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What This Talk is About
You probably expect me to talk about concurrency.

| have nothing new to say about that, and I'm tired of saying the
same old stuff.

I've realized that some things that I've learned about writing
concurrent programs apply to all programs.

So I'm going to talk about programming.
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Algorithms

I'm here because | wrote concurrent algorithms, not concurrent

programs.
An algorithm is not a program, it's higher-level, more abstract.
We shouldn’t write algorithms in a programming language.

Programming languages are complicated.



Algorithms

Algorithms are neither executed nor large.
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Don't get hung up on languages.



Whatlanguage shoutd-weuse?
Don't get hung up on languages.

Think about ideas, not the language they're expressed in.
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Contain multiple threads of control that can be executed
concurrently.

Distributed programs are ones in which the threads
are executed on different computers.
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concurrently.
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Concurrent programs are very hard to get right.

Actions of different threads can be interleaved in many ways.
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Debugging doesn’t work.

A program can work fine, and a change that alters the
relative execution rates of the threads can reveal a bug.
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Debugging doesn’t work.

Fixing one bug is likely to introduce a new bug.



Concurrent Programs

Contain multiple threads of control that can be executed
concurrently.

Concurrent programs are very hard to get right.

Debugging doesn’t work.
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Find a correct algorithm to do that part.

Maybe it's brand new.
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Find a correct algorithm to do that part.

Hard for the same reason concurrent programs are
hard to get right.
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How to Write a Concurrent Program

Figure out what part of what the program does involves
concurrency.

Find a correct algorithm to do that part.

Implement the algorithm.
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Abstraction

Something is usually called an algorithm only if
it can be useful in many applications.



Abstraction

The algorithm that describes how concurrency is implemented
in a program is often useful only for that program.



Abstraction

| therefore call it an abstract view, or an abstract program, or
simply an abstraction.
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How to Write a Concurrent Program

Find an abstract view of the program that describes
how it handles concurrency.

Programmers are taught how to code, not how to abstract.

It involves a new kind of thinking.
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How to Write a Ceneurrent Program

Programmers should learn how to do it for all programs.
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What's a Program?

Any piece of code that requires thinking before coding.

Perhaps a complete program or a method or a complicated loop.



What's a Program?

Any piece of code that requires thinking before coding.



What's a Program?

Any piece of code to be used by someone who doesn’t
want to read the code.
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What the program does.



How to Write an Abstraction

For most programs, you should write two things:
What the program does.

How the program does it.
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Wihattengrage—sheuld-we—se?
Don't get hung up on languages.

If we want to build a tool to check that the how
implies the what, then we need a precise language.

Needed to ensure that a concurrent program does what it should.
| designed TLA™ for that.



Not needed for most programs.
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A Trivial Example

Write a function to compute the largest element in an
array of 32-bit integers.



A Trivial Example

Too simple to require much thinking before coding.
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If 1 were really compulsive, | might write:

What: Return the largest element in an integer array A.



A Trivial Example

If 1 were really compulsive, | might write:

How: Examine A[0], A[1], ... in turn, letting z be
the largest value found, and return z.



Here's the code, written in Rust

fn ArrayMax(A: &[i32]) -> i32 {

let mut x = A[0];
let mut i = 1;
while i < A.len() {

if A[i] > x {

x = A[i];}

i+=1; }

x }
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fn ArrayMax(A: &[i32]) -> i32 {

let mut x = A[0];
let mut i = 1;
while i < A.len() {

if A[i] > x {

x = A[i];}

i+=1; }

x }

It's not a coding bug. It's a bug in the What.
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What: Return the largest element in an integer array A.

If A has no element, then there is no largest one.
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What: Return the largest element in an integer array A,
or an error value if A has no element.

There's an obvious fix to the What



There's an obvious fix to the What and to the How:



There's an obvious fix to the What and to the How:

fn ArrayMax(A: &[i32]) -> Result<i32, &’static str> {

if A.is_empty() {

return Err("EmptyArray"); }
let mut x = A[0];
let mut i = 1;
while i < A.len() {

if A[i] > x {

x = A[il;3

i+=1; %

Ok(x)
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Let's now see how abstraction removes coding details and helps us
understand why the program does the right thing.



Abstraction

Let's now see how abstraction removes coding details and helps us
understand why the program does the right thing.

Remember, we wouldn’t really do this on such a tiny example.



Abstraction

But it will illustrate how abstraction works.
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What: Return the largest element in an integer array A
or an error value if A has no element.



Abstracting the What

What: Return the largest element in an integer array A
or an error value if A has no element.

The function call/return is a coding detail.
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What: Return the largest element in an integer array A
or an error value if A has no element.

We're interested in how the largest element of A is found.
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We're interested in how the largest element of A is found.
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What: Set z to the largest element in an array A of numbers
or an error value if A has no element.

Why just integers?



Abstracting the What

What: Set z to the largest element in an array A of numbers
or an error value if A has no element.

Why an array?
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What: Set z to the largest element in an array A of numbers
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| assume we're interested in the elements, not how they’'re arranged.
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| assume we're interested in the elements, not how they’'re arranged.



Abstracting the What

What: Set z to the largest element in a multiset A of numbers
or an error value if A has no element.

It's a multiset, not a set, because it can contain multiple copies of
the same element.



What: Set z to the largest element in a multiset A of numbers
or an error value if A has no element.



What: Set z to the largest element in a multiset A of numbers
or an error value if A has no element.

| don't like this part because it complicates the code.



What: Set z to the largest element in a multiset A of numbers
or an error value if A has no element.

Can we find a different What that's just as good
but has a simpler implementation?



Of course this is silly for such a simple example.



Of course this is silly for such a simple example.
The complication is about two lines of code.
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Of course this is silly for such a simple example.

But when | wrote a program, often | would:
— Decide what | wanted the program to do.
— Realize coding it would be a lot of work.

— Figure out what | really needed it to do.

The result was a What that might not have everything | wanted,
but had everything | needed.

This took time, but it saved much more time writing the code.



