Coding Isn't Programming

Leslie Lamport

Microsoft Researcher Emeritus

What This Talk is About

What This Talk is About

You probably expect me to talk about concurrency.

What This Talk is About

| have nothing new to say about that, and I'm tired of saying the
same old stuff.

What This Talk is About

I've realized that some things that I've learned about writing
concurrent programs apply to all programs.

What This Talk is About
You probably expect me to talk about concurrency.

| have nothing new to say about that, and I'm tired of saying the
same old stuff.

I've realized that some things that I've learned about writing
concurrent programs apply to all programs.

So I'm going to talk about programming.

Algorithms

Algorithms

I'm here because | wrote concurrent algorithms, not concurrent
programs.

Algorithms

I'm here because | wrote concurrent algorithms, not concurrent
programs.

An algorithm is not a program

Algorithms

An algorithm is not a program, it's higher-level, more abstract.

Algorithms

An algorithm is not a program, it's higher-level, more abstract.

It can be implemented in many programming languages.

Algorithms

An algorithm is not a program, it's higher-level, more abstract.

Algorithms

We don’t have to write algorithms in a programming language.

Algorithms

We shouldn’t write algorithms in a programming language.

Algorithms

I'm here because | wrote concurrent algorithms, not concurrent

programs.
An algorithm is not a program, it's higher-level, more abstract.
We shouldn’t write algorithms in a programming language.

Programming languages are complicated.

Algorithms

I'm here because | wrote concurrent algorithms, not concurrent
programs.

We write algorithms in a programming language.

Programming languages are complicated.

They have to be efficiently executed.

Algorithms

I'm here because | wrote concurrent algorithms, not concurrent
programs.

We write algorithms in a programming language.

Programming languages are complicated.

They have to handle large programs.

Algorithms

I'm here because | wrote concurrent algorithms, not concurrent

programs.
An algorithm is not a program, it's higher-level, more abstract.
We shouldn’t write algorithms in a programming language.

Programming languages are complicated.

Algorithms

Algorithms are neither executed nor large.

What language should we use?

Whatlanguage shoutd-weuse?

Don't get hung up on languages.

Whatlanguage shoutd-weuse?
Don't get hung up on languages.

Think about ideas, not the language they're expressed in.

Concurrent Programs

Concurrent Programs

Contain multiple threads of control that can be executed
concurrently.

Concurrent Programs

Contain multiple threads of control that can be executed
concurrently.

Distributed programs are ones in which the threads
are executed on different computers.

Concurrent Programs

Contain multiple threads of control that can be executed
concurrently.

Concurrent Programs

Concurrent programs are very hard to get right.

Concurrent Programs

Concurrent programs are very hard to get right.

Actions of different threads can be interleaved in many ways.

Concurrent Programs

Concurrent programs are very hard to get right.

This implies a huge number of possible executions.

Concurrent Programs

Concurrent programs are very hard to get right.

Hard to think of all the ways they can go wrong.

Concurrent Programs

Concurrent programs are very hard to get right.

Concurrent Programs

Debugging doesn’t work.

Concurrent Programs

Debugging doesn’t work.

Can’t be sure you've checked all relevant cases.

Concurrent Programs

Debugging doesn’t work.

A program can work fine

Concurrent Programs

Debugging doesn’t work.

A program can work fine, and a change that alters the
relative execution rates of the threads can reveal a bug.

Concurrent Programs

Debugging doesn’t work.

Fixing one bug is likely to introduce a new bug.

Concurrent Programs

Contain multiple threads of control that can be executed
concurrently.

Concurrent programs are very hard to get right.

Debugging doesn’t work.

How to Write a Concurrent Program

How to Write a Concurrent Program

Figure out what part of what the program does involves
concurrency.

How to Write a Concurrent Program

Figure out what part of what the program does involves
concurrency.

The part that synchronizes the threads.

How to Write a Concurrent Program

Figure out what part of what the program does involves
concurrency.

Usually a small part of what the program does.

How to Write a Concurrent Program

Figure out what part of what the program does involves
concurrency.

How to Write a Concurrent Program

Find a correct algorithm to do that part.

How to Write a Concurrent Program

Find a correct algorithm to do that part.
Maybe it’s in a textbook.

How to Write a Concurrent Program

Find a correct algorithm to do that part.

Maybe it’s almost like one in a textbook.

How to Write a Concurrent Program

Find a correct algorithm to do that part.

Maybe it's brand new.

How to Write a Concurrent Program

Find a correct algorithm to do that part.

Hard for the same reason concurrent programs are
hard to get right.

How to Write a Concurrent Program

Find a correct algorithm to do that part.

But algorithms are simpler than programs.

How to Write a Concurrent Program

Find a correct algorithm to do that part.

How to Write a Concurrent Program

Implement the algorithm.

How to Write a Concurrent Program

Implement the algorithm.

That's coding.

How to Write a Concurrent Program

Implement the algorithm.

Lot's of languages and tools have been developed for coding.

How to Write a Concurrent Program

Implement the algorithm.

Programmers are good at coding.

How to Write a Concurrent Program

Implement the algorithm.

They're not so good at finding correct algorithms.

How to Write a Concurrent Program

Figure out what part of what the program does involves
concurrency.

Find a correct algorithm to do that part.

Implement the algorithm.

Abstraction

Abstraction

Something is usually called an algorithm only if
it can be useful in many applications.

Abstraction

The algorithm that describes how concurrency is implemented
in a program is often useful only for that program.

Abstraction

| therefore call it an abstract view, or an abstract program, or
simply an abstraction.

How to Write a Concurrent Program

How to Write a Concurrent Program

Find an abstract view of the program that describes
how it handles concurrency.

How to Write a Concurrent Program

Find an abstract view of the program that describes
how it handles concurrency.

A higher-level abstraction than the code.

How to Write a Concurrent Program

Find an abstract view of the program that describes
how it handles concurrency.

How to Write a Concurrent Program

Programmers are taught how to code, not how to abstract.

How to Write a Concurrent Program

It involves a new kind of thinking.

How to Write a Concurrent Program

It involves a new kind of thinking.

Thinking before you code.

How to Write a Concurrent Program

It involves a new kind of thinking.

Thinking at a higher level than code

How to Write a Concurrent Program

Find an abstract view of the program that describes
how it handles concurrency.

Programmers are taught how to code, not how to abstract.

It involves a new kind of thinking.

How to Write a Concurrent Program

Programmers should learn how to do it.

How to Write a Ceneurrent Program

Programmers should learn how to do it for all programs.

What's a Program?

What's a Program?

Any piece of code that requires thinking before coding.

What's a Program?

Any piece of code that requires thinking before coding.

Perhaps a complete program

What's a Program?

Any piece of code that requires thinking before coding.

Perhaps a complete program or a method

What's a Program?

Any piece of code that requires thinking before coding.

Perhaps a complete program or a method or a complicated loop.

What's a Program?

Any piece of code that requires thinking before coding.

What's a Program?

Any piece of code to be used by someone who doesn’t
want to read the code.

How to Write an Abstraction

How to Write an Abstraction

Programs are written for many purposes.

How to Write an Abstraction

No method is best for all programs.

How to Write an Abstraction

For most programs, you should write two things:

How to Write an Abstraction

For most programs, you should write two things:

What the program does.

How to Write an Abstraction

For most programs, you should write two things:
What the program does.

How the program does it.

What language should we use?

Wihatlenguage—sheuld-weuse?

Don't get hung up on languages.

If we want to build a tool to check that the Aow
implies the what,

If we want to build a tool to check that the how
implies the what, then we need a precise language.

Whatlarguage shouldweuse?
Don’t get hung up on languages.

If we want to build a tool to check that the how
implies the what, then we need a precise language.

Needed to ensure that a concurrent program does what it should.

Wihattengrage—sheuld-we—se?
Don't get hung up on languages.

If we want to build a tool to check that the how
implies the what, then we need a precise language.

Needed to ensure that a concurrent program does what it should.
| designed TLA™ for that.

Not needed for most programs.

A Trivial Example

A Trivial Example

Write a function to compute the largest element in an
array of 32-bit integers.

A Trivial Example

Too simple to require much thinking before coding.

A Trivial Example

If 1 were really compulsive, | might write:

A Trivial Example

If 1 were really compulsive, | might write:

What: Return the largest element in an integer array A.

A Trivial Example

If 1 were really compulsive, | might write:

How: Examine A[0], A[1], ... in turn, letting z be
the largest value found, and return z.

Here's the code, written in Rust

fn ArrayMax(A: &[i32]) -> i32 {

let mut x = A[0];
let mut i = 1;
while i < A.len() {

if A[i] > x {

x = A[i];}

i+=1; }

x }

Here's the code, written in Rust (which | don’t know)

fn ArrayMax(A: &[i32]) -> i32 {

let mut x = A[0];
let mut i = 1;
while i < A.len() {

if A[i] > x {

x = A[i];}

i+=1; }

x }

Here's the code, written in Rust

fn ArrayMax(A: &[i32]) -> i32 {

let mut x = A[0];
let mut i = 1;
while i < A.len() {

if A[i] > x {

x = A[i];}

i+=1; }

x }

Raise your hand if you see the bug.

fn ArrayMax(A: &[i32]) -> i32 {

let mut x = A[0];
let mut i = 1;
while i < A.len() {

if A[i] > x {

x = A[i];}

i+=1; }

x }

It's not a coding bug.

fn ArrayMax(A: &[i32]) -> i32 {

let mut x = A[0];
let mut i = 1;
while i < A.len() {

if A[i] > x {

x = A[i];}

i+=1; }

x }

It's not a coding bug. It's a bug in the What.

