�

Guindon

�If you think without writing,

you only think you're thinking.�

Lamport

Writing helps you think better.

Thinking better helps you write better.

It's a virtuous cycle.

35

How to Think

Write !

�Writing is nature's way of letting you

know how sloppy your thinking is.�

Guindon

�If you think without writing,

you only think you're thinking.�

Lamport

Writing helps you think better.

Thinking better helps you write better.

It's a virtuous cycle.

35

To begin, most people must learn to write better.

This means writing to convince others.

You have to learn to read what you wrote the way others

might read it.

Perhaps other readers can teach you that.

35

To begin, most people must learn to write better.

This means writing to convince others.

You have to learn to read what you wrote the way others

might read it.

Perhaps other readers can teach you that.

35

To begin, most people must learn to write better.

This means writing to convince others.

It's too easy to convince yourself of something that's not true.

You have to learn to read what you wrote the way others

might read it.

Perhaps other readers can teach you that.

35

To begin, most people must learn to write better.

This means writing to convince others.

You have to learn to read what you wrote the way others

might read it.

Perhaps other readers can teach you that.

35

To begin, most people must learn to write better.

This means writing to convince others.

You have to learn to read what you wrote the way others

might read it.

Perhaps other readers can teach you that.

35

How to Think Abstractly

Abstraction is what I'm good at.

How did I become good at it?

Abstraction is at the heart of mathematics.

I don't know how you should learn to be better at abstraction.

Perhaps mathematicians can teach abstraction by making it,

rather than the math itself, the subject.

Try asking them.

36

How to Think Abstractly

Abstraction is what I'm good at.

How did I become good at it?

Abstraction is at the heart of mathematics.

I don't know how you should learn to be better at abstraction.

Perhaps mathematicians can teach abstraction by making it,

rather than the math itself, the subject.

Try asking them.

36

How to Think Abstractly

Abstraction is what I'm good at.

And being good at it is why I was invited to speak to you.

How did I become good at it?

Abstraction is at the heart of mathematics.

I don't know how you should learn to be better at abstraction.

Perhaps mathematicians can teach abstraction by making it,

rather than the math itself, the subject.

Try asking them.

36

How to Think Abstractly

Abstraction is what I'm good at.

How did I become good at it?

Abstraction is at the heart of mathematics.

I don't know how you should learn to be better at abstraction.

Perhaps mathematicians can teach abstraction by making it,

rather than the math itself, the subject.

Try asking them.

36

How to Think Abstractly

Abstraction is what I'm good at.

How did I become good at it?

In large part by being educated as a mathematician.

Abstraction is at the heart of mathematics.

I don't know how you should learn to be better at abstraction.

Perhaps mathematicians can teach abstraction by making it,

rather than the math itself, the subject.

Try asking them.

36

How to Think Abstractly

Abstraction is what I'm good at.

How did I become good at it?

Abstraction is at the heart of mathematics.

I don't know how you should learn to be better at abstraction.

Perhaps mathematicians can teach abstraction by making it,

rather than the math itself, the subject.

Try asking them.

36

How to Think Abstractly

Abstraction is what I'm good at.

How did I become good at it?

Abstraction is at the heart of mathematics.

Math abstracts from two sheep and two goats to the number 2.

I don't know how you should learn to be better at abstraction.

Perhaps mathematicians can teach abstraction by making it,

rather than the math itself, the subject.

Try asking them.

36

How to Think Abstractly

Abstraction is what I'm good at.

How did I become good at it?

Abstraction is at the heart of mathematics.

I don't know how you should learn to be better at abstraction.

Perhaps mathematicians can teach abstraction by making it,

rather than the math itself, the subject.

Try asking them.

36

How to Think Abstractly

Abstraction is what I'm good at.

How did I become good at it?

Abstraction is at the heart of mathematics.

I don't know how you should learn to be better at abstraction.

Because it's mathematics, TLA+ teaches some users

Perhaps mathematicians can teach abstraction by making it,

rather than the math itself, the subject.