What: Set z to the largest element in a multiset A of numbers
or an error value if A has no element.
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We want to eliminate this



What: Set z to the largest element in a multiset A of numbers

We want to eliminate this, which requires modifying this.



What: Set z to the largest element in a multiset A of numbers

How to do that is not obvious to most programmers.



What: Set z to the largest element in a multiset A of numbers

It's obvious to me because | was educated as a mathematician



What: Set z to the largest element in a multiset A of numbers.

It's obvious to me because | was educated as a mathematician,
so | know what the largest element of an empty set should equal.



Set 7 to the smallest number > all elements of A.

What: Sete—te-thetargestelementinormultisetA—efrumbers

Here's how.



Set 7 to the smallest number > all elements of A.

What: Sete—te-thetargestelementinormultisetA—efrumbers

The two are equivalent if A is not empty.



Set 7 to the smallest number > all elements of A.

What: Sete—te-thetargestelementinormultisetA—efrumbers

But what if A is empty?
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What: Set z to the smallest number > all elements of A.

If A is empty, then every number is > all elements of A.



What: Set z to the smallest number > all elements of A.

If A is empty, then every number is > all elements of A.

Why is this true?
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I'm richer than everyone living in Bodie, CA.
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I'm richer than everyone living in Bodie, CA.

I'm poorer than everyone living in Bodie, CA.



What: Set z to the smallest number > all elements of A.

If A is empty, then every number is > all elements of A.
I'm richer than everyone living in Bodie, CA.
I'm poorer than everyone living in Bodie, CA.

No one lives in Bodie, CA.
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If A is empty, then every number is > all elements of A.

This is simple (mathematical) logic.



What: Set z to the smallest number > all elements of A.

If A is empty, then every number is > all elements of A.

To think rationally, you have to understand simple logic.



What: Set z to the smallest number > all elements of A.

If A is empty, then every number is > all elements of A.

Programmers should think rationally.



What: Set z to the smallest number > all elements of A.

If A is empty, then every number is > all elements of A.



What: Set z to the smallest number > all elements of A.

If A is empty, then every number is > all elements of A.

If A is empty, then z is set to the smallest number.



What: Set z to the smallest number > all elements of A.

Mathematicians (sometimes) define —oo to be the smallest number.



What: Set z to the smallest number > all elements of A.

So this What implies that if A is empty, then z is set to
the number —oc.



The How
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while B not empty {
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The How

let B=A and z = —0c0 ;
while B not empty {
let 7 = any element of B ;

}

This is nondeterministic; there are many possible executions.
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let B = B with ¢ removed ;

}
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| used an ad hoc combination of programming-language notation
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The How

let B=A and z = —o0 ;

while B not empty {
let 7 = any element of B ;
let B = B with ¢ removed ;
if i>z {letz=1} 1

| used an ad hoc combination of programming-language notation
and English



let B=A and z = —o0 ;

while B not empty {
let 7 = any element of B ;
let B = B with ¢ removed ;
if i>z {letz=1} 1



How can we convince someone that this implements the What?



| believe most programmers could only show that some executions
compute the right value of z.



let B=A and z = —0c0 ;

while B not empty {
let 7 = any element of B ;
let B = B with ¢ removed ;
if i>z {letz=1} 1

How can we convince someone that this implements the What?

| believe most programmers could only show that some executions
compute the right value of z.

But we must show every execution computes the right value of z.



Seeing how to do this requires thinking about executions.



What is an Execution?
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An obvious answer:
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An obvious answer:

A sequence of steps.



What is an Execution?

An obvious answer:
A sequence of steps.

Each step is the execution of a part of the code.



What is an Execution?

A usually better answer:



What is an Execution?

A usually better answer:

No rule applies to all programs.



What is an Execution?

A usually better answer:

A sequence of states.



What is an Execution?

A usually better answer:
A sequence of states.

A step is a pair of consecutive states



What is an Execution?

A usually better answer:
A sequence of states.

A step is a pair of consecutive states that describes
execution of a part of the code.



What is an Execution?

To see how we describe an execution this way,
we look at one possible execution.



What is an Execution?

We suppose A has two copies of 2 and one copy of 3.



What is an Execution?

We suppose A has two copies of 2 and one copy of 3.
Let's write this multiset as {{2,2,3}} or {{2,3,2}} or {{3,2,2}}.



What is an Execution?

Let's write this multiset as {{2, 2, 3}} or {{2,3,2}} or {{3,2,2}}.
I'll write it this way



let B={{2,3,2}} and z = —oc0 ;
while B not empty {
let 7 = any element of B ;
let B = B with i removed ;
if i>z {letz=1} }



let B={{2,3,2}} and z = —oc0 ;
while B not empty {
let 7 = any element of B ;
let B = B with i removed ;
if i>z {letz=1} }

A state will describe the values of B and z and perhaps other stuff.



let B={{2,3,2}} and z = —oc0 ;
while B not empty {
let 7 = any element of B ;
let B = B with i removed ;
if i>z {letz=1} }

I'll just show the values of B and z.



let B={{2,3,2}} and z = —oc0 ;
while B not empty {
let 7 = any element of B ;
let B = B with i removed ;
if i>z {letz=1} }

What are their initial values?



let B={{2,3,2}} and z = —oc0 ;
while B not empty {
let 7 = any element of B ;
let B = B with i removed ;
if i>z {letz=1} }

B =0

An obvious answer: some standard initial value we’ll call “7" .



let B={{2,3,2}} and z = —c0 ;
while B not empty {
let 7 = any element of B ;
let B = B with i removed ;
if i>z {letz=1} }

B =0

We first execute this statement.



let B={{2,3,2}} and z = —c0 ;
while B not empty {
let 7 = any element of B ;
let B = B with i removed ;
if i>z {letz=1} }

B =0

The obvious representation is as these two steps.