What: Return the largest element in an integer array A.

What: Return the largest element in an integer array A.

If A has no element, then there is no largest one.

What: Return the largest element in an integer array A.

There's an obvious fix to the What

What: Return the largest element in an integer array A,
or an error value if A has no element.

There's an obvious fix to the What

There's an obvious fix to the What and to the How:

There's an obvious fix to the What and to the How:

fn ArrayMax(A: &[i32]) -> Result<i32, &’static str> {

if A.is_empty() {

return Err("EmptyArray"); }
let mut x = A[0];
let mut i = 1;
while i < A.len() {

if A[i] > x {

x = A[il;3

i+=1; %

Ok(x)

Abstraction

Abstraction

Let's now see how abstraction removes coding details and helps us
understand why the program does the right thing.

Abstraction

Let's now see how abstraction removes coding details and helps us
understand why the program does the right thing.

Remember, we wouldn’t really do this on such a tiny example.

Abstraction

But it will illustrate how abstraction works.

Abstracting the What

What: Return the largest element in an integer array A
or an error value if A has no element.

Abstracting the What

What: Return the largest element in an integer array A
or an error value if A has no element.

The function call/return is a coding detail.

Abstracting the What

What: Return the largest element in an integer array A
or an error value if A has no element.

We're interested in how the largest element of A is found.

Abstracting the What

What: Set z to the largest element in an integer array A
or an error value if A has no element.

We're interested in how the largest element of A is found.

Abstracting the What

What: Set z to the largest element in an integer array A
or an error value if A has no element.

Why just integers?

Abstracting the What

What: Set z to the largest element in an array A of numbers
or an error value if A has no element.

Why just integers?

Abstracting the What

What: Set z to the largest element in an array A of numbers
or an error value if A has no element.

Why an array?

Abstracting the What

What: Set z to the largest element in an array A of numbers
or an error value if A has no element.

| assume we're interested in the elements, not how they’'re arranged.

Abstracting the What

What: Set z to the largest element in a multiset A of numbers
or an error value if A has no element.

| assume we're interested in the elements, not how they’'re arranged.

Abstracting the What

What: Set z to the largest element in a multiset A of numbers
or an error value if A has no element.

It's a multiset, not a set, because it can contain multiple copies of
the same element.

What: Set z to the largest element in a multiset A of numbers
or an error value if A has no element.

What: Set z to the largest element in a multiset A of numbers
or an error value if A has no element.

| don't like this part because it complicates the code.

What: Set z to the largest element in a multiset A of numbers
or an error value if A has no element.

Can we find a different What that's just as good
but has a simpler implementation?

Of course this is silly for such a simple example.

Of course this is silly for such a simple example.
The complication is about two lines of code.

Of course this is silly for such a simple example.

But when | wrote a program, often | would:

But when | wrote a program, often | would:

— Decide what | wanted the program to do.

But when | wrote a program, often | would:

— Realize coding it would be a lot of work.

But when | wrote a program, often | would:

— Figure out what | really needed it to do.

The result was a What that might not have everything | wanted

The result was a What that might not have everything | wanted,
but had everything | needed.

Of course this is silly for such a simple example.

But when | wrote a program, often | would:
— Decide what | wanted the program to do.
— Realize coding it would be a lot of work.

— Figure out what | really needed it to do.

The result was a What that might not have everything | wanted,
but had everything | needed.

This took time

Of course this is silly for such a simple example.

But when | wrote a program, often | would:
— Decide what | wanted the program to do.
— Realize coding it would be a lot of work.

— Figure out what | really needed it to do.

The result was a What that might not have everything | wanted,
but had everything | needed.

This took time, but it saved much more time writing the code.

What: Set z to the largest element in a multiset A of numbers
or an error value if A has no element.

What: Set z to the largest element in a multiset A of numbers

Srar—ererarae——i—hasne—element

We want to eliminate this

What: Set z to the largest element in a multiset A of numbers

We want to eliminate this, which requires modifying this.

What: Set z to the largest element in a multiset A of numbers

How to do that is not obvious to most programmers.

What: Set z to the largest element in a multiset A of numbers

It's obvious to me because | was educated as a mathematician

What: Set z to the largest element in a multiset A of numbers.

It's obvious to me because | was educated as a mathematician,
so | know what the largest element of an empty set should equal.

Set 7 to the smallest number > all elements of A.

What: Sete—te-thetargestelementinormultisetA—efrumbers

Here's how.

Set 7 to the smallest number > all elements of A.

What: Sete—te-thetargestelementinormultisetA—efrumbers

The two are equivalent if A is not empty.

Set 7 to the smallest number > all elements of A.

What: Sete—te-thetargestelementinormultisetA—efrumbers

But what if A is empty?

What: Set z to the smallest number > all elements of A.

What: Set z to the smallest number > all elements of A.

If A is empty, then every number is > all elements of A.

What: Set z to the smallest number > all elements of A.

If A is empty, then every number is > all elements of A.

Why is this true?

What: Set z to the smallest number > all elements of A.

If A is empty, then every number is > all elements of A.

I'm richer than everyone living in Bodie, CA.

What: Set z to the smallest number > all elements of A.

If A is empty, then every number is > all elements of A.

I'm richer than everyone living in Bodie, CA.

I'm poorer than everyone living in Bodie, CA.

What: Set z to the smallest number > all elements of A.

If A is empty, then every number is > all elements of A.
I'm richer than everyone living in Bodie, CA.
I'm poorer than everyone living in Bodie, CA.

No one lives in Bodie, CA.

What: Set z to the smallest number > all elements of A.

If A is empty, then every number is > all elements of A.

This is simple (mathematical) logic.

What: Set z to the smallest number > all elements of A.

If A is empty, then every number is > all elements of A.

To think rationally, you have to understand simple logic.

What: Set z to the smallest number > all elements of A.

If A is empty, then every number is > all elements of A.

Programmers should think rationally.

What: Set z to the smallest number > all elements of A.

If A is empty, then every number is > all elements of A.

What: Set z to the smallest number > all elements of A.

If A is empty, then every number is > all elements of A.

If A is empty, then z is set to the smallest number.

What: Set z to the smallest number > all elements of A.

Mathematicians (sometimes) define —oo to be the smallest number.

What: Set z to the smallest number > all elements of A.

So this What implies that if A is empty, then z is set to
the number —oc.

The How

The How

let B=A and 2z = — ;

The How

let B=A and z = —o0;
while B not empty {

The How

let B=A and z = —0c0 ;
while B not empty {
let 7 = any element of B ;

The How

let B=A and z = —0c0 ;
while B not empty {
let 7 = any element of B ;

}

This is nondeterministic; there are many possible executions.

The How

let B=A and z = —o0 ;
while B not empty {
let 7 = any element of B ;
let B = B with ¢ removed ;

}

The How

let B=A and z = —o0 ;

while B not empty {
let 7 = any element of B ;
let B = B with ¢ removed ;
if i>z {letz=1} 1

The How

let B=A and z = —o0 ;

while B not empty {
let 7 = any element of B ;
let B = B with ¢ removed ;
if i>z {letz=1} 1

| used an ad hoc combination of programming-language notation

The How

let B=A and z = —o0 ;

while B not empty {
let 7 = any element of B ;
let B = B with ¢ removed ;
if i>z {letz=1} 1

| used an ad hoc combination of programming-language notation

The How

let B=A and z = —o0 ;

while B not empty {
let 7 = any element of B ;
let B = B with ¢ removed ;
if i>z {letz=1} 1

| used an ad hoc combination of programming-language notation
and English

The How

let B=A and z = —o0 ;

while B not empty {
let 7 = any element of B ;
let B = B with ¢ removed ;
if i>z {letz=1} 1

| used an ad hoc combination of programming-language notation
and English

let B=A and z = —o0 ;

while B not empty {
let 7 = any element of B ;
let B = B with ¢ removed ;
if i>z {letz=1} 1

How can we convince someone that this implements the What?

| believe most programmers could only show that some executions
compute the right value of z.

let B=A and z = —0c0 ;

while B not empty {
let 7 = any element of B ;
let B = B with ¢ removed ;
if i>z {letz=1} 1

How can we convince someone that this implements the What?

| believe most programmers could only show that some executions
compute the right value of z.

But we must show every execution computes the right value of z.

Seeing how to do this requires thinking about executions.

What is an Execution?

What is an Execution?

An obvious answer:

What is an Execution?

An obvious answer:

A sequence of steps.

What is an Execution?

An obvious answer:
A sequence of steps.

Each step is the execution of a part of the code.

What is an Execution?

A usually better answer:

What is an Execution?

A usually better answer:

No rule applies to all programs.

What is an Execution?

A usually better answer:

A sequence of states.

What is an Execution?

A usually better answer:
A sequence of states.