Try asking them.

36

How to Think Abstractly

Abstraction is what I'm good at.

How did I become good at it?

Abstraction is at the heart of mathematics.

I don't know how you should learn to be better at abstraction.

Because it's mathematics, TLA+ teaches some users,

but it may be too hard for most programmers.

Perhaps mathematicians can teach abstraction by making it,

rather than the math itself, the subject.

Try asking them.
36

How to Think Abstractly

Abstraction is what I'm good at.

How did I become good at it?

Abstraction is at the heart of mathematics.

I don't know how you should learn to be better at abstraction.

Perhaps mathematicians can teach abstraction by making it,

rather than the math itself, the subject.

Try asking them.

36

How to Think Abstractly

Abstraction is what I'm good at.

How did I become good at it?

Abstraction is at the heart of mathematics.

I don't know how you should learn to be better at abstraction.

Perhaps mathematicians can teach abstraction by making it,

rather than the math itself, the subject.

Try asking them.

36

Things to Remember

Programming should be thinking followed by coding.

Thinking requires writing.

If the program is simple, very little writing is necessary.

For non-simple programs, abstract thinking (above the code level)

can avoid errors and lead to better, easier to write code.

A non-simple program can be anything from a complete system to

a complicated loop.

37

Things to Remember

Programming should be thinking followed by coding.

Thinking requires writing.

If the program is simple, very little writing is necessary.

For non-simple programs, abstract thinking (above the code level)

can avoid errors and lead to better, easier to write code.

A non-simple program can be anything from a complete system to

a complicated loop.

37

Things to Remember

Programming should be thinking followed by coding.

Thinking requires writing.

If the program is simple, very little writing is necessary.

For non-simple programs, abstract thinking (above the code level)

can avoid errors and lead to better, easier to write code.

A non-simple program can be anything from a complete system to

a complicated loop.

37

Things to Remember

Programming should be thinking followed by coding.

Thinking requires writing.

If the program is simple, very little writing is necessary.

For non-simple programs, abstract thinking (above the code level)

can avoid errors and lead to better, easier to write code.

A non-simple program can be anything from a complete system to

a complicated loop.

37

Things to Remember

Programming should be thinking followed by coding.

Thinking requires writing.

If the program is simple, very little writing is necessary.

But it takes thinking to know if it's simple.

For non-simple programs, abstract thinking (above the code level)

can avoid errors and lead to better, easier to write code.

A non-simple program can be anything from a complete system to

a complicated loop.

37

Things to Remember

Programming should be thinking followed by coding.

Thinking requires writing.

If the program is simple, very little writing is necessary.

For non-simple programs, abstract thinking (above the code level)

can avoid errors and lead to better, easier to write code.

A non-simple program can be anything from a complete system to

a complicated loop.

37

Things to Remember

Programming should be thinking followed by coding.

Thinking requires writing.

If the program is simple, very little writing is necessary.

For non-simple programs, abstract thinking (above the code level)

can avoid errors and lead to better, easier to write code.

A non-simple program can be anything from a complete system to

a complicated loop.

37

Things to Remember

No way of abstracting is best for all programs.

The abstraction of an execution as a sequence of states

is often a very good one.

A state should contain all the information that can a�ect

what future states are possible.

In this abstraction, a program does the right thing

because it satis�es an invariant.

Understanding the program requires understanding that invariant.

37

Things to Remember

No way of abstracting is best for all programs.

The abstraction of an execution as a sequence of states

is often a very good one.

A state should contain all the information that can a�ect

what future states are possible.

In this abstraction, a program does the right thing

because it satis�es an invariant.

Understanding the program requires understanding that invariant.

37

Things to Remember

No way of abstracting is best for all programs.

The abstraction of an execution as a sequence of states

is often a very good one.

A state should contain all the information that can a�ect

what future states are possible.

In this abstraction, a program does the right thing

because it satis�es an invariant.

Understanding the program requires understanding that invariant.

