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What This Talk is About

You probably expect me to talk about concurrency.

I have nothing new to say about that, and I'm tired of saying the

same old stu�.

I've realized that some things that I've learned about writing

concurrent programs apply to all programs.

So I'm going to talk about programming.
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Algorithms

I'm here because I wrote concurrent algorithms, not concurrent

programs.

An algorithm is not a program, it's higher-level, more abstract.

We shouldn't write algorithms in a programming language.

Programming languages are complicated.

Algorithms are neither executed nor large.
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Concurrent Programs

Contain multiple threads of control that can be executed

concurrently.

Concurrent programs are very hard to get right.

Debugging doesn't work.
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How to Write a Concurrent Program

Figure out what part of what the program does involves

concurrency.

Find a correct algorithm to do that part.

Implement the algorithm.
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Abstraction

Something is usually called an algorithm only if

it can be useful in many applications.

The algorithm that describes how concurrency is implemented

in a program is often useful only for that program.

I therefore call it an abstract view, or an abstract program, or

simply an abstraction.
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How to Write a Concurrent Program

Find an abstract view of the program that describes

how it handles concurrency.

Programmers are taught how to code, not how to abstract.

It involves a new kind of thinking.

Programmers should learn how to do it.
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What's a Program?

Any piece of code that requires thinking before coding.

Any piece of code to be used by someone who doesn't

want to read the code.
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How to Write an Abstraction

Programs are written for many purposes.

No method is best for all programs.

For most programs, you should write two things:

What the program does.

How the program does it.
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What language should we use?What language should we use?

Don't get hung up on languages.

If we want to build a tool to check that the how

implies the what, then we need a precise language.

Needed to ensure that a concurrent program does what it should.

Not needed for most programs.
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Needed to ensure that a concurrent program does what it should.

I designed TLA+ for that.

Not needed for most programs.
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A Trivial Example

Write a function to compute the largest element in an

array of 32-bit integers.

Too simple to require much thinking before coding.

If I were really compulsive, I might write:

What: Return the largest element in an integer array A.

How: Examine A[0], A[1], . . . in turn, letting x be

the largest value found, and return x .
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Here's the code, written in Rust

fn ArrayMax(A: &[i32]) -> i32 {

let mut x = A[0];

let mut i = 1;

while i < A.len() {

if A[i] > x {

x = A[i];}

i += 1; }

x }

Raise your hand if you see the bug.

It's not a coding bug. It's a bug in the What.
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What: Return the largest element in an integer array A.,

or an error value if A has no element.

If A has no element, then there is no largest one.

There's an obvious �x to the What and to the How :

fn ArrayMax(A: &[i32]) -> Result<i32, &'static str> {

if A.is_empty() {

return Err("EmptyArray"); }

let mut x = A[0];

let mut i = 1;

while i < A.len() {

if A[i] > x {

x = A[i];}

i += 1; }

Ok(x) }
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but has a simpler implementation?
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Of course this is silly for such a simple example.

But when I wrote a program, often I would:

� Decide what I wanted the program to do.

� Realize coding it would be a lot of work.

� Figure out what I really needed it to do.

The result was a What that might not have everything I wanted,

but had everything I needed.

This took time, but it saved much more time writing the code.
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What: Set x to the smallest number � all elements of A.

If A is empty, then every number is � all elements of A.
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I'm richer than everyone living in Bodie, CA.

I'm poorer than everyone living in Bodie, CA.

No one lives in Bodie, CA.

This is simple (mathematical) logic.

To think rationally, you have to understand simple logic.

Programmers should think rationally.
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If A is empty, then x is set to the smallest number.

Mathematicians (sometimes) de�ne �1 to be the smallest number.

So this What implies that if A is empty, then x is set to
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The How

let B = A and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

I used an ad hoc combination of programming-language notation

and English
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A

let B = A and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

How can we convince someone that this implements the What?

I believe most programmers could only show that some executions

compute the right value of x .

But we must show every execution computes the right value of x .

Seeing how to do this requires thinking about executions.
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What is an Execution?

An obvious answer:

A sequence of steps.

Each step is the execution of a part of the code.

A usually better answer:

A sequence of states.

A step is a pair of consecutive states that describes
execution of a part of the code.

To see how we describe an execution this way,

we look at one possible execution.

We suppose A has two copies of 2 and one copy of 3.

Let's write this multiset as ff2; 2; 3gg or ff2; 3; 2gg or ff3; 2; 2gg.

I'll write it this way 16
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let B = ff2; 3; 2gg and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

�
B =?

x =?