A step is a pair of consecutive states

What is an Execution?

A usually better answer:
A sequence of states.

A step is a pair of consecutive states that describes
execution of a part of the code.

What is an Execution?

To see how we describe an execution this way,
we look at one possible execution.

What is an Execution?

We suppose A has two copies of 2 and one copy of 3.

What is an Execution?

We suppose A has two copies of 2 and one copy of 3.
Let's write this multiset as {{2,2,3}} or {{2,3,2}} or {{3,2,2}}.

What is an Execution?

Let's write this multiset as {{2, 2, 3}} or {{2,3,2}} or {{3,2,2}}.
I'll write it this way

let B={{2,3,2}} and z = —oc0 ;
while B not empty {
let 7 = any element of B ;
let B = B with i removed ;
if i>z {letz=1} }

let B={{2,3,2}} and z = —oc0 ;
while B not empty {
let 7 = any element of B ;
let B = B with i removed ;
if i>z {letz=1} }

A state will describe the values of B and z and perhaps other stuff.

let B={{2,3,2}} and z = —oc0 ;
while B not empty {
let 7 = any element of B ;
let B = B with i removed ;
if i>z {letz=1} }

I'll just show the values of B and z.

let B={{2,3,2}} and z = —oc0 ;
while B not empty {
let 7 = any element of B ;
let B = B with i removed ;
if i>z {letz=1} }

What are their initial values?

let B={{2,3,2}} and z = —oc0 ;
while B not empty {
let 7 = any element of B ;
let B = B with i removed ;
if i>z {letz=1} }

B =0

An obvious answer: some standard initial value we’ll call “7" .

let B={{2,3,2}} and z = —c0 ;
while B not empty {
let 7 = any element of B ;
let B = B with i removed ;
if i>z {letz=1} }

B =0

We first execute this statement.

let B={{2,3,2}} and z = —c0 ;
while B not empty {
let 7 = any element of B ;
let B = B with i removed ;
if i>z {letz=1} }

B =0

The obvious representation is as these two steps.

let B={{2,3,2}} and z = —c0 ;
while B not empty {
let 7 = any element of B ;
let B = B with i removed ;

if i>z {letz=1} }
2] - oo

The obvious representation is as these two steps.

let B={{2,3,2}} and z = —c0 ;
while B not empty {
let 7 = any element of B ;
let B = B with i removed ;

if i>z {letz=1} }
f; . [fz?{{z,s,z}}] R fz{_{is,z}}}

The obvious representation is as these two steps.

let B={{2,3,2}} and z = —c0 ;
while B not empty {
let 7 = any element of B ;
let B = B with i removed ;

if i>z {letz=1} }
b= ﬁ[;‘3;{{2,3,2}}] R fz{_{is,z}}}

To understand this abstract program

let B={{2,3,2}} and z = —c0 ;
while B not empty {
let 7 = any element of B ;
let B = B with i removed ;

if i>z {letz=1:} 1
b= ﬁ[;‘3;{{2,3,2}}] R fz{_{is,z}}}

To understand this abstract program, we want an execution
to be as simple as possible.

let B={{2,3,2}} and z = —c0 ;
while B not empty {
let 7 = any element of B ;
let B = B with i removed ;

if i>z {letz=1} 1
Bt %[f;{{z,s,z}}] R fi{_{im}}

This means making an execution have as few steps as possible.

let B={{2,3,2}} and z = —c0 ;
while B not empty {
let 7 = any element of B ;
let B = B with i removed ;

if i>z {letz=1} }
b= ﬁ[;‘3;{{2,3,2}}] R fz{_{is,z}}}

These two steps are of no interest.

let B={{2,3,2}} and z = —c0 ;
while B not empty {
let 7 = any element of B ;
let B = B with i removed ;

if i>z {letz=1} }
B= {{2,3,2}}]

So we let this statement define the initial state.

initially B = {{2,3,2}} and z = —oc0 ;
while B not empty {

let 7 = any element of B ;

let B = B with i removed ;

if i>z {letz=1} }
B= {{2,3,2}}]

And we can rewrite it like this.

initially B = {{2,3,2}} and z = —oc0 ;
while B not empty {

let 7 = any element of B ;

let B = B with 7 removed ;

if i>z {letz=1} }

r =—0

B= {{2,3,2}}]

initially B = {{2,3,2}} and z = —oc0 ;
while B not empty {

let 7 = any element of B ;

let B = B with i removed ;

if i>z {letz=1} }
B= {{2,3,2}}}

What's the next state?

initially B = {{2,3,2}} and z = —oc0 ;
while B not empty {

let 7 = any element of B ;

let B = B with i removed ;

if i>z {letz=1} }
B= {{2,3,2}}]

Code doesn’t say what constitutes a step.

initially B = {{2,3,2}} and z = —oc0 ;
while B not empty {

let 7 = any element of B ;

let B = B with i removed ;

if i>z {letz=1} }
B= {{2,3,2}}]

Is executing this statement one step?

initially B = {{2,3,2}} and z = —oc0 ;
while B not empty {

let 7 = any element of B ;

let B = B with i removed ;

if i>z {letz=1} }
B= {{2,3,2}}]

Or are choosing the element of B

initially B = {{2,3,2}} and z = —oc0 ;
while B not empty {

let 7 = any element of B ;

let B = B with i removed ;

if i>z {letz=1} }
B= {{2,3,2}}]

Or are choosing the element of B and setting 4

initially B = {{2,3,2}} and z = —oc0 ;
while B not empty {

let 7 = any element of B ;

let B = B with i removed ;

if i>z {letz=1} }
B= {{2,3,2}}]

Or are choosing the element of B and setting 7 separate steps?

initially B = {{2,3,2}} and z = —oc0 ;
while B not empty {

let 7 = any element of B ;

let B = B with 7 removed ;

if i>z {letz=1} }

r =—0

B= {{2,3,2}}]

initially B = {{2,3,2}} and z = —oc0 ;
while B not empty {

let 7 = any element of B ;

let B = B with i removed ;

if i>z {letz=1} }
B= {{2,3,2}}}

To keep the abstraction simple

initially B = {{2,3,2}} and z = —oc0 ;
while B not empty {

let 7 = any element of B ;

let B = B with i removed ;

if i>z {letz=1} }
B= {{2,3,2}}}

To keep the abstraction simple, | will make
evaluating the while loop’s test

initially B = {{2,3,2}} and z = —oc0 ;
while B not empty {

let 7 = any element of B ;

let B = B with 7 removed ;

if i>z {letz=1} }

r =—0

B= {{2,3,2}}]

To keep the abstraction simple, | will make
evaluating the while loop’s test and evaluating its body

initially B = {{2,3,2}} and z = —oc0 ;
while B not empty {

let 7 = any element of B ;

let B = B with 7 removed ;

if i>z {letz=1} }

r =—0

B= {{2,3,2}}]

To keep the abstraction simple, | will make
evaluating the while loop’s test and evaluating its body
one step.

initially B = {{2,3,2}} and z = —oc0 ;
while B not empty {

let 7 = any element of B ;

let B = B with i removed ;

if i>z {letz=1} }
B= {{2,3,2}}]

| won't bother defining a way to make the pseudocode say
that's all one step.

initially B = {{2,3,2}} and z = —oc0 ;
while B not empty {

let 7 = any element of B ;

let B = B with 7 removed ;

if i>z {letz=1} }

r =—0

B= {{2,3,2}}]

initially B = {{2,3,2}} and z = —oc0 ;
while B not empty {

let 7 = any element of B ;

let B = B with i removed ;

if i>z {letz=1} }
B= {{2,3,2}}]

Executing the next step can let i equal 2 or 3.

initially B = {{2,3,2}} and z = —oc0 ;
while B not empty {

let 7 = any element of B ;

let B = B with i removed ;

if i>z {letz=1} }
B= {{2,3,2}}]

| will let it choose 3.

initially B = {{2,3,2}} and z = —oc0 ;
while B not empty {

let 7 = any element of B ;

let B = B with i removed ;

if i>z {letz=1} }
B:{{2,3,2}}] . B={{2~,2}}]
T =—00 B =8

| will let it choose 3.

initially B = {{2,3,2}} and z = —oc0 ;
while B not empty {

let 7 = any element of B ;

let B = B with i removed ;

if i>z {letz=1} }
B:{{2,3,2}}] . B={{2~,2}}]
T =—00 B =8

The next two steps have to choose 2.

initially B = {{2,3,2}} and z = —oc0 ;
while B not empty {

let 7 = any element of B ;

let B = B with i removed ;

if i>z {letz=1} }
B={{2,3,2}}] R B={{2,2}}] R B={{2}}}
T =—00 B =8 z =2

The next two steps have to choose 2.

initially B = {{2,3,2}} and z = —oc0 ;
while B not empty {

let 7 = any element of B ;

let B = B with i removed ;

if i>z {letz=1} }
B={{2,3,2}}] R B={{2,2}}] R B={{2}}} . [B={{}}}
T =—00 B =8 z =2 B =2

The next two steps have to choose 2.

initially B = {{2,3,2}} and z = —oc0 ;
while B not empty {

let 7 = any element of B ;

let B = B with i removed ;

if i>z {letz=1} }
B={{2,3,2}}] R B={{2,2}}] R B={{2}}} . [B={{}}} %[
T =—00 B =8 z =2 B =2

The next step finds B empty, so it exits the loop
without changing B or z.