let B={{2,3,2}} and z = —c0 ;
while B not empty {
let 7 = any element of B ;
let B = B with i removed ;

if i>z {letz=1} }
2] - oo

The obvious representation is as these two steps.
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let B = B with i removed ;
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The obvious representation is as these two steps.
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while B not empty {
let 7 = any element of B ;
let B = B with i removed ;

if i>z {letz=1} }
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To understand this abstract program



let B={{2,3,2}} and z = —c0 ;
while B not empty {
let 7 = any element of B ;
let B = B with i removed ;

if i>z {letz=1:} 1
b= ﬁ[;‘3;{{2,3,2}}] R fz{_{is,z}}}

To understand this abstract program, we want an execution
to be as simple as possible.



let B={{2,3,2}} and z = —c0 ;
while B not empty {
let 7 = any element of B ;
let B = B with i removed ;

if i>z {letz=1} 1
Bt %[f;{{z,s,z}}] R fi{_{im}}

This means making an execution have as few steps as possible.



let B={{2,3,2}} and z = —c0 ;
while B not empty {
let 7 = any element of B ;
let B = B with i removed ;

if i>z {letz=1} }
b= ﬁ[;‘3;{{2,3,2}}] R fz{_{is,z}}}

These two steps are of no interest.



let B={{2,3,2}} and z = —c0 ;
while B not empty {
let 7 = any element of B ;
let B = B with i removed ;

if i>z {letz=1} }
B= {{2,3,2}}]

So we let this statement define the initial state.



initially B = {{2,3,2}} and z = —oc0 ;
while B not empty {

let 7 = any element of B ;

let B = B with i removed ;

if i>z {letz=1} }
B= {{2,3,2}}]

And we can rewrite it like this.
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let 7 = any element of B ;

let B = B with 7 removed ;

if i>z {letz=1} }

r =—0

B= {{2,3,2}}]



initially B = {{2,3,2}} and z = —oc0 ;
while B not empty {

let 7 = any element of B ;

let B = B with i removed ;

if i>z {letz=1} }
B= {{2,3,2}}}

What's the next state?



initially B = {{2,3,2}} and z = —oc0 ;
while B not empty {

let 7 = any element of B ;

let B = B with i removed ;

if i>z {letz=1} }
B= {{2,3,2}}]

Code doesn’t say what constitutes a step.



initially B = {{2,3,2}} and z = —oc0 ;
while B not empty {

let 7 = any element of B ;

let B = B with i removed ;

if i>z {letz=1} }
B= {{2,3,2}}]

Is executing this statement one step?
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while B not empty {
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let B = B with i removed ;

if i>z {letz=1} }
B= {{2,3,2}}]

Or are choosing the element of B
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initially B = {{2,3,2}} and z = —oc0 ;
while B not empty {

let 7 = any element of B ;

let B = B with i removed ;

if i>z {letz=1} }
B= {{2,3,2}}]

Or are choosing the element of B and setting 7 separate steps?



initially B = {{2,3,2}} and z = —oc0 ;
while B not empty {

let 7 = any element of B ;

let B = B with 7 removed ;

if i>z {letz=1} }

r =—0

B= {{2,3,2}}]



initially B = {{2,3,2}} and z = —oc0 ;
while B not empty {

let 7 = any element of B ;

let B = B with i removed ;

if i>z {letz=1} }
B= {{2,3,2}}}

To keep the abstraction simple



initially B = {{2,3,2}} and z = —oc0 ;
while B not empty {

let 7 = any element of B ;

let B = B with i removed ;

if i>z {letz=1} }
B= {{2,3,2}}}

To keep the abstraction simple, | will make
evaluating the while loop’s test



initially B = {{2,3,2}} and z = —oc0 ;
while B not empty {

let 7 = any element of B ;

let B = B with 7 removed ;

if i>z {letz=1} }

r =—0

B= {{2,3,2}}]

To keep the abstraction simple, | will make
evaluating the while loop’s test and evaluating its body



initially B = {{2,3,2}} and z = —oc0 ;
while B not empty {

let 7 = any element of B ;

let B = B with 7 removed ;

if i>z {letz=1} }

r =—0

B= {{2,3,2}}]

To keep the abstraction simple, | will make
evaluating the while loop’s test and evaluating its body
one step.



initially B = {{2,3,2}} and z = —oc0 ;
while B not empty {

let 7 = any element of B ;

let B = B with i removed ;

if i>z {letz=1} }
B= {{2,3,2}}]

| won't bother defining a way to make the pseudocode say
that's all one step.



initially B = {{2,3,2}} and z = —oc0 ;
while B not empty {

let 7 = any element of B ;

let B = B with 7 removed ;

if i>z {letz=1} }

r =—0

B= {{2,3,2}}]



initially B = {{2,3,2}} and z = —oc0 ;
while B not empty {

let 7 = any element of B ;

let B = B with i removed ;

if i>z {letz=1} }
B= {{2,3,2}}]

Executing the next step can let i equal 2 or 3.



initially B = {{2,3,2}} and z = —oc0 ;
while B not empty {

let 7 = any element of B ;

let B = B with i removed ;

if i>z {letz=1} }
B= {{2,3,2}}]

| will let it choose 3.



initially B = {{2,3,2}} and z = —oc0 ;
while B not empty {

let 7 = any element of B ;

let B = B with i removed ;

if i>z {letz=1} }
B:{{2,3,2}}] . B={{2~,2}}]
T =—00 B =8

| will let it choose 3.



initially B = {{2,3,2}} and z = —oc0 ;
while B not empty {

let 7 = any element of B ;

let B = B with i removed ;

if i>z {letz=1} }
B:{{2,3,2}}] . B={{2~,2}}]
T =—00 B =8

The next two steps have to choose 2.



initially B = {{2,3,2}} and z = —oc0 ;
while B not empty {

let 7 = any element of B ;

let B = B with i removed ;

if i>z {letz=1} }
B={{2,3,2}}] R B={{2,2}}] R B={{2}}}
T =—00 B =8 z =2

The next two steps have to choose 2.



initially B = {{2,3,2}} and z = —oc0 ;
while B not empty {

let 7 = any element of B ;

let B = B with i removed ;

if i>z {letz=1} }
B={{2,3,2}}] R B={{2,2}}] R B={{2}}} . [B={{}}}
T =—00 B =8 z =2 B =2

The next two steps have to choose 2.



initially B = {{2,3,2}} and z = —oc0 ;
while B not empty {

let 7 = any element of B ;

let B = B with i removed ;

if i>z {letz=1} }
B={{2,3,2}}] R B={{2,2}}] R B={{2}}} . [B={{}}} %[
T =—00 B =8 z =2 B =2

The next step finds B empty, so it exits the loop
without changing B or z.