37

Things to Remember

No way of abstracting is best for all programs.

The abstraction of an execution as a sequence of states

is often a very good one.

A state should contain all the information that can a�ect

what future states are possible.

In this abstraction, a program does the right thing

because it satis�es an invariant.

Understanding the program requires understanding that invariant.

37

Things to Remember

No way of abstracting is best for all programs.

The abstraction of an execution as a sequence of states

is often a very good one.

A state should contain all the information that can a�ect

what future states are possible.

In this abstraction, a program does the right thing

because it satis�es an invariant.

Understanding the program requires understanding that invariant.

37

Things to Remember

Don't get hung up on languages.

Especially not on programming languages.

38

Things to Remember

Don't get hung up on languages.

Especially not on programming languages.

38

A Postscript

38

Why Programs Should Have Bugs

38

Why Programs Should Have Bugs

I started programming in 1957.

We can write much more complex programs now.

Part of the reason is better programming languages.

But the major reason is that we have libraries of programs

our programs can use.

38

Why Programs Should Have Bugs

I started programming in 1957.

We can write much more complex programs now.

Part of the reason is better programming languages.

But the major reason is that we have libraries of programs

our programs can use.

38

Why Programs Should Have Bugs

I started programming in 1957.

We can write much more complex programs now.

Part of the reason is better programming languages.

But the major reason is that we have libraries of programs

our programs can use.

38

Why Programs Should Have Bugs

I started programming in 1957.

We can write much more complex programs now.

Part of the reason is better programming languages.

But the major reason is that we have libraries of programs

our programs can use.

38

The hardest part of programming is now �guring out how to use

those library programs, because many of them can never have bugs.

A program can have bugs only if there is a precise description of

what it should do.

Part of that description is language dependent.

But the most useful programs do more complex things.

You shouldn't have to read the code to understand those things.

They should have an abstract, language-independent description.

39

The hardest part of programming is now �guring out how to use

those library programs, because many of them can never have bugs.

A program can have bugs only if there is a precise description of

what it should do.

Part of that description is language dependent.

But the most useful programs do more complex things.

You shouldn't have to read the code to understand those things.

They should have an abstract, language-independent description.

39

The hardest part of programming is now �guring out how to use

those library programs, because many of them can never have bugs.

A program can have bugs only if there is a precise description of

what it should do.

Part of that description is language dependent.

But the most useful programs do more complex things.

You shouldn't have to read the code to understand those things.

They should have an abstract, language-independent description.

39

The hardest part of programming is now �guring out how to use

those library programs, because many of them can never have bugs.

A program can have bugs only if there is a precise description of

what it should do.

Part of that description is language dependent.

But the most useful programs do more complex things.

You shouldn't have to read the code to understand those things.

They should have an abstract, language-independent description.

39

The hardest part of programming is now �guring out how to use

those library programs, because many of them can never have bugs.

A program can have bugs only if there is a precise description of

what it should do.

Part of that description is language dependent.

That part is usually simple.

It's often implied by how the program is called,
especially for strongly-typed languages.

But the most useful programs do more complex things.

You shouldn't have to read the code to understand those things.

They should have an abstract, language-independent description.
39

The hardest part of programming is now �guring out how to use

those library programs, because many of them can never have bugs.

A program can have bugs only if there is a precise description of

what it should do.

Part of that description is language dependent.

That part is usually simple.

It's often implied by how the program is called,
especially for strongly-typed languages.

But the most useful programs do more complex things.

You shouldn't have to read the code to understand those things.

They should have an abstract, language-independent description.
39

The hardest part of programming is now �guring out how to use

those library programs, because many of them can never have bugs.

A program can have bugs only if there is a precise description of

what it should do.

Part of that description is language dependent.

That part is usually simple.

It's often implied by how the program is called,
especially for strongly-typed languages.

But the most useful programs do more complex things.

You shouldn't have to read the code to understand those things.