B={}

B =2

|

initially B = {{2,3,2}} and z = —oc0 ;
while B not empty {

let 7 = any element of B ;

let B = B with i removed ;

if i>z {letz=1} }
52{_{2372}}] R fz§{2’2}}] R 53{2}}} . [53{}}} . [53{}}}

That's an uninteresting step.

initially B = {{2,3,2}} and z = —oc0 ;
while B not empty {

let 7 = any element of B ;

let B = B with i removed ;

if i>z {letz=1} }
B={{2,3,2}}] R B={{2,2}}] R B={{2}}} . [B={{}}}
T =—00 B =8 z =2 B =2

So we declare that the execution terminates when B is empty.

initially B = {{2,3,2}} and z = —oc0 ;
while B not empty {

let 7 = any element of B ;

let B = B with i removed ;

if i>z {letz=1} }
B={{2,3,2}}] R B={{2,2}}] R B={{2}}} . [B={{}}}
T =—00 B =8 z =2 B =2

The execution terminates when B is empty.

initially B = {{2,3,2}} and z = —oc0 ;
while B not empty {

let 7 = any element of B ;

let B = B with i removed ;

if i>z {letz=1} }
B={{2,3,2}}] R B={{2,2}}] R B={{2}}} . [B={{}}}
T =—00 B =8 z =2 B =2

| don’t know how to say that with code.

initially B = {{2,3,2}} and z = —oc0 ;
while B not empty {

let 7 = any element of B ;

let B = B with i removed ;

if i>z {letz=1} }
B={{2,3,2}}] R B={{2,2}}] R B={{2}}} . [B={{}}}
T =—00 B =8 z =2 B =2

| don’t know how to say that with code.
(It's easy to say in TLAY.)

initially B = {{2,3,2}} and z = —oc0 ;
while B not empty {

let 7 = any element of B ;

let B = B with i removed ;

if i>z {letz=1} }
B={{2,3,2}}] R B={{2,2}}] R B={{2}}} . [B={{}}}
T =—00 B =8 z =2 B =2

But don't get hung up on languages.

initially B = {{2,3,2}} and z = —oc0 ;
while B not empty {

let 7 = any element of B ;

let B = B with i removed ;

if i>z {letz=1} }
B={{2,3,2}}] R B={{2,2}}] R B={{2}}} . [B={{}}}
T =—00 B =8 z =2 B =2

Understand what the executions are.

initially B = {{2,3,2}} and z = —oc0 ;
while B not empty {

let 7 = any element of B ;

let B = B with i removed ;

if i>z {letz=1} }
B={{2,3,2}}] R B={{2,2}}] R B={{2}}} . [B={{}}}
T =—00 B =8 z =2 B =2

Don’t worry about how they’re described.

What's a State?

What's a State?

For executions to be a useful way to think about a program:

What's a State?

The possible next states must depend only on the current state

What's a State?

The possible next states must depend only on the current state,
not on any previous state.

What's a State?

For executions to be a useful way to think about a program:

The possible next states must depend only on the current state,
not on any previous state.

We can choose states this way for abstractions that describe actual
programs because:

What's a State?

For executions to be a useful way to think about a program:

The possible next states must depend only on the current state,
not on any previous state.

We can choose states this way for abstractions that describe actual
programs because:

Programs are executed on computers.

What's a State?

For executions to be a useful way to think about a program:

The possible next states must depend only on the current state,
not on any previous state.

We can choose states this way for abstractions that describe actual
programs because:

Programs are executed on computers.

What a computer does next depends only on its current state

What's a State?

For executions to be a useful way to think about a program:

The possible next states must depend only on the current state,
not on any previous state.

What a computer does next depends only on its current state
(and perhaps external inputs)

What's a State?

For executions to be a useful way to think about a program:

The possible next states must depend only on the current state,
not on any previous state.

What a computer does next depends only on its current state,
not on any previous state.

initially B = {{2,3,2}} and z = —oc0 ;
while B not empty {

let 7 = any element of B ;

let B = B with 7 removed ;

if i>z {letz=1} }

B= {{2,3,2}}] . [B={{2,2}}} . [B={{2}}} . [B={{ }}}

T = —00 B =8 r =2 r =2

For our simple example:

initially B = {{2,3,2}} and z = —oc0 ;
while B not empty {

let 7 = any element of B ;

let B = B with 7 removed ;

if i>z {letz=1} }

T = —00 B =8 r =2 r =2

B= {{2,3,2}}] . [B={{2,2}}} . [B={{2}}} . [B={{ }}}

For our simple example:
The state has to describe only the values of B and z.

initially B = {{2,3,2}} and z = —oc0 ;
while B not empty {

let 7 = any element of B ;

let B = B with 7 removed ;

if i>z {letz=1} }

T =—00 B =8 r =2 r =2

B= {{2,3,2}}] . [B={{2,2}}} . [B={{2}}} . [B={{ }}}

The variable 7 is used only to indicate how the step that ends in
the current state changes B.

initially B = {{2,3,2}} and z = —oc0 ;
while B not empty {

let 7 = any element of B ;

let B = B with 7 removed ;

if i>z {letz=1} }

B= {{2,3,2}}] . [B={{2,2}}} . [B={{2}}] . [B={{ }}}

T =—00 B =8 r =2 r =2

The variable 7 is used only to indicate how the step that ends in
the current state changes B. Its value doesn’t affect future states.

initially B = {{2,3,2}} and z = —oc0 ;
while B not empty {

let 7 = any element of B ;

let B = B with i removed ;

if i>z {letz=1} }
B 372}}] . [fzg{z,z}}% [53{2}}% [53{ }}}ﬁ B }}}

Had | not eliminated the step representing an execution of
the while statement with B empty

initially B = {{2,3,2}} and z = —oc0 ;
while B not empty {

let 7 = any element of B ;

let B = B with i removed ;

if i>z {letz=1} 1
s o] [r2] [0 [z

Had | not eliminated the step representing an execution of
the while statement with B empty, the state would also have
needed to indicate whether the execution had terminated.

Why Is the Abstract Program Correct?

Why Is the Abstract Program Correct?

Why does any possible execution terminate with
2 equal to the correct value?

Why Is the Abstract Program Correct?

At any point in the execution, what can happen
in the future can depend only on the current state.

Why Is the Abstract Program Correct?

Therefore, at any point in the execution, the value z can
have when it terminates depends only on the current state.

Why Is the Abstract Program Correct?

Why z can only have the correct value when it terminates
must depend on something that’s true of every state.

Why Is the Abstract Program Correct?

Something true of every state of every execution is called an
invariant of the program.

You don't understand why a program does the right thing

You don’t understand why a program does the right thing,

for example terminating with the right answer

You don't understand why a program does the right thing,
unless you know the invariant that ensures it does the right thing.

Here is the invariant for our example

Here is the invariant for our example, where maz (M)
is the smallest number > every element of a multiset M :

Here is the invariant for our example, where maz (M)
is the smallest number > every element of a multiset M :

so the program should terminate with z equal to maz(A)

Here is the invariant for our example, where maz (M)
is the smallest number > every element of a multiset M :

maz({z, maz(B)}}) = maz(A)

maz({z, maz(B)}}) = maz(A)

To show that this is an invariant, we show that it satisfies these two
conditions:

maz({z, maz(B)}}) = maz(A)

To show that this is an invariant, we show that it satisfies these two
conditions:

1. It is true of the initial state.

maz({z, maz(B)}}) = maz(A)

To show that this is an invariant, we show that it satisfies these two
conditions:

2. If it's true in any state, then it's true in the next state.

maz({z, maz(B)}}) = maz(A)

And to show that the invariant implies correctness, we show:

3. It implies z = maz(A) in a terminated state.

maz({z, maz(B)}}) = maz(A)

1. It is true of the initial state.

maz({z, maz(B)}}) = maz(A)

1. It is true of the initial state.

Because B = A and z = —o0,

maz({z, maz(B)}}) = maz(A)

1. It is true of the initial state.

Because B = A and z = —o0, using maz({{—oc0, maz(A)}}) = maz(A).

maz({z, maz(B)}}) = maz(A)

3. It implies z = maz(A) in a terminated state.

maz({z, maz(B)}}) = maz(A)

3. It implies z = maz(A) in a terminated state.
Because B = {{ }},

maz({z, maz(B)}}) = maz(A)

3. It implies z = maz(A) in a terminated state.
Because B = {{ }}, using maz({{ }}) = —c0 and maz({{z,—occ}}) =z

maz({z, maz(B)}}) = maz(A)

2. If it's true in any state, then it's true in the next state.

maz({z, maz(B)}}) = maz(A)
2. If it's true in any state, then it's true in the next state.

| don’t know how many programmers can figure out
why this condition holds.

maz({z, maz(B)}}) = maz(A)

2. If it's true in any state, then it's true in the next state.

| think you should learn how

maz({z, maz(B)}}) = maz(A)

2. If it's true in any state, then it's true in the next state.

| think you should learn how, because | expect those who can't
to be among the first programmers replaced by Al.

