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* Ticketmaster - Web Operations

* Edmunds.com - Systems Engineering @kcbraunschweig

* Facebook - Production Engineering

* OS & Config Management (Chef)
* Logging Infrastructure (Scribe, Hadoop & LogDevice)

* Coordination Infrastructure (Apache Zookeeper)
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Facebook Examples

Scribe

* Originally a purpose built logging framework for dozens of use
cases

* “Today we have well over 100 applications using this” - Bobby Johnson
2009 [2]

* Now the transport layer for all logging, stream processing
* Many 1000s of categories and >1TB/s [3]

* 10+ years becoming a massive multi-tenant service

[2] “Scribe Tech Talk” https://www.facebook.com/Engineering/videos/650882334523/

[3] “The History of Logging @Facebook (Abridged)”
https://www.usenix.org/conference/lisa18/presentation/braunschweig



Facebook Examples
Chef

* All systems-level configuration at Facebook
* Designed for a small team to manage a massive fleet

* Delegate responsibility to customer teams

* “Have 4 people manage 10s of thousands of heterogeneous
systems” - Phil Dibowitz 2014 [ 1]

* ~6 years of maturing

[1] “Really large scale systems configuration” https://www.youtube.com/watch?v=rEWHmMk8vBYk



Facebook Examples
Zookeeper

* Originally backing 2 major use cases:
* Service discovery system
* Application configuration distribution system

* One team with a handful of ensembles

* Now Zookeeper as a Service
* Hundreds of ensembles [4]

* One Zookeeper team with many customer teams

[4] “Zookeeper Meetup” https://www.facebook.com/zkmeetup/videos/559260314523351/



Service Maturity Scenarios




Facebook Examples
Plan of attack

* You don’t get to pick where to start
* What’s right? What’s wrong?

* What do we need to make things better?
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Config Smell

Monitoring Zookeeper ensembles

* Growing number of ensembles

* Wormhole [5] team uses a growing subset of ensembles

* Wormhole monitoring is slightly different due to their workload

[5] “Wormhole: Reliable Pub-Sub to Support Geo-replicated Internet Services”
https://www.usenix.org/system/files/conference/nsdi15/nsdi15-paper-sharma.pdf



Config Smell

Monitoring Zookeeper ensembles

* That’s a little better

# Special wormhole ensembles - keep updated!

WH=filter (zk\.global\. (0[389]129|4[2-8]|6[589]]172]103))




Config Smell

Monitoring Zookeeper ensembles

 That’s a lot better

filter (get ensembles by customer (‘wormhole’))




Config Smell

Monitoring Zookeeper ensembles

e That’s a lot better or is it?

filter (get ensembles by customer (‘wormhole’))

filter (get ensembles by customer (‘wormhole2’))



Config Smell

Monitoring Zookeeper ensembles

e That’s a lot better or is it?

filter (get ensembles by customer (‘wormhole’))
filter (get ensembles by customer (‘wormhole2’))
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filter (get ensembles by customer (‘adnauseum’))




Config Smell

Monitoring Zookeeper ensembles

* How about this

filter (get ensembles by sla(‘hipri’))




Config Smell

Monitoring Zookeeper ensembles

* Or better yet

for sla, ensembles 1n get ensembles by sla() .items ()

# do stuff for each sla

filter (ensembles)




Config Smell

Monitoring Zookeeper ensembles

What do we need?

* Separate customer metadata from service implementation
* Define scalable service offerings

* Canonical store of customer metadata
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Customer Metadata

Scribe Categories

Background

* Log events are written to scribe categories
* Categories must be registered

* Registration has required fields
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Scribe Categories
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"Modified By": "security oncall",
"Oncall": "scribe oncall",
"Owner": "kcb",

"Retention": 1,
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[ {
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Customer Metadata

Scribe Categories

* + Know who our customers are

* - Implementation leakage

* ~Metadata is intended state not actual state
* ~ Clear expectations?

* + Customer data for operations

* + Change history

* - Implicit offerings create implicit expectations



Customer Metadata
Scribe Categories

How can we make this better?

* Manage intended -> actual state
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Customer Metadata
Convergence & Failure

Intended state vs. actual state -> convergence

"Blacklist Threshold": ”1GR",
"MaxRate": "1MB",

# system aggregate rate limits vs. capacity

impossible desires + naive guardrails = converge on system failure

impossible desires + safe limits = converge on customer failure

reasonable desires + safe limits + unexpected failure = ?




Customer Metadata
Scribe Categories

How can we make this better?
* Manage intended -> actual state

* Clarify expectations



Customer Metadata
Expectations

$ dmv find kctestl -f json

[ {
"Category": "kctestl",
"Blacklist Threshold": ”1GBR",
"Encryption": ”“Yes",
"Importance": "normal",
"MailTo": "",
"MaxRate": ”“"1MB",
"Modified": "2018-10-08T09:00:17",
"Modified By": "security oncall",
"Oncall": "scribe oncall",
"Owner": "kcb",

"Retention": 1,




Customer Metadata
Expectations

Edit Task

Enter task title

& OWNER Choose an owner

* Tasks - Internal task ticketing system
* Tasks have priorities
UBN = UnBreak Now!

* UBNs page the owner automatically



Customer Metadata
Expectations

Edit Task

Enter task title

& OWNER Choose an owner.

* Organizationally meaningful priorities
 External accountability

* Enable better emergency response



Customer Metadata

Scribe Categories

How can we make this better?

