
Simple but Effective Server Hardening
Kyle Rankin
VP of Engineering Operations

Final, Inc.

https://greenfly.org/talks/security/simple_hardening.html

Agenda
Introduction
Classic Hardening
Security Best Practices
What to Avoid
SSH Server
SSH Client
SSH 2FA
Root and Sudo
Reuse Puppet Certs
Simple Cloud Hardening
General Tips
Questions?

Introduction
Security hardening more important than ever
Was hardening infrastructure for a PCI audit
Had to refer to an approved hardening guide
Amazed at all the outdated and ineffective info
A few simple steps can greatly increase security
Certainly can harden further.

Classic Hardening
Many hardening guides written for Red Hat circa 2005
Not necessarily bad advice, just deprecated/already done
Turn off telnet
Inetd hardening
Disable all unnecessary services
Tcpwrappers
shadow passwords
Disable shells on common role accounts.

Simple but Effective Server Hardening https://greenfly.org/talks/security/simple_hardening...

1 of 5 01/23/2016 11:24 AM

Security Best Practices
Security best practices often == overall best practices
Principle of Least Privilege
Keep it Simple, Sysadmin
Apply patches
Layers of defense
Good logging/audit trails
Encrypt.

What to Avoid
Obscurity (changing default ports)
Attacker-generated firewall rules (fail2ban, etc.)
Port knocking
Reliance on any single security measure
Network software that doesn't support encryption
Complexity.

SSH Server
A few basic changes to /etc/ssh/sshd_config
Disable Root Login:

PermitRootLogin no

Only use Protocol 2:

Protocol 2

Disable Password Authentication:

PasswordAuthentication no

Limit Crypto Options:

Ciphers chacha20-poly1305@openssh.com,aes256-gcm@openssh.com,
 aes128-gcm@openssh.com,aes256-ctr,aes192-ctr,aes128-ctr

KexAlgorithms curve25519-sha256@libssh.org,diffie-hellman-group-exchange-sha256

MACs hmac-sha2-512-etm@openssh.com,hmac-sha2-256-etm@openssh.com,
 hmac-ripemd160-etm@openssh.com,umac-128-etm@openssh.com,hmac-sha2-512,
 hmac-sha2-256,hmac-ripemd160,umac-128@openssh.com

Simple but Effective Server Hardening https://greenfly.org/talks/security/simple_hardening...

2 of 5 01/23/2016 11:24 AM

SSH Client
Generate strong keys:

ssh-keygen -t rsa -b 4096
ssh-keygen -t ed25519

Use password-protected SSH keys
Avoid copying private keys around
Use ssh-add to cache password for limited time
My lunch reminder:

ssh-add -t 3h

Pay attention to host key warnings.

SSH 2FA
Requires an additional factor before login
Some use TOTP, others SMS/Phone, or both
A number of approaches, providers
Many configured with PAM, others SSH client restrictions
I like Duo's approach, but not free
Google has wide support, free.

SSH 2FA Continued
Install Google Authenticator from distro package (libpam-google-authenticator) or from
source
Enroll each user account:

$ google-authenticator

Scan QR code or add secret to Google Auth app
Add to top of /etc/pam.d/sshd:

auth required pam_google_authenticator.so

On Debian-based systems comment out:

@include common-auth

Change /etc/ssh/sshd_config:

ChallengeResponseAuthentication yes
AuthenticationMethods publickey,keyboard-interactive

Restart ssh service
Login:

$ ssh kyle@server1.example.com
Authenticated with partial success.
Verification code:

Simple but Effective Server Hardening https://greenfly.org/talks/security/simple_hardening...

3 of 5 01/23/2016 11:24 AM

Root and Sudo
Disable root/group accounts and use sudo:

Avoids shared passwords
Makes revoking access simpler
Provides audit trail

Sudo best practices:
Restrict NOPASSWORD sudo to daemon role accounts
Try to avoid granting ALL access to users
Wrap risky commands inside custom scripts.

Reuse Puppet Certs
If you use Puppet Masters, you have internal trusted CA
Makes internal mutual TLS auth much simpler
Each host has cert, key, CA cert locally:

CERT: /var/lib/puppet/ssl/certs/${cert_name}.pem
KEY: /var/lib/puppet/ssl/private_keys/${cert_name}.pem
CA: /var/lib/puppet/ssl/certs/ca.pem
CRL: /var/lib/puppet/ssl/crl.pem

To use in NGINX:

 ssl_certificate /var/lib/puppet/ssl/certs/${cert_name}.pem;
 ssl_certificate_key /var/lib/puppet/ssl/private_keys/${cert_name}.pem;
 ssl_client_certificate /var/lib/puppet/ssl/certs/ca.pem;
 ssl_crl /var/lib/puppet/ssl/crl.pem;

Can add Subject Alt Names to Puppet certs with dns_alt_names option.

Simple Cloud Hardening
Delete/disable default admin account
Don't store secrets in userdata script
Try to generate secrets on host when possible
Limit access even within security groups
Encrypt internal communication
Store sensitive data on non-root, encrypted disks.

General Tips
Use config management with configs checked into source control
Encrypt any secrets checked into source control!
Use orchestration software
Use /dev/shm to store sensitive files
Consider logging all new network connections
Set up remote logging
SSH into internal servers via bastion host
Restrict access to networks via VPN
Enable TLS between web services.

Simple but Effective Server Hardening https://greenfly.org/talks/security/simple_hardening...

4 of 5 01/23/2016 11:24 AM

Questions?

Additional Resources

This talk: https://greenfly.org/talks/security/simple_hardening.html
Secure Secure Shell
Google Authenticator
@kylerankin
kyle@getfinal.com

Simple but Effective Server Hardening https://greenfly.org/talks/security/simple_hardening...

5 of 5 01/23/2016 11:24 AM