Termination

Termination

| explained how to show that z has the correct value when the
abstract program terminates.

Termination

| explained how to show that z has the correct value when the
abstract program terminates.

| haven't explained how to show that it always terminates.

Termination

| don’t have time to discuss termination.

Termination

| explained how to show that z has the correct value when the
abstract program terminates.

| don’t have time to discuss termination.

If I did, we would see that the program doesn’t terminate
for some values of A.

Termination

Can you figure out what values those are?

Implementing —oo

Implementing —oo

Suppose A is an array of 32-bit integers.

Implementing —oo

Method 1: Implement —oo as the smallest 32-bit integer.

Implementing —oo

Method 1: Implement —oo as the smallest 32-bit integer.
If that's acceptable, then an implementation that does
not test if A is empty is a satisfactory implementation.

Implementing —oo

Method 2: Implement —oo as an error value.

Implementing —oo

Method 2: Implement —oo as an error value.
The Rust code that tests if A is empty implements
our abstract program.

Implementing —oo

The Rust code that tests if A is empty implements
our abstract program.

Few programmers or computer scientist know what it means
for a program to implement an abstract program (or algorithm).

Implementing —oo

The Rust code that tests if A is empty implements
our abstract program.

| don’t have time to explain what it means.

Real Concurrent Programs

Real Concurrent Programs

The Why and How should be precise.

Real Concurrent Programs

Tools should check that the How implements the Why.

Real Concurrent Programs

Here's an example of how TLAT works in practice.

o

11145/26

Engineers use TLA+ to prevent serious but
subtle bugs from reaching production.

BY CHRIS NEWCOMBE, TIM RATH, FAN ZHANG, BOGDAN MUNTEANU,
AND MICHAEL

How Amazon
Web Services
Uses Formal
Methods

SINCE 2011, ENGINEERS at Amazon Web Services
(AWS) have used formal specification and model
checking to help solve difficult design problems in
critical systems. Here, we describe our motivation
and experience, what has worked well in our problem
domain, and what has not. When discussing personal
experience we refer to the authors by their initials.

At AWS we strive to build services that are simple for
customers to use. External simplicity is built on a hidden
substrate of complex distributed systems. Such complex
internals are required to achieve high availability while
running on cost-efficient infrastructure and cope
with relentless business growth. As an example of this
growth, in 2006, AWS launched 3, its Simple Storage
Service. In the following six years, 3 grew to store one
trillion objects.® Less than ayear later it had grown
to two trillion objects and was regularly handling 1.1
million requests per second.*

66 CommuNICATIONS OF THE AGH | APRIL 015 | VoL 58 | N0, &

$3 is just one of many AWS ser-
vices that store and process data our
customers have entrusted to us. To
safeguard that data, the core of each
service relies on fault-tolerant
tributed algorithms for replication,
ncy, concurrency control, au-
to-scaling, load balancing, and other
coordination tasks. There are man
such algorithms in the lmmum, but
combining them into a cohesi
tem is a challenge, as the a]gunlhrm
must usually be modified to interact

ly

ys
addition, we have found it necessary
to invent algorithms of our own. We
work hard to avoid unnecessary com-
plexity, but the essential complexity of
the task remains high.

Complexity increases the probabil-
ity of human error in design, code,
and operations. Errors in the core of
the system could cause loss or corrup-
tion of data, or violate other interface
contracts on which our customers de-
pend. So, before launching a service,
we need to reach extremely high con-
fidence that the core of the system is
correct. We have found the standard
verification techniques in industry are
necessary but not sufficient. We rou-

testing, and fault-injection testing but
still find that subtle bugs can hide in
complex concurrent fault-tolerant
systems. One reason they do is that
human intuition is poor at estimating
the true probability of supposedly “ex-
tremely rare” combinations of events
in systems operating at a scale of mil-
lions of requests per second.

key insights

= Formal methods find bugs In system
designs that cannot be found through
any other technique we know of.

® Formal methods are surprisingly feasible
for malnstream software development
ind give good return on investment

A e e S T
applied to the design of compl
reatworid software, nctung puilc
cloud servi

o

1114572609417

Engineers use TLA+ to prevent serious but
subtle bugs from reaching production.

BY CHRIS NEWCOMBE, TIM RATH, FAN ZHANG, BOGDAN MUNTEANU,
AND MICHAEL

s just one of many AWS ser-
s that store and process data our
customers have entrusted to us. To
safeguard that data, the core of each
service relies on fault-tolerant
mbu(cd algorithms for replication,

How|Amazon
Web Services

Uses Formal
Methods

SINCE 2011, ENGINEERS at Amazon Web Services
(AWS) have used formal specification and model
checking to help solve difficult design problems in
critical systems. Here, we describe our motivation
and experience, what has worked well in our problem
domain, and what has not. When discussing personal
experience we refer to the authors by their initials.

At AWS we strive to build services that are simple for
customers to use. External simplicity is built on a hidden
substrate of complex distributed systems. Such complex
internals are required to achieve high availability while
running on cost-efficient infrastructure and cope
with relentless business growth. As an example of this
growth, in 2006, AWS launched 3, its Simple Storage
Service. In the following six years, S3 grew to store one
trillion objects.? Less than ayear later it had grown
to two trillion objects and was regularly handling 1.1
million requests per second.*

B COMMUNICATIONS OF THE ACH | APRIL 2015 | VOL 58 1 0.4

control, au-
trr\calmg, load balancing, and other

They build Amazon's
cloud infrastructure.

0 Imvent aigorims of our own. We
work hard to avoid unnecessary com-
plexity, but the essential complexity of
the task remains high.

Complexity increases the probabil-
ity of human error in design, code,
and operations. Errors in the core of
the system could cause loss or corrup-
tion of data, or violate other interface
contracts on which our customers de-

nd. So, before launching a service,
we need to reach extremely high con-
fidence that the core of the system is

have found the standard

testing, and fault-injection testing but
still find that subtle bugs can hide in
concurrent fault-tolerant
n they do is that
oor at estimating
the true probability of supposedly “ex-
el rar Comblvations of events
ms operating at a scale of mil-
Tioms ofrequests per second.

key insights

= Formal methods find bugs In system
designs that cannot be found through
any other technique we know of.

complex

® Formal methods are surprisingly feasible
for malnstream software development
ind give good return on investment.

tAmazon. ormal methadsareruoet
applied to the design of comple
Teak-world software, Inctuding publlc
cloud services.

o

114572699417
$3 is just one of many AWS ser-

Engineers use TLA+ ko prevent serious but vices that store and process data our
hi o ti customers have entrusted to us. To

subtle bugs from reaching production. safeguard that data, the core of each

service relies on fault-tolerant
BY CHRIS NEWCOMBE, TIM RATH, FAN ZHANG, BOGDAN MUNTEANU, | ribured algorithims for replictio,
AND MICHAEL

ey, concurrency control, au-
aling, load ba g, and other
coordinaion, taaks, Thets are maam

such algorithms in the mmmm, but
combining them into a cohesi
tem is a challenge, as the a]gunlhms

wst usually be modified to interact

5 ~
properly in a real-world system. In

e ervices |miicminiy

to invent algorithms of our own. We

work hard to avoid unnecessarv com-

Uses Formal The formal method
Methods they use is TLA™.

pend. So, before launching a service,
we need to reach extremely high con-
fidence that the core of the system is
We have found khe standard

SINCE 2011, ENGINEERS at Amazon Web Services
(AWS) have used formal specification and model
checking to help solve difficult design problems in
critical systems. Here, we describe our motivation

testing, and fault-injection testing but
still find lhak ~uhl|e bugs can hide in
and experience, what has worked well in our problem | complex concurrent. faulttolerant

domain, and what has not. When discussing personal *W““* One reason they do is that

o erience werefer to the authars by theiriial human intuition is poor at estimating

experience we refer to the authors by their initials. ihe rue probabiliy f supposedly“ex
AUAWS we strive (0 build services that are simple for | wemelyrare” ombinaions of events

customers to use. External simplicity is built on a hidden msioperating avascale of mil-

L K hmuufrsqwupsmumd

substrate of complex distributed systems. Such complex

internals are required to achieve high availability while key insights

running on cost-efficient infrastructure and cope = Formal methods find bugs in system

with relentless business growth. As an example of this e s e o shroon

growth, in 2006, AWS launched S3, its Simple Storage | u omatmethods are surprisngt feasibie
ervice, e ing six ye: oren e One for malnstream software development
Service. In the following six years, S3 grew to store one bbb oot
trillion objects.’ Less than a year later Hll;l(lj_:l.u\\l\ Az, ot oty
to two trillion objects and was regularly handling 1.1 applied to the design of compl
x e 4 ‘ reabword software, nctung puilc
million requests per second. cloud serv

B COMMUNICATIONS OF THE ACH | APRIL 2015 | VOL 58 1 0.4

DO1:10.1145/2699417

Engineers use TLA+ to prevent serious but
subtle bugs from reaching production.