They should have an abstract, language-independent description.
39

The hardest part of programming is now �guring out how to use

those library programs, because many of them can never have bugs.

A program can have bugs only if there is a precise description of

what it should do.

Part of that description is language dependent.

But the most useful programs do more complex things.

You shouldn't have to read the code to understand those things.

They should have an abstract, language-independent description.

39

The hardest part of programming is now �guring out how to use

those library programs, because many of them can never have bugs.

A program can have bugs only if there is a precise description of

what it should do.

Part of that description is language dependent.

But the most useful programs do more complex things.

You shouldn't have to read the code to understand those things.

They should have an abstract, language-independent description.

39

The hardest part of programming is now �guring out how to use

those library programs, because many of them can never have bugs.

A program can have bugs only if there is a precise description of

what it should do.

Part of that description is language dependent.

But the most useful programs do more complex things.

You shouldn't have to read the code to understand those things.

They should have an abstract, language-independent description.

39

Few programs have such a description.

I won't bother giving you horror stories of how this has made it

di�cult or impossible for me to use some library programs.

Instead, I'll tell you about an organization that did a pretty good

job of providing precise descriptions.

39

Few programs have such a description.

Many have no description at all.

I won't bother giving you horror stories of how this has made it

di�cult or impossible for me to use some library programs.

Instead, I'll tell you about an organization that did a pretty good

job of providing precise descriptions.

39

Few programs have such a description.

I won't bother giving you horror stories of how this has made it

di�cult or impossible for me to use some library programs.

Instead, I'll tell you about an organization that did a pretty good

job of providing precise descriptions.

39

Few programs have such a description.

I won't bother giving you horror stories of how this has made it

di�cult or impossible for me to use some library programs.

Instead, I'll tell you about an organization that did a pretty good

job of providing precise descriptions.

39

The W3C JavaScript Standard

W3C = World Wide Web Consortium

There has been a lot of work on verifying that what

a program should do is implied by how it does it.

Most of it views what a program should do as

a relation between its inputs and its outputs.

That is the view used by the W3C standard.

This view works �ne for sequential programs, and

I expect most JavaScript programs are sequential.

40

The W3C JavaScript Standard

There has been a lot of work on verifying that what

a program should do is implied by how it does it.

Most of it views what a program should do as

a relation between its inputs and its outputs.

That is the view used by the W3C standard.

This view works �ne for sequential programs, and

I expect most JavaScript programs are sequential.

40

The W3C JavaScript Standard

There has been a lot of work on verifying that what

a program should do is implied by how it does it.

Initiated by a 1967 paper of Robert Floyd.

Most of it views what a program should do as

a relation between its inputs and its outputs.

That is the view used by the W3C standard.

This view works �ne for sequential programs, and

I expect most JavaScript programs are sequential.

40

The W3C JavaScript Standard

There has been a lot of work on verifying that what

a program should do is implied by how it does it.

Most of it views what a program should do as

a relation between its inputs and its outputs.

That is the view used by the W3C standard.

This view works �ne for sequential programs, and

I expect most JavaScript programs are sequential.

40

The W3C JavaScript Standard

There has been a lot of work on verifying that what

a program should do is implied by how it does it.

Most of it views what a program should do as

a relation between its inputs and its outputs.

That is the view used by the W3C standard.

This view works �ne for sequential programs, and

I expect most JavaScript programs are sequential.

40

The W3C JavaScript Standard

There has been a lot of work on verifying that what

a program should do is implied by how it does it.

Most of it views what a program should do as

a relation between its inputs and its outputs.

That is the view used by the W3C standard.

This view works �ne for sequential programs., and

I expect most JavaScript programs are sequential.

40

The W3C JavaScript Standard

There has been a lot of work on verifying that what

a program should do is implied by how it does it.

Most of it views what a program should do as

a relation between its inputs and its outputs.

That is the view used by the W3C standard.

This view works �ne for sequential programs, and

I expect most JavaScript programs are sequential.

40

In 2016 I produced a video course about TLA+,

with web pages for viewing it.