B={}

B =2

|



initially B = {{2,3,2}} and z = —oc0 ;
while B not empty {

let 7 = any element of B ;

let B = B with i removed ;

if i>z {letz=1} }
52{_{2372}}] R fz§{2’2}}] R 53{2}}} . [53{}}} . [53{}}}

That's an uninteresting step.



initially B = {{2,3,2}} and z = —oc0 ;
while B not empty {

let 7 = any element of B ;

let B = B with i removed ;

if i>z {letz=1} }
B={{2,3,2}}] R B={{2,2}}] R B={{2}}} . [B={{}}}
T =—00 B =8 z =2 B =2

So we declare that the execution terminates when B is empty.



initially B = {{2,3,2}} and z = —oc0 ;
while B not empty {

let 7 = any element of B ;

let B = B with i removed ;

if i>z {letz=1} }
B={{2,3,2}}] R B={{2,2}}] R B={{2}}} . [B={{}}}
T =—00 B =8 z =2 B =2

The execution terminates when B is empty.



initially B = {{2,3,2}} and z = —oc0 ;
while B not empty {

let 7 = any element of B ;

let B = B with i removed ;

if i>z {letz=1} }
B={{2,3,2}}] R B={{2,2}}] R B={{2}}} . [B={{}}}
T =—00 B =8 z =2 B =2

| don’t know how to say that with code.



initially B = {{2,3,2}} and z = —oc0 ;
while B not empty {

let 7 = any element of B ;

let B = B with i removed ;

if i>z {letz=1} }
B={{2,3,2}}] R B={{2,2}}] R B={{2}}} . [B={{}}}
T =—00 B =8 z =2 B =2

| don’t know how to say that with code.
(It's easy to say in TLAY.)



initially B = {{2,3,2}} and z = —oc0 ;
while B not empty {

let 7 = any element of B ;

let B = B with i removed ;

if i>z {letz=1} }
B={{2,3,2}}] R B={{2,2}}] R B={{2}}} . [B={{}}}
T =—00 B =8 z =2 B =2

But don't get hung up on languages.



initially B = {{2,3,2}} and z = —oc0 ;
while B not empty {

let 7 = any element of B ;

let B = B with i removed ;

if i>z {letz=1} }
B={{2,3,2}}] R B={{2,2}}] R B={{2}}} . [B={{}}}
T =—00 B =8 z =2 B =2

Understand what the executions are.



initially B = {{2,3,2}} and z = —oc0 ;
while B not empty {

let 7 = any element of B ;

let B = B with i removed ;

if i>z {letz=1} }
B={{2,3,2}}] R B={{2,2}}] R B={{2}}} . [B={{}}}
T =—00 B =8 z =2 B =2

Don’t worry about how they’re described.



What's a State?



What's a State?

For executions to be a useful way to think about a program:



What's a State?

The possible next states must depend only on the current state



What's a State?

The possible next states must depend only on the current state,
not on any previous state.



What's a State?

For executions to be a useful way to think about a program:

The possible next states must depend only on the current state,
not on any previous state.

We can choose states this way for abstractions that describe actual
programs because:



What's a State?

For executions to be a useful way to think about a program:

The possible next states must depend only on the current state,
not on any previous state.

We can choose states this way for abstractions that describe actual
programs because:

Programs are executed on computers.



What's a State?

For executions to be a useful way to think about a program:

The possible next states must depend only on the current state,
not on any previous state.

We can choose states this way for abstractions that describe actual
programs because:

Programs are executed on computers.

What a computer does next depends only on its current state



What's a State?

For executions to be a useful way to think about a program:

The possible next states must depend only on the current state,
not on any previous state.

What a computer does next depends only on its current state
(and perhaps external inputs)



What's a State?

For executions to be a useful way to think about a program:

The possible next states must depend only on the current state,
not on any previous state.

What a computer does next depends only on its current state,
not on any previous state.



initially B = {{2,3,2}} and z = —oc0 ;
while B not empty {

let 7 = any element of B ;

let B = B with 7 removed ;

if i>z {letz=1} }

B= {{2,3,2}}] . [B={{2,2}}} . [B={{2}}} . [B={{ }}}

T = —00 B =8 r =2 r =2

For our simple example:



initially B = {{2,3,2}} and z = —oc0 ;
while B not empty {

let 7 = any element of B ;

let B = B with 7 removed ;

if i>z {letz=1} }

T = —00 B =8 r =2 r =2

B= {{2,3,2}}] . [B={{2,2}}} . [B={{2}}} . [B={{ }}}

For our simple example:
The state has to describe only the values of B and z.



initially B = {{2,3,2}} and z = —oc0 ;
while B not empty {

let 7 = any element of B ;

let B = B with 7 removed ;

if i>z {letz=1} }

T =—00 B =8 r =2 r =2

B= {{2,3,2}}] . [B={{2,2}}} . [B={{2}}} . [B={{ }}}

The variable 7 is used only to indicate how the step that ends in
the current state changes B.



initially B = {{2,3,2}} and z = —oc0 ;
while B not empty {

let 7 = any element of B ;

let B = B with 7 removed ;

if i>z {letz=1} }

B= {{2,3,2}}] . [B={{2,2}}} . [B={{2}}] . [B={{ }}}

T =—00 B =8 r =2 r =2

The variable 7 is used only to indicate how the step that ends in
the current state changes B. Its value doesn’t affect future states.



initially B = {{2,3,2}} and z = —oc0 ;
while B not empty {

let 7 = any element of B ;

let B = B with i removed ;

if i>z {letz=1} }
B 372}}] . [fzg{z,z}}% [53{2}}% [53{ }}}ﬁ B }}}

Had | not eliminated the step representing an execution of
the while statement with B empty



initially B = {{2,3,2}} and z = —oc0 ;
while B not empty {

let 7 = any element of B ;

let B = B with i removed ;

if i>z {letz=1} 1
s o] [r2] [0 [z

Had | not eliminated the step representing an execution of
the while statement with B empty, the state would also have
needed to indicate whether the execution had terminated.