BY CHRIS NEWCOMBE, TIM RATH, FAN ZHANG, BOGDAN MUNTEANU,
AND MICHAEL

ow Amazon
eb Services
ses Formal
ethods

SINCE 2011, ENGINEERS at Amazon Web Services
(AWS) have used formal specification and model
checking to help solve difficult design problems in
critical systems. Here, we describe our motivation
and experience, what has worked well in our problem
domain, and what has not. When discussing personal
experience we refer to the authors by their initials.

At AWS we strive to build services that are simple for
customers to use. External simplicity is built on a hidden
substrate of complex distributed systems. Such complex
internals are required to achieve high availability while
running on cost-efficient infrastructure and cope
with relentless business growth. As an example of this
growth, in 2006, AWS launched 3, its Simple Storage
Service. In the following six years, S3 grew to store one
trillion objects.® Less than ayear later it had grown
to two trillion objects and was regularly handling 1.1
million requests per second.*

66 CommuNICATIONS OF THE AGH | APRIL 015 | VoL 58 | N0, &

$3 is just one of many AWS ser-
vices that store and process data our
customers have entrusted to us. To
safeguard that data, the core of each
service relies on fault-tolerant
tributed algorithms for replication,
ncy, concurrency control, au-
caling, Toad balancing, and other
coordinaion, taaks, Thets are maam
such algorithms in the lmmum, but
combining them into a cohes
challenge, as the a]gunlhms
must usually be modified to interact

ly

addition, we have found it necessary
to invent algorithms of our own. We
work hard to avoid unnecessary com-
plexity, but the essential complexity of
the task remains high.

Complexity increases the probabil-
ity of human error in design, code,
and operations. Errors in the core of
the system could cause loss or corrup-
tion of data, or violate other interface
contracts on which our customers de-
pend. So, before launching a service,
we need to reach extremely high con-
fidence that the core of the system is
correct. We have found the standard
verification techniques in industry are
necessary but not sufficient. We rou-

testing, and fault-injection testing but
still find that subtle bugs can hide in
complex concurrent fault-tolerant
systems. One reason they do is that
human intuition is poor at estimating
the true probability of supposedly “ex-
(reme!y rare” combinations of events
operating ata scale of mil-
Jote autais et secand,

key insights

= Formal methods find bugs In system
designs that cannot be found through
any other technique we know of.

® Formal methods are surprisingly feasible
for malnstream software development
ind give good return on investment.

A e e S T
applied to the design of compl
reatworid software, nctung puilc
cloud servi

Engineers use TLA+ to prevent serious but v = i
subtle bugs from reaching production. g key 1 n 51 g h tS
‘ BY CHRIS NEWCOMBE, TIM RATH, FAN ZHANG, BOGDAN MUNTEANU, i
AND MICHAEL of
4 m Formal methods find bugs in system
How Amazon J] designs that cannot be found through
Web SerViceS 4 any other technique we know of.
by
Uses Formal |
R
il
SINCE 2011, ENGINEERS at Amazon Web Services :
(AWS) have used formal specification and model g
checking to help solve difficult design problems in r
critical systems. Here, we describe our motivation o

and experience, what has worked well in our problem
domain, and what has not. When discussing personal
experience we refer to the authors by their initials.

At AWS we strive to build services that are simple for
customers to use. External simplicity is built on a hidden
substrate of complex distributed systems. Such complex
internals are required to achieve high availability while
running on cost-efficient infrastructure and cope
with relentless business growth. As an example of this
growth, in 2006, AWS launched 3, its Simple Storage
Service. In the following six years, S3 grew to store one
trillion objects.? Less than a year later it had grown
to two trillion objects and was regularly handling 1.1
million requests per second.*

65 COMMUNICATIONS OF THE AGM | APSIL 2035 VoL 56 | No.4

Tt SUDUE DUS Can e
complex concurrent fault-tolerant
systems. One reason they do is that
human intuition is poor at estimating
the true probability of supposedly “ex-
tremely rare” combinations of events
in systems operating at a scale of mil-
ligns of requests persecond

key insights

= Formal methods find bugs In system
designs that cannot be found through
any other technique we know of.

® Formal methods are surprisingly feasible
for malnstream software development
and give good return on investment.

= AtAmazon, formal methods are routinely
applied to the design of complex
real-world software, Including public
cloud services.

Engineers use TLA+ to prevent serious but
subtle bugs from reaching production.

‘ BY CHRIS NEWCOMBE, TIM RATH, FAN ZHANG, BOGDAN MUNTEANU,
AND MICHAEL

How Amazon
Web Services
Uses Formal
Methods

SINCE 2011, ENGINEERS at Amazon Web Services
(AWS) have used formal specification and model
checking to help solve difficult design problems in
critical systems. Here, we describe our motivation
and experience, what has worked well in our problem
domain, and what has not. When discussing personal
experience we refer to the authors by their initials.

At AWS we strive to build services that are simple for
customers to use. External simplicity is built on a hidden
substrate of complex distributed systems. Such complex
internals are required to achieve high availability while
running on cost-efficient infrastructure and cope
with relentless business growth. As an example of this
growth, in 2006, AWS launched 3, its Simple Storage
Service. In the following six years, $3

ew to store one
trillion objects.? Less than ayear later it had grown

to two trillion objects and was regularly handling 1.1
million requests per second.t

65 COMMUNICATIONS OF THE AGM | APSIL 2035 VoL 56 | No.4

e zowo-cogo-cg

S Gt

B Rie aieis

1- key insights

B Formal methods are surprisingly feasible
for mainstream software development
and give good return on investment.

E ubte o
complex concurrent fault-tolerant
systems. One reason they do is that
human intuition i poor at estim:
the true probability of supposedly “e
tremely rare” combinations of events
in systems operating at a scale of mil-
ligns of requests persecond

key insights

= Formal methods find bugs In system
designs that cannot be found through
any other technique we know of.

® Formal methods are surprisingly feasible
for malnstream software development
and give good return on investment.

= AtAmazon, formal methods are routinely
applied to the design of complex

real-world software, Including public
cloud services.

Engineers use TLA+ to prevent serious but v = i
subtle bugs from reaching production. g key 1 n 51 g h tS
‘ BY CHRIS NEWCOMBE, TIM RATH, FAN ZHANG, BOGDAN MUNTEANU, i
AND MICHAEL of
e]
Web Services ||
Uses Formal |
71 At Amazon, formal methods are routinely
] applied to the design of complex
SINCE 2011, ENGINEERS at Amazon Web Services » - - =
(AWS) have used formal specification and model ; real-world software, including public
checking to help solve difficult design problems in r cloud services
critical systems. Here, we describe our motivation & -

and experience, what has worked well in our problem
domain, and what has not. When discussing personal
experience we refer to the authors by their initials.

At AWS we strive to build services that are simple for
customers to use. External simplicity is built on a hidden
substrate of complex distributed systems. Such complex
internals are required to achieve high availability while
running on cost-efficient infrastructure and cope
with relentless business growth. As an example of this
growth, in 2006, AWS launched 3, its Simple Storage
Service. In the following six years, S3 grew to store one
trillion objects.? Less than a year later it had grown
to two trillion objects and was regularly handling 1.1
million requests per second.*

65 COMMUNICATIONS OF THE AGM | APSIL 2035 VoL 56 | No.4

E ubte o
complex concurrent fault-tolerant
systems. One reason they do is that
human intuition i poor at estim:
the true probability of supposedly “e
tremely rare” combinations of events
in systems operating at a scale of mil-
ligns of requests persecond

key insights

= Formal methods find bugs In system
designs that cannot be found through
any other technique we know of.

® Formal methods are surprisingly feasible
for malnstream software development
and give good return on investment.

= AtAmazon, formal methods are routinely
applied to the design of complex

real-world software, Including public
cloud services.

o

1114572609417

Engineers use TLA+ to prevent serious but
subtle bugs from reaching production.

BY CHRIS NEWCOMBE, TIM RATH, FAN ZHANG, BOGDAN MUNTEANU,
AND MICHAEL

ow Amazon
eb Services
ses Formal
ethods

SINCE 2011, ENGINEERS at Amazon Web Services
(AWS) have used formal specification and model
checking to help solve difficult design problems in
critical systems. Here, we describe our motivation
and experience, what has worked well in our problem
domain, and what has not. When discussing personal
experience we refer to the authors by their initials.

At AWS we strive to build services that are simple for
customers to use. External simplicity is built on a hidden
substrate of complex distributed systems. Such complex
internals are required to achieve high availability while
running on cost-efficient infrastructure and cope
with relentless business growth. As an example of this
growth, in 2006, AWS launched 3, its Simple Storage
Service. In the following six years, S3 grew to store one

s just one of many AWS ser-
s that store and process data our
customers have entrusted to us. To
safeguard that data, the core of each
service relies on fault-tolerant
tributed algorithms for replication,

e, coneurtency control, au-
caling, Toad ba g, and other
coordintion tasks, There are many
such algorithms in the mmmm, but
combining them into a cohes
tem is a challenge, as the a]gunmms
must usually be modified to interact
properly in a real-world system. In
addition, we have found it necessary
to invent algorithms of our own. W
work hard to avoid unnecessary com-
plexity, but the essential complexity of
the task remains high.