�
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A state will describe the values of B and x and perhaps other stu�.
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These two steps are of no interest.

So we let this statement de�ne the initial state.
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let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

�
B = ff2; 3; 2gg

x =�1

�

What's the next state?

Code doesn't say what constitutes a step.

Is executing this statement one step?

Or are choosing the element of B and setting i separate steps?
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To keep the abstraction simple, I will make

evaluating the while loop's test and evaluating its body

one step.

I won't bother de�ning a way to make the pseudocode say

that's all one step.
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Executing the next step can let i equal 2 or 3.

I will let it choose 3.
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The next step �nds B empty, so it exits the loop

without changing B or x .

That's an uninteresting step.

So we declare that the execution terminates when B is empty.

19



initially B = ff2; 3; 2gg and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

�
B = ff2; 3; 2gg

x =�1

�
!

�
B = ff2; 2gg

x = 3

�
!

�
B = ff2gg

x = 2

�
!

�
B = ff gg

x = 2

�
!

�
B = ff gg

x = 2

�

The next step �nds B empty, so it exits the loop

without changing B or x .

That's an uninteresting step.

So we declare that the execution terminates when B is empty.

19



initially B = ff2; 3; 2gg and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

�
B = ff2; 3; 2gg

x =�1

�
!

�
B = ff2; 2gg

x = 3

�
!

�
B = ff2gg

x = 2

�
!

�
B = ff gg

x = 2

�

The next step �nds B empty, so it exits the loop

without changing B or x .

That's an uninteresting step.

So we declare that the execution terminates when B is empty.

19



initially B = ff2; 3; 2gg and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

�
B = ff2; 3; 2gg

x =�1

�
!

�
B = ff2; 2gg

x = 3

�
!

�
B = ff2gg

x = 2

�
!

�
B = ff gg

x = 2

�

The execution terminates when B is empty.

I don't know how to say that with code.

But don't get hung up on languages.

Understand what the executions are.

Don't worry about how they're described.
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What's a State?

For executions to be a useful way to think about a program:

The possible next states must depend only on the current state,

not on any previous state.

We can choose states this way for abstractions that describe actual

programs because:

Programs are executed on computers.

What a computer does next depends only on its current state

not on any previous state.
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initially B = ff2; 3; 2gg and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

�
B = ff2; 3; 2gg

x =�1

�
!

�
B = ff2; 2gg

x = 3

�
!

�
B = ff2gg

x = 2

�
!

�
B = ff gg

x = 2

�

For our simple example:

The state has to describe only the values of B and x .

The variable i is used only to indicate how the step that ends in

the current state changes B . Its value doesn't a�ect future states.

Had I not eliminated the step representing an execution of

the while statement with B empty, the state would also have

needed to indicate whether the execution had terminated.

19



initially B = ff2; 3; 2gg and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

�
B = ff2; 3; 2gg

x =�1

�
!

�
B = ff2; 2gg

x = 3

�
!

�
B = ff2gg

x = 2

�
!

�
B = ff gg

x = 2

�

For our simple example:

The state has to describe only the values of B and x .

The variable i is used only to indicate how the step that ends in

the current state changes B . Its value doesn't a�ect future states.

Had I not eliminated the step representing an execution of

the while statement with B empty, the state would also have

needed to indicate whether the execution had terminated.

19



initially B = ff2; 3; 2gg and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

�
B = ff2; 3; 2gg

x =�1

�
!

�
B = ff2; 2gg

x = 3

�
!

�
B = ff2gg

x = 2

�
!

�
B = ff gg

x = 2

�

For our simple example:

The state has to describe only the values of B and x .

The variable i is used only to indicate how the step that ends in

the current state changes B . Its value doesn't a�ect future states.

Had I not eliminated the step representing an execution of

the while statement with B empty, the state would also have

needed to indicate whether the execution had terminated.

19



initially B = ff2; 3; 2gg and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

�
B = ff2; 3; 2gg

x =�1

�
!

�
B = ff2; 2gg

x = 3

�
!

�
B = ff2gg

x = 2

�
!

�
B = ff gg

x = 2

�

For our simple example:

The state has to describe only the values of B and x .

The variable i is used only to indicate how the step that ends in

the current state changes B . Its value doesn't a�ect future states.

Had I not eliminated the step representing an execution of

the while statement with B empty, the state would also have

needed to indicate whether the execution had terminated.

19



initially B = ff2; 3; 2gg and x = �1 ;

while B not empty {

let i = any element of B ;

let B = B with i removed ;

if i > x { let x = i } }

�
B = ff2; 3; 2gg

x =�1

�
!