Why Is the Abstract Program Correct?



Why Is the Abstract Program Correct?

Why does any possible execution terminate with
2 equal to the correct value?



Why Is the Abstract Program Correct?

At any point in the execution, what can happen
in the future can depend only on the current state.



Why Is the Abstract Program Correct?

Therefore, at any point in the execution, the value z can
have when it terminates depends only on the current state.



Why Is the Abstract Program Correct?

Why z can only have the correct value when it terminates
must depend on something that’s true of every state.



Why Is the Abstract Program Correct?

Something true of every state of every execution is called an
invariant of the program.



You don't understand why a program does the right thing



You don’t understand why a program does the right thing,

for example terminating with the right answer



You don't understand why a program does the right thing,
unless you know the invariant that ensures it does the right thing.



Here is the invariant for our example



Here is the invariant for our example, where maz (M)
is the smallest number > every element of a multiset M :



Here is the invariant for our example, where maz (M)
is the smallest number > every element of a multiset M :

so the program should terminate with z equal to maz(A)



Here is the invariant for our example, where maz (M)
is the smallest number > every element of a multiset M :

maz( {z, maz(B)}}) = maz(A)



maz( {z, maz(B)}}) = maz(A)

To show that this is an invariant, we show that it satisfies these two
conditions:



maz( {z, maz(B)}}) = maz(A)

To show that this is an invariant, we show that it satisfies these two
conditions:

1. It is true of the initial state.



maz( {z, maz(B)}}) = maz(A)

To show that this is an invariant, we show that it satisfies these two
conditions:

2. If it's true in any state, then it's true in the next state.



maz( {z, maz(B)}}) = maz(A)

And to show that the invariant implies correctness, we show:

3. It implies z = maz(A) in a terminated state.



maz( {z, maz(B)}}) = maz(A)

1. It is true of the initial state.



maz( {z, maz(B)}}) = maz(A)

1. It is true of the initial state.

Because B = A and z = —o0,



maz( {z, maz(B)}}) = maz(A)

1. It is true of the initial state.

Because B = A and z = —o0, using maz({{—oc0, maz(A)}}) = maz(A).



maz( {z, maz(B)}}) = maz(A)

3. It implies z = maz(A) in a terminated state.



maz( {z, maz(B)}}) = maz(A)

3. It implies z = maz(A) in a terminated state.
Because B = {{ }},



maz( {z, maz(B)}}) = maz(A)

3. It implies z = maz(A) in a terminated state.
Because B = {{ }}, using maz({{ }}) = —c0 and maz({{z,—occ}}) =z



maz( {z, maz(B)}}) = maz(A)

2. If it's true in any state, then it's true in the next state.



maz( {z, maz(B)}}) = maz(A)
2. If it's true in any state, then it's true in the next state.

| don’t know how many programmers can figure out
why this condition holds.



maz( {z, maz(B)}}) = maz(A)

2. If it's true in any state, then it's true in the next state.

| think you should learn how



maz( {z, maz(B)}}) = maz(A)

2. If it's true in any state, then it's true in the next state.

| think you should learn how, because | expect those who can't
to be among the first programmers replaced by Al.



Termination



Termination

| explained how to show that z has the correct value when the
abstract program terminates.



Termination

| explained how to show that z has the correct value when the
abstract program terminates.

| haven't explained how to show that it always terminates.



Termination

| don’t have time to discuss termination.



Termination

| explained how to show that z has the correct value when the
abstract program terminates.

| don’t have time to discuss termination.

If I did, we would see that the program doesn’t terminate
for some values of A.



Termination

Can you figure out what values those are?



Implementing —oo



Implementing —oo

Suppose A is an array of 32-bit integers.



Implementing —oo

Method 1: Implement —oo as the smallest 32-bit integer.



Implementing —oo

Method 1: Implement —oo as the smallest 32-bit integer.
If that's acceptable, then an implementation that does
not test if A is empty is a satisfactory implementation.



Implementing —oo

Method 2: Implement —oo as an error value.



Implementing —oo

Method 2: Implement —oo as an error value.
The Rust code that tests if A is empty implements
our abstract program.



Implementing —oo

The Rust code that tests if A is empty implements
our abstract program.

Few programmers or computer scientist know what it means
for a program to implement an abstract program (or algorithm).



Implementing —oo

The Rust code that tests if A is empty implements
our abstract program.

| don’t have time to explain what it means.



Real Concurrent Programs



Real Concurrent Programs

The Why and How should be precise.



Real Concurrent Programs

Tools should check that the How implements the Why.



Real Concurrent Programs

Here's an example of how TLAT works in practice.
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Engineers use TLA+ to prevent serious but
subtle bugs from reaching production.

BY CHRIS NEWCOMBE, TIM RATH, FAN ZHANG, BOGDAN MUNTEANU,
AND MICHAEL

How Amazon
Web Services
Uses Formal
Methods

SINCE 2011, ENGINEERS at Amazon Web Services
(AWS) have used formal specification and model
checking to help solve difficult design problems in
critical systems. Here, we describe our motivation
and experience, what has worked well in our problem
domain, and what has not. When discussing personal
experience we refer to the authors by their initials.

At AWS we strive to build services that are simple for
customers to use. External simplicity is built on a hidden
substrate of complex distributed systems. Such complex
internals are required to achieve high availability while
running on cost-efficient infrastructure and cope
with relentless business growth. As an example of this
growth, in 2006, AWS launched 3, its Simple Storage
Service. In the following six years, 3 grew to store one
trillion objects.® Less than ayear later it had grown
to two trillion objects and was regularly handling 1.1
million requests per second.*
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$3 is just one of many AWS ser-
vices that store and process data our
customers have entrusted to us. To
safeguard that data, the core of each
service relies on fault-tolerant
tributed algorithms for replication,
ncy, concurrency control, au-
to-scaling, load balancing, and other
coordination tasks. There are man
such algorithms in the lmmum, but
combining them into a cohesi
tem is a challenge, as the a]gunlhrm
must usually be modified to interact

ly

ys
addition, we have found it necessary
to invent algorithms of our own. We
work hard to avoid unnecessary com-
plexity, but the essential complexity of
the task remains high.