* Manage intended -> actual state
* Clarify expectations

* Support implementation changes



Customer Metadata
Auditing Pattern

* “How do | turn on something new?”



Customer Metadata
Auditing Pattern

$ dmv find kctestl -f json

[ {
"Category": "kctestl",
"Blacklist Threshold": ”1GBR",
"Encryption": “Yes",
"Importance": "normal",
"MailTo": "",
"MaxRate": ”“"1MB",
"Modified": "2018-10-08T09:00:17",
"Modified By": "security oncall",
"Oncall": "scribe oncall",
"Owner": "kcb",

"Retention": 1,




Customer Metadata
Auditing Pattern

* Goal: 100% encryption by default
* Challenges:

* Encryption is a new backend feature
* Encryption requires client upgrade, credential distribution

* Fail open/closed?
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* Goal: 100% encryption by default
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Customer Metadata
Auditing Pattern

* Goal: 100% encryption by default

impossible desires + naive guardrails = converge on system failure

impossible desires + safe limits = converge on customer failure

reasonable desires + safe limits + unexpected failure = ?

change (desires + limits) + failure = ?




Customer Metadata
Auditing Pattern

* Goal: 100% encryption by default

* Process:

* Mass migration ("One perfect moment”)



Customer Metadata
Auditing Pattern

* Goal: 100% encryption by default

* Process:

Py ) )

* Prepare then migrate (“Big list”)



Customer Metadata
Auditing Pattern

* Goal: 100% encryption by default

* Process:

Py ) )

Y “UpD; f )

* Continuous auditing (“TDD for operations”)



Customer Metadata
Auditing Pattern

* Goal: 100% encryption by default
* Effective auditing

* Check metadata - is encryption enabled?
* Check dependencies - are dependencies ready for encryption?

* Check implementation - is category actually encrypted?
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Customer Metadata
Customer Input

$ dmv find kctestl -f json

[ {
"Category": "kctestl",
"Blacklist Threshold": ”1GBR",
"Encryption": ”“Yes",
"Importance": "normal",
"MailTo": "",
"MaxRate": ”“"1MB",
"Modified": "2018-10-08T09:00:17",
"Modified By": "security oncall",
"Oncall": "scribe oncall",
"Owner": "kcb",

"Retention": 14,




Customer Metadata
Customer Input

* Consistent public messaging

* Group posts

* Regular cadence



Customer Metadata
Customer Input

* In-person conversations
* Gather allies
* Address complexity upfront

* Canary for automation



Customer Metadata
Customer Input

* Individual automated messaging
* Be concise and link to additional documentation
* Make it actionable
* You’'ll be wrong no matter what

* Not every change is better for everyone



Customer Metadata

Customer Input

* Consistent public messaging (group posts)
* In-person conversations

* Individual automated messaging (tasks/tickets)
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You already have one

* If you don’t have an SLA your SLA is whatever the customer wants
* The SLA is about expectations

* Expectations go both ways
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SLAs

Zookeeper customers

* Zookeeper oncall gets UBNs for ensembles in trouble

* Hardware failure? Bad deployment?

e Customer load?

* Manual alarm triaging is a symptom
* The system can’t defend itself from bad actors
* We don’t have metadata or we’re not using it

* Fear of conflict or visibility



SLAs

Zookeeper customers

What do we need?

* Written SLA

* Expectations go both ways

* Problems are solved by the right team

e Published metrics
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Monitoring
The p100 problem

* Monitoring is part of the service

* 15 99% availability good?

100/10000 servers failing chef runs
1/100 database masters failing chef runs
1/100 zookeeper ensembles unavailable

10/1000 scribe categories failing writes
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Monitoring
The p100 problem - chef monitoring

* Chef team
* Chef backend infrastructure (is the service up)

* Global run success (is chef working for customers)

e Customer teams
* Per-customer run success
* Sane defaults + flexibility

* Tunable thresholds (mandatory minimums)
 Configurable notifications

* Automatic dependencies



Monitoring
The p100 problem - chef monitoring

What do we need?

* Monitoring of our service

* Monitoring as a service



Additional complexity

Everything was going so well



Additional complexity

Lifecycle - Decommissioning

* zookeeper - what if an ensemble becomes unused?
* scribe - what if a category becomes unused?

* What does unused mean?

* Would you be able to tell?
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Additional complexity

Customers with customers

 Metadata service load

* Customers blaming their customers
* Incidents
* Ownership
* Monitoring

* Capacity



Conclusions



Service Maturity Goals and Tips
Config Smell

* Separate customer metadata from service implementation

* Define scalable service levels



Service Maturity Goals and Tips

Customer Metadata

* Know who your customers are

* Define expectations for success and failure (convergence)
* Use organizationally meaningful data (task priorities)

* Plan for future changes (auditing pattern)

* Automated tasks are great (for irritating colleagues)



Service Maturity Goals and Tips

SLAs and Monitoring

* If you don’t have an SLA your SLA is whatever the customer wants
* Expectations and accountability go both ways

* Monitoring is part of the service you offer



Service Maturity Goals and Tips
Additional Complexity

* Manage the whole lifecycle

* Your customers will build services out of your service



Service Maturity Goals and Tips

Final thoughts

* There is no one right answer

* You don’t get to pick where to start

* You do get to decide what your service is and what it isn’t

* Leave things better than you found them



facebook Thank you
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