Complexity increases the probabil-
ity of human error in design, code,
and operations. Errors in the core of
the system could cause loss or corrup-
tion of data, or violate other interface
contracts on which our customers de-

d. So, before launching a service,
we need to reach extremely high con-
fidence that the core of the system is
have found the standard

eep design reiews, code
reviews, static code anal
testing, and fault-injection te: nng ol
still find that subtle bugs can hide in
complex concurrent fault-tolerant
systems. One reason they do is that
human intuition is poor at estimating
the true probability of supposedly “ex-
el rar Comblvations of events
ms operating at a scale of mil-
Tioms ofrequests per second.

key insights

= Formal methods find bugs In system
designs that cannot be found through
any other technique we know of.

® Formal methods are surprisingly feasible
for malnstream software development

IGG COMMUNICATIONS OF THE ACM | APRIL 2015 | VOL. 58 | NO.loI

Engineers use TLA+ to prevent serious but
subtle bugs from reaching production.

‘ BY CHRIS NEWCOMBE, TIM RATH, FAN ZHANG, BOGDAN MUNTEANU,
AND MICHAEL

How Amazon
Web Services
Uses Formal
Methods

SINCE 2011, ENGINEERS at Amazon Web Services
(AWS) have used formal specification and model
checking to help solve difficult design problems in
critical systems. Here, we describe our motivation
and experience, what has worked well in our problem
domain, and what has not. When discussing personal
experience we refer to the authors by their initials.

At AWS we strive to build services that are simple for
customers to use. External simplicity is built on a hidden
substrate of complex distributed systems. Such complex
internals are required to achieve high availability while
running on cost-efficient infrastructure and cope
with relentless business growth. As an example of this
growth, in 2006, AWS launched 3, its Simple Storage
Service. In the following six years, S3 grew to store one
trillion objects.? Less than a year later it had grown
to two trillion objects and was regularly handling 1.1
million requests per second.*

B COMMUNICATIONS OF THE ACH | APRIL 2015 | VOL 58 1 0.4

: key insights

B Formal methods find bugs in system
] designs that cannot be found through
5; any other technique we know of.

T THAT SUDHe DUgS can e
complex concurrent fault-tolerant
systems. One reason they do is that
human intuition is poor at estimating
the true probability of supposedly “ex-
tremely rare” combinations of events
in systems operating at a scale of mil-
lions of requests per second.

key insights

= Format methods fnd bugs Insystem
Gesigns shat cannt befound frough
any other technique we know of

® Formal methods are surprisingly feasible
for malnstream software development
and give good return on Investment.

= AtAmazon, formal methods are routinely
applied to the design of complex
real-world software, Including public
cloud services.

B Formal methods find bugs in system
designs that cannot be found through
any other technique we know of.

TLAY finds
B Fermat-nrethods-fiird bugs in system
designs that cannot be found through
any other technique we know of.

+ ¢
TLA™ finds
] -Ferm-a-l-metl-rods-fhdin system
designs that cannot be found through
any other technique we know of.

These are fundamental design flaws

+ ¢
TLA™ finds
] -Ferm-a-l-metl-rods-fhdin system
designs that cannot be found through
any other technique we know of.

These are fundamental design flaws, not just

simple coding errors.

+ ¢
TLA™ finds
] -Ferma-l-metl-rods-ﬁndin system
designs that cannot be found through
any other technique we know of.

These are fundamental design flaws.

Very expensive to fix after the code is written

+ ¢
TLA™ finds
] -Ferma-l-metl-rods-fhdin system
designs that cannot be found through
any other technique we know of.

These are fundamental design flaws.

Very expensive to fix after the code is written
because it requires extensive recoding.

TLAT finds

B Fermat-nrethods-fiird bugs in system
designs that|cannot be found|through

any other technique we know of.
These are fundamental design flaws.

Very expensive to fix after the code is written
because it requires extensive recoding.

And often not found until the code has been released to users.

+ ¢
TLA™ finds
] -Ferm-a-l-metl-rods-fhdin system
designs that cannot be found through
any other technique we know of.

These are fundamental design flaws.

But Amazon engineers find these flaws before any code is written.

Is Abstraction Useful Just for Concurrency?

Is Abstraction Useful Just for Concurrency?

The code for handling concurrency is important, but it's small.

Is Abstraction Useful Just for Concurrency?

What about the rest of the program?

Is Abstraction Useful Just for Concurrency?

| know of just one case in which an entire system system was built
starting with a TLA™T abstraction.

Rosetta

Rosetta

European Space Agency spacecraft that explored a comet.

Rosetta

Several of its instruments were controlled by
the Virtuoso real-time operating system.

Eric Verhulst - Raymond T. Boute
José Miguel Sampaio Faria
Bernhard H.C. Sputh - Vitaliy Mezhuyev

Formal
Development of a

Network-Centric
RTOS

Software Engineering for Reliable
Embedded Systems

&\ Springes

The next version of Virtuoso.

Eric Verhulst - Raymond T. Boute
José Miguel Sampaio Faria
Bernhard H.C. Sputh - Vitaliy Mezhuyev

Formal
Development of a

Network-Centric
RTOS

Software Engineering for Reliable
Embedded Systems

The next version of Virtuoso.

Its high-level design is described in TLAY.

EricVerhulst RaymondT. Boute
Juse viguer >ampaio Faria
Bernhard H.C. Sputh - Vitaliy Mezhuyev

Formal
Development of a

Network-Centric
RTOS

Software Engineering for Reliable
Embedded Systems

&\ Springes

The next version of Virtuoso.

Here's an email from Eric Verhulst,
the head of the development team.

EricVerhulst RaymondT. Boute
Juse viguer >ampaio Faria
Bernhard H.C. Sputh - Vitaliy Mezhuyev

The next version of Virtuoso.

Formal
Development of a

Network-Centric
RTOS

Software Engineering for Reliable

Enbedded ystems Here's an email from Eric Verhulst,
the head of the development team.

The [TLA™] abstraction helped a lot in coming to a much
cleaner architecture

EricVerhulst RaymondT. Boute
Juse viguer >ampaio Faria
Bernhard H.C. Sputh - Vitaliy Mezhuyev

The next version of Virtuoso.

Formal
Development of a

Network-Centric
RTOS

Software Engineering for Reliable

Enbedded ystems Here's an email from Eric Verhulst,
the head of the development team.

(we witnessed first-hand the brainwashing
done by years of C programming).

EricVerhulst RaymondT. Boute
Juse viguer >ampaio Faria

Bernhard H.C. Sputh - Vitaliy Mezhuyev T h en eXt VerSiO n O](' Vl I’tUOSO)
Formal
Development of a

Network-Centric
RTOS

Software Engineering for Reliable

Enbedded ystems Here's an email from Eric Verhulst,
the head of the development team.

One of the results was that
the code size is about 10x less than in [Virtuoso].

the code size is about 10x less than in [Virtuoso].

the code size is about 10x less than in [Virtuoso].

You don't produce 10x less code by better coding.

The [TLA™T] abstraction helped a lot in coming to a much
cleaner architecture (we witnessed first-hand the brainwashing
done by years of C programming). One of the results was that

the code size is about 10x less than in [Virtuoso].
You don't produce 10x less code by better coding.

You do it with a cleaner architecture

cleaner architecture

better high-level design
You do it with a elearerarehiteettre

The [TLA™] abstraction helped a lot

, which comes from
thinking about an abstraction, not about the code.

(we witnessed first-hand the brainwashing
done by years of C programming).

It doesn’t come from thinking in a programming language.

Sometimes what a program should do can’t be stated precisely.

Sometimes what a program should do can’t be stated precisely.

Here’s an example | encountered.

TLATEX — the TLA™T pretty-printer

TLATEX — the TLA™T pretty-printer

The input:

Foo => /\ a
/\ ccc

o
Q. o

TLATEX — the TLA™T pretty-printer

The input: The naive output:

Foo = ANa=1b
A cce = d

Foo => /\ a
/\ ccc

o
Q. o

TLATEX — the TLA™T pretty-printer

The input: The naive output:

Foo =>|/\|la = Foo = ANa=1b
/\|ccec = A cce = d

The user probably wanted these aligned.

TLATEX — the TLA™T pretty-printer

The input: The right output:

Foo =>|/\|la = Foo = ANa =1
/\|ccec = Acce=d

The user probably wanted these aligned.

TLATEX — the TLA™T pretty-printer

The input:

/\ aaa + bb = ¢
/\ iii = jj * k

TLATEX — the TLA™T pretty-printer

The input: The naive output:

/\ aaa + bb = ¢ A aaa + bb = ¢
/\ iii = jj * k Adii = jj * k

TLATEX — the TLA™T pretty-printer

The input: The naive output:

/\ aaa|+|bb =|c A aaa + bb = ¢
I\ iiil=|3j *|k Adii = jj * k

The user probably didn’t wanted these aligned.

TLATEX — the TLA™T pretty-printer

The input: The right output:

/\ aaa|+|bb =|c A aaa + bb = ¢
I\ iiil=|3j *|k Adii = jj * k

The user probably didn’t wanted these aligned.

There is no precise definition of correct alignment.

There is no precise definition of correct alignment.

We can't describe precisely what the user wants.

There is no precise definition of correct alignment.

We can't describe precisely what the user wants.

If we can't describe What precisely, abstraction is useless.

Wrong.