Complexity increases the probabil-
ity of human error in design, code,
and operations. Errors in the core of
the system could cause loss or corrup-
tion of data, or violate other interface
contracts on which our customers de-
pend. So, before launching a service,
we need to reach extremely high con-
fidence that the core of the system is
correct. We have found the standard
verification techniques in industry are
necessary but not sufficient. We rou-

testing, and fault-injection testing but
still find that subtle bugs can hide in
complex concurrent fault-tolerant
systems. One reason they do is that
human intuition is poor at estimating
the true probability of supposedly “ex-
tremely rare” combinations of events
in systems operating at a scale of mil-
lions of requests per second.

key insights

= Formal methods find bugs In system
designs that cannot be found through
any other technique we know of.

® Formal methods are surprisingly feasible
for malnstream software development
ind give good return on investment

A e e S T
applied to the design of compl
reatworid software, nctung puilc
cloud servi
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Engineers use TLA+ to prevent serious but
subtle bugs from reaching production.

BY CHRIS NEWCOMBE, TIM RATH, FAN ZHANG, BOGDAN MUNTEANU,
AND MICHAEL

s just one of many AWS ser-
s that store and process data our
customers have entrusted to us. To
safeguard that data, the core of each
service relies on fault-tolerant
mbu(cd algorithms for replication,

How|Amazon
Web Services

Uses Formal
Methods

SINCE 2011, ENGINEERS at Amazon Web Services
(AWS) have used formal specification and model
checking to help solve difficult design problems in
critical systems. Here, we describe our motivation
and experience, what has worked well in our problem
domain, and what has not. When discussing personal
experience we refer to the authors by their initials.

At AWS we strive to build services that are simple for
customers to use. External simplicity is built on a hidden
substrate of complex distributed systems. Such complex
internals are required to achieve high availability while
running on cost-efficient infrastructure and cope
with relentless business growth. As an example of this
growth, in 2006, AWS launched 3, its Simple Storage
Service. In the following six years, S3 grew to store one
trillion objects.? Less than ayear later it had grown
to two trillion objects and was regularly handling 1.1
million requests per second.*
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SINCE 2011, ENGINEERS at Amazon Web Services
(AWS) have used formal specification and model
checking to help solve difficult design problems in
critical systems. Here, we describe our motivation
and experience, what has worked well in our problem
domain, and what has not. When discussing personal
experience we refer to the authors by their initials.

At AWS we strive to build services that are simple for
customers to use. External simplicity is built on a hidden
substrate of complex distributed systems. Such complex
internals are required to achieve high availability while
running on cost-efficient infrastructure and cope
with relentless business growth. As an example of this
growth, in 2006, AWS launched 3, its Simple Storage
Service. In the following six years, S3 grew to store one
trillion objects.® Less than ayear later it had grown
to two trillion objects and was regularly handling 1.1
million requests per second.*
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pend. So, before launching a service,
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fidence that the core of the system is
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verification techniques in industry are
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SINCE 2011, ENGINEERS at Amazon Web Services :
(AWS) have used formal specification and model g
checking to help solve difficult design problems in r
critical systems. Here, we describe our motivation o

and experience, what has worked well in our problem
domain, and what has not. When discussing personal
experience we refer to the authors by their initials.

At AWS we strive to build services that are simple for
customers to use. External simplicity is built on a hidden
substrate of complex distributed systems. Such complex
internals are required to achieve high availability while
running on cost-efficient infrastructure and cope
with relentless business growth. As an example of this
growth, in 2006, AWS launched 3, its Simple Storage
Service. In the following six years, S3 grew to store one
trillion objects.? Less than a year later it had grown
to two trillion objects and was regularly handling 1.1
million requests per second.*
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SINCE 2011, ENGINEERS at Amazon Web Services
(AWS) have used formal specification and model
checking to help solve difficult design problems in
critical systems. Here, we describe our motivation
and experience, what has worked well in our problem
domain, and what has not. When discussing personal
experience we refer to the authors by their initials.

At AWS we strive to build services that are simple for
customers to use. External simplicity is built on a hidden
substrate of complex distributed systems. Such complex
internals are required to achieve high availability while
running on cost-efficient infrastructure and cope
with relentless business growth. As an example of this
growth, in 2006, AWS launched 3, its Simple Storage
Service. In the following six years, S3 grew to store one
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domain, and what has not. When discussing personal
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At AWS we strive to build services that are simple for
customers to use. External simplicity is built on a hidden
substrate of complex distributed systems. Such complex
internals are required to achieve high availability while
running on cost-efficient infrastructure and cope
with relentless business growth. As an example of this
growth, in 2006, AWS launched 3, its Simple Storage
Service. In the following six years, S3 grew to store one
trillion objects.? Less than a year later it had grown
to two trillion objects and was regularly handling 1.1
million requests per second.*
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TLAT finds

B Fermat-nrethods-fiird bugs in system
designs that|cannot be found|through

any other technique we know of.
These are fundamental design flaws.

Very expensive to fix after the code is written
because it requires extensive recoding.

And often not found until the code has been released to users.



+ ¢
TLA™ finds
] -Ferm-a-l-metl-rods-fhdin system
designs that cannot be found through
any other technique we know of.

These are fundamental design flaws.

But Amazon engineers find these flaws before any code is written.



Is Abstraction Useful Just for Concurrency?



Is Abstraction Useful Just for Concurrency?

The code for handling concurrency is important, but it's small.



Is Abstraction Useful Just for Concurrency?

What about the rest of the program?



Is Abstraction Useful Just for Concurrency?

| know of just one case in which an entire system system was built
starting with a TLA™T abstraction.



Rosetta




Rosetta

European Space Agency spacecraft that explored a comet.