�
B = ff2; 2gg

x = 3

�
!

�
B = ff2gg

x = 2

�
!

�
B = ff gg

x = 2

�
!

�
B = ff gg

x = 2

�

For our simple example:

The state has to describe only the values of B and x .

The variable i is used only to indicate how the step that ends in

the current state changes B . Its value doesn't a�ect future states.

Had I not eliminated the step representing an execution of

the while statement with B empty, the state would also have

needed to indicate whether the execution had terminated.
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Why Is the Abstract Program Correct?

Why does any possible execution terminate with

x equal to the correct value?

At any point in the execution, what can happen

in the future can depend only on the current state.

Therefore, at any point in the execution, the value x can

have when it terminates depends only on the current state.

Why x can only have the correct value when it terminates

must depend on something that's true of every state.

Something true of every state of every execution is called an

invariant of the program.
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You don't understand why a program does the right thing,

unless you know the invariant that ensures it does the right thing.

Here is the invariant for our example, where max (M )

is the smallest number � every element of a multiset M :

max ( ffx ;max (B)gg ) = max (A)

I don't know how many programmers can �gure out

why this condition holds.

I think you should learn how, because I expect those who can't

to be among the �rst programmers replaced by AI.
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Termination

I explained how to show that x has the correct value when the

abstract program terminates.

I haven't explained how to show that it always terminates.

I don't have time to discuss termination.

If I did, we would see that the program doesn't terminate

for some values of A.

Can you �gure out what values those are?
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Implementing �1

Suppose A is an array of 32-bit integers.

Method 1: Implement �1 as the smallest 32-bit integer.

If that's acceptable, then an implementation that does

not test if A is empty is a satisfactory implementation.

Method 2: Implement �1 as an error value.

The Rust code that tests if A is empty implements

our abstract program.

Few programmers or computer scientist know what it means

for a program to implement an abstract program (or algorithm).

I don't have time to explain what it means.
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Real Concurrent Programs

The Why and How should be precise.

Tools should check that the How implements the Why.

Here's an example of how TLA+ works in practice.
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They build Amazon's

cloud infrastructure.
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The formal method y

they use is TLA+.
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Is Abstraction Useful Just for Concurrency?

The code for handling concurrency is important, but it's small.

What about the rest of the program?

I know of just one case in which an entire system system was built

starting with a TLA+ abstraction.
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Rosetta

European Space Agency spacecraft that explored a comet.

Several of its instruments were controlled by

the Virtuoso real-time operating system.

27



Rosetta

European Space Agency spacecraft that explored a comet.

Several of its instruments were controlled by

the Virtuoso real-time operating system.

27



Rosetta

European Space Agency spacecraft that explored a comet.

Several of its instruments were controlled by

the Virtuoso real-time operating system.

27



The next version of Virtuoso.

Its high-level design is described in TLA+.

Here's an email from Eric Verhulst,

the head of the development team.

The [TLA+] abstraction helped a lot in coming to a much

cleaner architecture (we witnessed �rst-hand the brainwashing

done by years of C programming). One of the results was that

the code size is about 10� less than in [Virtuoso].
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It doesn't come from thinking in a programming language.
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Sometimes what a program should do can't be stated precisely.

Here's an example I encountered.
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TLATEX � the TLA+ pretty-printer

The input:

Foo => /\ a = b

/\ ccc = d
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TLATEX � the TLA+ pretty-printer

The input:

/\ aaa + bb = c

/\ iii = jj * k
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There is no precise de�nition of correct alignment.

We can't describe precisely what the user wants.

If we can't describe What precisely, abstraction is useless.

Wrong.

The program has to do something.

Not knowing precisely what it should do means

we have to think abstractly about what it will do.
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It's impossible to specify the best pretty-printer.

But the program has to do something.

Writing stream-of-consciousness code doesn't

produce a good program.
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My Abstraction

6 rules plus de�nitions (in comments).

Example:

A left-comment token is LeftComment aligned

with its covering token.
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My Abstraction

6 rules plus de�nitions (in comments).

Example:

A left-comment token is LeftComment aligned

with its covering token.

This is de�ned precisely (mostly in English).
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Why Did I Write This Abstraction?

It was a lot easier to understand and debug 6 rules

than 850 lines of code.

I did a lot of debugging of the rules, aided by debugging code

to report what rules were being used.

The few bugs in implementing the rules were easy to catch.