The program has to do something.

There is no precise definition of correct alignment.

We can't describe precisely what the user wants.

Wrong.
The program has to do something.

Not knowing precisely what it should do means
we have to think abstractly about what it will do.

It’s impossible to specify the best pretty-printer.

It's impossible to specify the best pretty-printer.

But the program has to do something.

Writing stream-of-consciousness code doesn’t
produce a good program.

My Abstraction

My Abstraction

6 rules plus definitions (in comments).

My Abstraction

Example:

A left-comment token is LeftComment aligned
with its covering token.

My Abstraction

Example:

A left-comment token is LeftComment aligned
with its covering token.

This is defined precisely (mostly in English).

Why Did | Write This Abstraction?

Why Did | Write This Abstraction?

It was a lot easier to understand and debug 6 rules
than 850 lines of code.

Why Did | Write This Abstraction?

| did a lot of debugging of the rules

Why Did | Write This Abstraction?

| did a lot of debugging of the rules, aided by debugging code
to report what rules were being used.

Why Did | Write This Abstraction?

The few bugs in implementing the rules were easy to catch.

Why Did | Write This Abstraction?

Had | just written code, it would have taken me much longer
and not produced formatting as good.

What is Typical About This Abstraction

What is Typical About This Abstraction

It's at a higher-level than the code.

What is Typical About This Abstraction

It could have been implemented in any language.

What is Typical About This Abstraction

No method or tool for writing better code would have
helped to write the abstraction.

What is Typical About This Abstraction

No method or tool for writing better code would have made the
abstraction unnecessary.

What is Typical About This Abstraction

It says nothing about how to write the code.

What is Typical About This Abstraction

You write an abstraction to help you think about the problem
before you think about the code.

What is Not Typical About This Abstraction

What is Not Typical About This Abstraction

It's quite subtle.

What is Not Typical About This Abstraction

Perhaps 95% of programs require less thought,
so abstractions that are shorter and simpler suffice.

What is Not Typical About This Abstraction

It's a set of rules.

What is Not Typical About This Abstraction

A set of rules/requirements/axioms is usually a bad abstraction.

What is Not Typical About This Abstraction

It's hard to understand the consequences of a set of rules.

What is Not Typical About This Abstraction

No method is best for all programs.

Thinking is always better than not thinking before coding.

Some people say that you shouldn’t think too much before coding.

| say that too little thinking is a much more serious and
much more common problem than too much thinking.

How to Think

How to Think

Write !

How to Think

“Writing is nature's way of letting you
know how sloppy your thinking is.”
Guindon

How to Think

“If you think without writing,
you only think you're thinking.”
Lamport

How to Think

Write !

“If you think without writing,
you only think you're thinking.”
Lamport

Writing helps you think better.

How to Think

Writing helps you think better.
Thinking better helps you write better.

How to Think

Writing helps you think better.
Thinking better helps you write better.

It's a virtuous cycle.

To begin, most people must learn to write better.

To begin, most people must learn to write better.

This means writing to convince others.

This means writing to convince others.
It's too easy to convince yourself of something that’s not true.

You have to learn to read what you wrote the way others
might read it.

To begin, most people must learn to write better.
This means writing to convince others.

You have to learn to read what you wrote the way others
might read it.

Perhaps other readers can teach you that.

How to Think Abstractly

How to Think Abstractly

Abstraction is what I'm good at.

How to Think Abstractly

Abstraction is what I'm good at.

And being good at it is why | was invited to speak to you.

How to Think Abstractly

How did | become good at it?

How to Think Abstractly

How did | become good at it?

In large part by being educated as a mathematician.

How to Think Abstractly

Abstraction is at the heart of mathematics.

How to Think Abstractly

Abstraction is at the heart of mathematics.

Math abstracts from two sheep and two goats to the number 2.

How to Think Abstractly

| don’t know how you should learn to be better at abstraction.

How to Think Abstractly

| don’t know how you should learn to be better at abstraction.

Because it's mathematics, TLA™T teaches some users

How to Think Abstractly

| don’t know how you should learn to be better at abstraction.

Because it's mathematics, TLAT teaches some users,
but it may be too hard for most programmers.

How to Think Abstractly

Perhaps mathematicians can teach abstraction by making it,
rather than the math itself, the subject.

How to Think Abstractly

Perhaps mathematicians can teach abstraction by making it,
rather than the math itself, the subject.

Try asking them.

Things to Remember

Things to Remember

Programming should be thinking followed by coding.

Things to Remember

Thinking requires writing.

Things to Remember

If the program is simple, very little writing is necessary.

Things to Remember

If the program is simple, very little writing is necessary.
But it takes thinking to know if it's simple.

Things to Remember

For non-simple programs, abstract thinking (above the code level)
can avoid errors and lead to better, easier to write code.

Things to Remember

A non-simple program can be anything from a complete system to
a complicated loop.

Things to Remember

No way of abstracting is best for all programs.

Things to Remember

The abstraction of an execution as a sequence of states
is often a very good one.

Things to Remember

A state should contain all the information that can affect
what future states are possible.

Things to Remember

No way of abstracting is best for all programs.

A state should contain all the information that can affect
what future states are possible.

In this abstraction, a program does the right thing
because it satisfies an invariant.

Things to Remember

Understanding the program requires understanding that invariant.

Things to Remember

Don't get hung up on languages.

Things to Remember
Don't get hung up on languages.

Especially not on programming languages.

A Postscript

Why Programs Should Have Bugs

Why Programs Should Have Bugs

| started programming in 1957.

Why Programs Should Have Bugs

We can write much more complex programs now.

Why Programs Should Have Bugs

Part of the reason is better programming languages.

Why Programs Should Have Bugs

But the major reason is that we have libraries of programs
our programs can use.

The hardest part of programming is now figuring out how to use
those library programs,

The hardest part of programming is now figuring out how to use
those library programs, because many of them can never have bugs.

The hardest part of programming is now figuring out how to use
those library programs, because many of them can never have bugs.

A program can have bugs only if there is a precise description of
what it should do.

Part of that description is language dependent.

Part of that description is language dependent.

That part is usually simple.

Part of that description is language dependent.

It's often implied by how the program is called

Part of that description is language dependent.

It's often implied by how the program is called,
especially for strongly-typed languages.

The hardest part of programming is now figuring out how to use
those library programs, because many of them can never have bugs.

A program can have bugs only if there is a precise description of
what it should do.

Part of that description is language dependent.

But the most useful programs do more complex things.

You shouldn’t have to read the code to understand those things.

The hardest part of programming is now figuring out how to use
those library programs, because many of them can never have bugs.

A program can have bugs only if there is a precise description of
what it should do.

Part of that description is language dependent.
But the most useful programs do more complex things.
You shouldn’t have to read the code to understand those things.

They should have an abstract, language-independent description.

Few programs have such a description.

Few programs have such a description.
Many have no description at all.

| won't bother giving you horror stories of how this has made it
difficult or impossible for me to use some library programs.

Instead, I'll tell you about an organization that did a pretty good
job of providing precise descriptions.

The W3C JavaScript Standard

W3C = World Wide Web Consortium

The W3C JavaScript Standard

There has been a lot of work on verifying that what
a program should do is implied by how it does it.

The W3C JavaScript Standard

There has been a lot of work on verifying that what
a program should do is implied by how it does it.
Initiated by a 1967 paper of Robert Floyd.

The W3C JavaScript Standard

Most of it views what a program should do as
a relation between its inputs and its outputs.

The W3C JavaScript Standard

That is the view used by the W3C standard.

The W3C JavaScript Standard

There has been a lot of work on verifying that what
a program should do is implied by how it does it.

That is the view used by the W3C standard.

This view works fine for sequential programs.

The W3C JavaScript Standard

This view works fine for sequential programs, and
| expect most JavaScript programs are sequential.

In 2016 | produced a video course about TLAT,
with web pages for viewing it.

In 2016 | produced a video course about TLAT,
with web pages for viewing it.

Users interact with a JavaScript program.

It's a concurrent program.

It's a concurrent program.

The code controlling the video is executed by one thread.

It's a concurrent program.
The code controlling the video is executed by one thread.

The code handling mouse clicks is executed by a diferent thread.

In 2016 | produced a video course about TLAT,
with web pages for viewing it.

It's a concurrent program.

Executing a library program can change different
parts of the state at different times.

The order in which those changes occur matters

The order in which those changes occur matters, but
it can't be described by viewing what the program does
as a relation between inputs and outputs.

In 2016 | produced a video course about TLAT,
with web pages for viewing it.

It's a concurrent program.

The order in which those changes occur matters.

The hard part of writing the program was figuring out how to get
the library programs to interract correctly on all popular browsers.

In 2016 | produced a video course about TLAT,
with web pages for viewing it.

Users interact with a JavaScript program.
It's a concurrent program.

Executing a library program can change different
parts of the state at different times.

The order in which those changes occur matters.

The hard part of writing the program was figuring out how to get
the library programs to interract correctly on all popular browsers.

It required a lot of debugging.

It seems to work correctly, but there's no way to be sure
that it will keep working correctly.

It seems to work correctly, but there's no way to be sure
that it will keep working correctly.

We should be able to do better than that.

“That's all folks!”