Rosetta

Several of its instruments were controlled by
the Virtuoso real-time operating system.
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The next version of Virtuoso.

Its high-level design is described in TLAY.
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the head of the development team.
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Bernhard H.C. Sputh - Vitaliy Mezhuyev

The next version of Virtuoso.

Formal
Development of a

Network-Centric
RTOS

Software Engineering for Reliable

Enbedded ystems Here's an email from Eric Verhulst,
the head of the development team.

(we witnessed first-hand the brainwashing
done by years of C programming).
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the code size is about 10x less than in [Virtuoso].

You don't produce 10x less code by better coding.



The [TLA™T] abstraction helped a lot in coming to a much
cleaner architecture (we witnessed first-hand the brainwashing
done by years of C programming). One of the results was that

the code size is about 10x less than in [Virtuoso].
You don't produce 10x less code by better coding.

You do it with a cleaner architecture



cleaner architecture

better high-level design
You do it with a elearerarehiteettre



The [TLA™] abstraction helped a lot

, which comes from
thinking about an abstraction, not about the code.



(we witnessed first-hand the brainwashing
done by years of C programming).

It doesn’t come from thinking in a programming language.



Sometimes what a program should do can’t be stated precisely.



Sometimes what a program should do can’t be stated precisely.

Here’s an example | encountered.
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The input:

Foo => /\ a
/\ ccc

o
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TLATEX — the TLA™T pretty-printer

The input: The naive output:

Foo = ANa=1b
A cce = d

Foo => /\ a
/\ ccc

o
Q. o



TLATEX — the TLA™T pretty-printer

The input: The naive output:

Foo =>|/\|la = Foo = ANa=1b
/\|ccec = A cce = d

The user probably wanted these aligned.



TLATEX — the TLA™T pretty-printer

The input: The right output:

Foo =>|/\|la = Foo = ANa =1
/\|ccec = Acce=d

The user probably wanted these aligned.



TLATEX — the TLA™T pretty-printer

The input:

/\ aaa + bb = ¢
/\ iii = jj * k



TLATEX — the TLA™T pretty-printer

The input: The naive output:

/\ aaa + bb = ¢ A aaa + bb = ¢
/\ iii = jj * k Adii = jj * k



TLATEX — the TLA™T pretty-printer

The input: The naive output:

/\ aaa|+|bb =|c A aaa + bb = ¢
I\ iiil=|3j *|k Adii = jj * k

The user probably didn’t wanted these aligned.



TLATEX — the TLA™T pretty-printer

The input: The right output:

/\ aaa|+|bb =|c A aaa + bb = ¢
I\ iiil=|3j *|k Adii = jj * k

The user probably didn’t wanted these aligned.



There is no precise definition of correct alignment.



There is no precise definition of correct alignment.

We can't describe precisely what the user wants.



There is no precise definition of correct alignment.

We can't describe precisely what the user wants.

If we can't describe What precisely, abstraction is useless.



Wrong.



The program has to do something.



There is no precise definition of correct alignment.

We can't describe precisely what the user wants.

Wrong.
The program has to do something.

Not knowing precisely what it should do means
we have to think abstractly about what it will do.



It’s impossible to specify the best pretty-printer.



It's impossible to specify the best pretty-printer.

But the program has to do something.



Writing stream-of-consciousness code doesn’t
produce a good program.



My Abstraction



My Abstraction

6 rules plus definitions (in comments).



My Abstraction

Example:

A left-comment token is LeftComment aligned
with its covering token.



My Abstraction

Example:

A left-comment token is LeftComment aligned
with its covering token.

This is defined precisely (mostly in English).



Why Did | Write This Abstraction?



Why Did | Write This Abstraction?

It was a lot easier to understand and debug 6 rules
than 850 lines of code.



Why Did | Write This Abstraction?

| did a lot of debugging of the rules



Why Did | Write This Abstraction?

| did a lot of debugging of the rules, aided by debugging code
to report what rules were being used.



Why Did | Write This Abstraction?

The few bugs in implementing the rules were easy to catch.



Why Did | Write This Abstraction?

Had | just written code, it would have taken me much longer
and not produced formatting as good.



What is Typical About This Abstraction



What is Typical About This Abstraction

It's at a higher-level than the code.



What is Typical About This Abstraction

It could have been implemented in any language.



What is Typical About This Abstraction

No method or tool for writing better code would have
helped to write the abstraction.



What is Typical About This Abstraction

No method or tool for writing better code would have made the
abstraction unnecessary.



What is Typical About This Abstraction

It says nothing about how to write the code.



What is Typical About This Abstraction

You write an abstraction to help you think about the problem
before you think about the code.



What is Not Typical About This Abstraction



What is Not Typical About This Abstraction

It's quite subtle.



What is Not Typical About This Abstraction

Perhaps 95% of programs require less thought,
so abstractions that are shorter and simpler suffice.



What is Not Typical About This Abstraction

It's a set of rules.



What is Not Typical About This Abstraction

A set of rules/requirements/axioms is usually a bad abstraction.



What is Not Typical About This Abstraction

It's hard to understand the consequences of a set of rules.



What is Not Typical About This Abstraction

No method is best for all programs.



Thinking is always better than not thinking before coding.



Some people say that you shouldn’t think too much before coding.



| say that too little thinking is a much more serious and
much more common problem than too much thinking.



How to Think



How to Think

Write !



How to Think

“Writing is nature's way of letting you
know how sloppy your thinking is.”
Guindon



How to Think

“If you think without writing,
you only think you're thinking.”
Lamport



How to Think

Write !

“If you think without writing,
you only think you're thinking.”
Lamport

Writing helps you think better.



How to Think

Writing helps you think better.
Thinking better helps you write better.



How to Think

Writing helps you think better.
Thinking better helps you write better.

It's a virtuous cycle.



To begin, most people must learn to write better.



To begin, most people must learn to write better.

This means writing to convince others.



This means writing to convince others.
It's too easy to convince yourself of something that’s not true.



You have to learn to read what you wrote the way others
might read it.



To begin, most people must learn to write better.
This means writing to convince others.

You have to learn to read what you wrote the way others
might read it.