Had I just written code, it would have taken me much longer

and not produced formatting as good.
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What is Typical About This Abstraction

It's at a higher-level than the code.

It could have been implemented in any language.

No method or tool for writing better code would have

helped to write the abstraction.

No method or tool for writing better code would have made the

abstraction unnecessary.

It says nothing about how to write the code.

You write an abstraction to help you think about the problem

before you think about the code.
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What is Not Typical About This Abstraction

It's quite subtle.

Perhaps 95% of programs require less thought,
so abstractions that are shorter and simpler su�ce.

It's a set of rules.

A set of rules/requirements/axioms is usually a bad abstraction.

It's hard to understand the consequences of a set of rules.

No method is best for all programs.
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Thinking is always better than not thinking before coding.

Some people say that you shouldn't think too much before coding.

I say that too little thinking is a much more serious and

much more common problem than too much thinking.
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How to Think

Write !

�Writing is nature's way of letting you

know how sloppy your thinking is.�

Guindon

�If you think without writing,

you only think you're thinking.�

Lamport

Writing helps you think better.

Thinking better helps you write better.

It's a virtuous cycle.
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To begin, most people must learn to write better.

This means writing to convince others.

You have to learn to read what you wrote the way others

might read it.

Perhaps other readers can teach you that.
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This means writing to convince others.

It's too easy to convince yourself of something that's not true.

You have to learn to read what you wrote the way others

might read it.

Perhaps other readers can teach you that.
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How to Think Abstractly

Abstraction is what I'm good at.

How did I become good at it?

Abstraction is at the heart of mathematics.

I don't know how you should learn to be better at abstraction.

Perhaps mathematicians can teach abstraction by making it,

rather than the math itself, the subject.

Try asking them.
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rather than the math itself, the subject.

Try asking them.
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How to Think Abstractly

Abstraction is what I'm good at.

How did I become good at it?

Abstraction is at the heart of mathematics.

I don't know how you should learn to be better at abstraction.

Because it's mathematics, TLA+ teaches some users,

but it may be too hard for most programmers.

Perhaps mathematicians can teach abstraction by making it,

rather than the math itself, the subject.

Try asking them.
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Things to Remember

Programming should be thinking followed by coding.

Thinking requires writing.

If the program is simple, very little writing is necessary.

For non-simple programs, abstract thinking (above the code level)

can avoid errors and lead to better, easier to write code.

A non-simple program can be anything from a complete system to

a complicated loop.
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Things to Remember

No way of abstracting is best for all programs.

The abstraction of an execution as a sequence of states

is often a very good one.

A state should contain all the information that can a�ect

what future states are possible.

In this abstraction, a program does the right thing

because it satis�es an invariant.

Understanding the program requires understanding that invariant.
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Things to Remember

Don't get hung up on languages.

Especially not on programming languages.
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Why Programs Should Have Bugs

I started programming in 1957.

We can write much more complex programs now.

Part of the reason is better programming languages.

But the major reason is that we have libraries of programs

our programs can use.
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The hardest part of programming is now �guring out how to use

those library programs, because many of them can never have bugs.

A program can have bugs only if there is a precise description of

what it should do.

Part of that description is language dependent.

But the most useful programs do more complex things.

You shouldn't have to read the code to understand those things.

They should have an abstract, language-independent description.
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Few programs have such a description.

I won't bother giving you horror stories of how this has made it

di�cult or impossible for me to use some library programs.

Instead, I'll tell you about an organization that did a pretty good

job of providing precise descriptions.
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The W3C JavaScript Standard

W3C = World Wide Web Consortium

There has been a lot of work on verifying that what

a program should do is implied by how it does it.

Most of it views what a program should do as

a relation between its inputs and its outputs.

That is the view used by the W3C standard.

This view works �ne for sequential programs, and

I expect most JavaScript programs are sequential.
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The W3C JavaScript Standard

There has been a lot of work on verifying that what

a program should do is implied by how it does it.

Initiated by a 1967 paper of Robert Floyd.

Most of it views what a program should do as
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That is the view used by the W3C standard.
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In 2016 I produced a video course about TLA+,

with web pages for viewing it.

Users interact with a JavaScript program.

It's a concurrent program.

Executing a library program can change di�erent

parts of the state at di�erent times.

The order in which those changes occur matters

The hard part of writing the program was �guring out how to get

the library programs to interract correctly on all popular browsers.

It required a lot of debugging.
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It seems to work correctly, but there's no way to be sure

that it will keep working correctly.

We should be able to do better than that.
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�That's all folks!�
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