Users interact with a JavaScript program.

It's a concurrent program.

Executing a library program can change di�erent

parts of the state at di�erent times.

The order in which those changes occur matters

The hard part of writing the program was �guring out how to get

the library programs to interract correctly on all popular browsers.

It required a lot of debugging.

41

In 2016 I produced a video course about TLA+,

with web pages for viewing it.

Users interact with a JavaScript program.

It's a concurrent program.

Executing a library program can change di�erent

parts of the state at di�erent times.

The order in which those changes occur matters

The hard part of writing the program was �guring out how to get

the library programs to interract correctly on all popular browsers.

It required a lot of debugging.

41

In 2016 I produced a video course about TLA+,

with web pages for viewing it.

Users interact with a JavaScript program.

It's a concurrent program.

Executing a library program can change di�erent

parts of the state at di�erent times.

The order in which those changes occur matters

The hard part of writing the program was �guring out how to get

the library programs to interract correctly on all popular browsers.

It required a lot of debugging.

41

In 2016 I produced a video course about TLA+,

with web pages for viewing it.

Users interact with a JavaScript program.

It's a concurrent program.

The code controlling the video is executed by one thread.

Executing a library program can change di�erent

parts of the state at di�erent times.

The order in which those changes occur matters

The hard part of writing the program was �guring out how to get

the library programs to interract correctly on all popular browsers.

It required a lot of debugging.
41

In 2016 I produced a video course about TLA+,

with web pages for viewing it.

Users interact with a JavaScript program.

It's a concurrent program.

The code controlling the video is executed by one thread.

The code handling mouse clicks is executed by a diferent thread.

Executing a library program can change di�erent

parts of the state at di�erent times.

The order in which those changes occur matters

The hard part of writing the program was �guring out how to get

the library programs to interract correctly on all popular browsers.

It required a lot of debugging. 41

In 2016 I produced a video course about TLA+,

with web pages for viewing it.

Users interact with a JavaScript program.

It's a concurrent program.

Executing a library program can change di�erent

parts of the state at di�erent times.

The order in which those changes occur matters

The hard part of writing the program was �guring out how to get

the library programs to interract correctly on all popular browsers.

It required a lot of debugging.

41

In 2016 I produced a video course about TLA+,

with web pages for viewing it.

Users interact with a JavaScript program.

It's a concurrent program.

Executing a library program can change di�erent

parts of the state at di�erent times.

The order in which those changes occur matters

The hard part of writing the program was �guring out how to get

the library programs to interract correctly on all popular browsers.

It required a lot of debugging.

41

In 2016 I produced a video course about TLA+,

with web pages for viewing it.

Users interact with a JavaScript program.

It's a concurrent program.

Executing a library program can change di�erent

parts of the state at di�erent times.

The order in which those changes occur matters, but

it can't be described by viewing what the program does

as a relation between inputs and outputs.

The hard part of writing the program was �guring out how to get

the library programs to interract correctly on all popular browsers.

It required a lot of debugging. 41

In 2016 I produced a video course about TLA+,

with web pages for viewing it.

Users interact with a JavaScript program.

It's a concurrent program.

Executing a library program can change di�erent

parts of the state at di�erent times.

The order in which those changes occur matters.

The hard part of writing the program was �guring out how to get

the library programs to interract correctly on all popular browsers.

It required a lot of debugging.

41

In 2016 I produced a video course about TLA+,

with web pages for viewing it.

Users interact with a JavaScript program.

It's a concurrent program.

Executing a library program can change di�erent

parts of the state at di�erent times.

The order in which those changes occur matters.

The hard part of writing the program was �guring out how to get

the library programs to interract correctly on all popular browsers.

It required a lot of debugging.

41

It seems to work correctly, but there's no way to be sure

that it will keep working correctly.

We should be able to do better than that.

41

It seems to work correctly, but there's no way to be sure

that it will keep working correctly.

We should be able to do better than that.

41

�That's all folks!�

41