Perhaps other readers can teach you that.



How to Think Abstractly



How to Think Abstractly

Abstraction is what I'm good at.



How to Think Abstractly

Abstraction is what I'm good at.

And being good at it is why | was invited to speak to you.



How to Think Abstractly

How did | become good at it?



How to Think Abstractly

How did | become good at it?

In large part by being educated as a mathematician.



How to Think Abstractly

Abstraction is at the heart of mathematics.



How to Think Abstractly

Abstraction is at the heart of mathematics.

Math abstracts from two sheep and two goats to the number 2.



How to Think Abstractly

| don’t know how you should learn to be better at abstraction.



How to Think Abstractly

| don’t know how you should learn to be better at abstraction.

Because it's mathematics, TLA™T teaches some users



How to Think Abstractly

| don’t know how you should learn to be better at abstraction.

Because it's mathematics, TLAT teaches some users,
but it may be too hard for most programmers.



How to Think Abstractly

Perhaps mathematicians can teach abstraction by making it,
rather than the math itself, the subject.



How to Think Abstractly

Perhaps mathematicians can teach abstraction by making it,
rather than the math itself, the subject.

Try asking them.



Things to Remember



Things to Remember

Programming should be thinking followed by coding.



Things to Remember

Thinking requires writing.



Things to Remember

If the program is simple, very little writing is necessary.



Things to Remember

If the program is simple, very little writing is necessary.
But it takes thinking to know if it's simple.



Things to Remember

For non-simple programs, abstract thinking (above the code level)
can avoid errors and lead to better, easier to write code.



Things to Remember

A non-simple program can be anything from a complete system to
a complicated loop.



Things to Remember

No way of abstracting is best for all programs.



Things to Remember

The abstraction of an execution as a sequence of states
is often a very good one.



Things to Remember

A state should contain all the information that can affect
what future states are possible.



Things to Remember

No way of abstracting is best for all programs.

A state should contain all the information that can affect
what future states are possible.

In this abstraction, a program does the right thing
because it satisfies an invariant.



Things to Remember

Understanding the program requires understanding that invariant.



Things to Remember

Don't get hung up on languages.



Things to Remember
Don't get hung up on languages.

Especially not on programming languages.



A Postscript



Why Programs Should Have Bugs



Why Programs Should Have Bugs

| started programming in 1957.



Why Programs Should Have Bugs

We can write much more complex programs now.



Why Programs Should Have Bugs

Part of the reason is better programming languages.



Why Programs Should Have Bugs

But the major reason is that we have libraries of programs
our programs can use.



The hardest part of programming is now figuring out how to use
those library programs,



The hardest part of programming is now figuring out how to use
those library programs, because many of them can never have bugs.



The hardest part of programming is now figuring out how to use
those library programs, because many of them can never have bugs.

A program can have bugs only if there is a precise description of
what it should do.



Part of that description is language dependent.



Part of that description is language dependent.

That part is usually simple.



Part of that description is language dependent.

It's often implied by how the program is called



Part of that description is language dependent.

It's often implied by how the program is called,
especially for strongly-typed languages.



The hardest part of programming is now figuring out how to use
those library programs, because many of them can never have bugs.

A program can have bugs only if there is a precise description of
what it should do.

Part of that description is language dependent.

But the most useful programs do more complex things.



You shouldn’t have to read the code to understand those things.



The hardest part of programming is now figuring out how to use
those library programs, because many of them can never have bugs.

A program can have bugs only if there is a precise description of
what it should do.

Part of that description is language dependent.
But the most useful programs do more complex things.
You shouldn’t have to read the code to understand those things.

They should have an abstract, language-independent description.



Few programs have such a description.



Few programs have such a description.
Many have no description at all.



| won't bother giving you horror stories of how this has made it
difficult or impossible for me to use some library programs.



Instead, I'll tell you about an organization that did a pretty good
job of providing precise descriptions.



The W3C JavaScript Standard

W3C = World Wide Web Consortium



The W3C JavaScript Standard

There has been a lot of work on verifying that what
a program should do is implied by how it does it.



The W3C JavaScript Standard

There has been a lot of work on verifying that what
a program should do is implied by how it does it.
Initiated by a 1967 paper of Robert Floyd.



The W3C JavaScript Standard

Most of it views what a program should do as
a relation between its inputs and its outputs.



The W3C JavaScript Standard

That is the view used by the W3C standard.



The W3C JavaScript Standard

There has been a lot of work on verifying that what
a program should do is implied by how it does it.

That is the view used by the W3C standard.

This view works fine for sequential programs.



The W3C JavaScript Standard

This view works fine for sequential programs, and
| expect most JavaScript programs are sequential.



In 2016 | produced a video course about TLAT,
with web pages for viewing it.



In 2016 | produced a video course about TLAT,
with web pages for viewing it.

Users interact with a JavaScript program.



It's a concurrent program.



It's a concurrent program.

The code controlling the video is executed by one thread.



It's a concurrent program.
The code controlling the video is executed by one thread.

The code handling mouse clicks is executed by a diferent thread.



In 2016 | produced a video course about TLAT,
with web pages for viewing it.

It's a concurrent program.

Executing a library program can change different
parts of the state at different times.



The order in which those changes occur matters



The order in which those changes occur matters, but
it can't be described by viewing what the program does
as a relation between inputs and outputs.



In 2016 | produced a video course about TLAT,
with web pages for viewing it.

It's a concurrent program.

The order in which those changes occur matters.

The hard part of writing the program was figuring out how to get
the library programs to interract correctly on all popular browsers.



In 2016 | produced a video course about TLAT,
with web pages for viewing it.

Users interact with a JavaScript program.
It's a concurrent program.

Executing a library program can change different
parts of the state at different times.

The order in which those changes occur matters.

The hard part of writing the program was figuring out how to get
the library programs to interract correctly on all popular browsers.

It required a lot of debugging.



It seems to work correctly, but there's no way to be sure
that it will keep working correctly.



It seems to work correctly, but there's no way to be sure
that it will keep working correctly.

We should be able to do better than that.



“That's all folks!”



