facebook ::

INFRASTRUCTURE

Internal Services Have Customers Too!

KC Braunschweig

Production Engineer
SCaLE 17x — March 2019

Internal Services Have Customers Too!

Internal Services Have Customers Too!

Internal Services Have Customers Too!

Who Am I?

e SCaLE Volunteer

@kcbraunschweig

Who Am I?

e SCaLE Volunteer

* Ticketmaster - Web Operations

* Edmunds.com - Systems Engineering @kcbraunschweig

Who Am I?

e SCaLE Volunteer

* Ticketmaster - Web Operations

* Edmunds.com - Systems Engineering @kcbraunschweig

* Facebook - Production Engineering

* OS & Config Management (Chef)
* Logging Infrastructure (Scribe, Hadoop & LogDevice)

* Coordination Infrastructure (Apache Zookeeper)

—intro
* Facebook Service Examples
Agenda

* Service Maturity Scenarios
* Conclusions

Facebook Service Examples

Facebook Examples

Scribe

* Originally a purpose built logging framework for dozens of use
cases

* “Today we have well over 100 applications using this” - Bobby Johnson
2009 [2]

* Now the transport layer for all logging, stream processing
* Many 1000s of categories and >1TB/s [3]

* 10+ years becoming a massive multi-tenant service

[2] “Scribe Tech Talk” https://www.facebook.com/Engineering/videos/650882334523/

[3] “The History of Logging @Facebook (Abridged)”
https://www.usenix.org/conference/lisa18/presentation/braunschweig

Facebook Examples
Chef

* All systems-level configuration at Facebook
* Designed for a small team to manage a massive fleet

* Delegate responsibility to customer teams

* “Have 4 people manage 10s of thousands of heterogeneous
systems” - Phil Dibowitz 2014 [1]

* ~6 years of maturing

[1] “Really large scale systems configuration” https://www.youtube.com/watch?v=rEWHmMk8vBYk

Facebook Examples
Zookeeper

* Originally backing 2 major use cases:
* Service discovery system
* Application configuration distribution system

* One team with a handful of ensembles

* Now Zookeeper as a Service
* Hundreds of ensembles [4]

* One Zookeeper team with many customer teams

[4] “Zookeeper Meetup” https://www.facebook.com/zkmeetup/videos/559260314523351/

Service Maturity Scenarios

Facebook Examples
Plan of attack

* You don’t get to pick where to start
* What’s right? What’s wrong?

* What do we need to make things better?

Config Smell

Monitoring Zookeeper ensembles

Config Smell

Monitoring Zookeeper ensembles

* ”Where are the monitoring configs?” — Zookeeper team n00b

* Ensembles have names e.g. zk.global .42

Config Smell

Monitoring Zookeeper ensembles

* ”Where are the monitoring configs?” — Zookeeper team n00b

filter (zk\.global\. (0[389]129|4[2-8]|6[589]]172]103))

* Ensembles have names e.g. zk.global .42

Config Smell

Monitoring Zookeeper ensembles

* ”Where are the monitoring configs?” — Zookeeper team n00b

filter (zk\.global\. (0[389]129|4[2-8]|6[589]]172]103))

filter (zk\.global\. (0[389]129|4[2-8]|6[589]]72))

and 2 other places with slight variations

* Ensembles have names e.g. zk.global .42

Config Smell

Monitoring Zookeeper ensembles

* ”Where are the monitoring configs?” — Zookeeper team n00b

filter (zk\.global\. (0[389]129|4[2-8]|6[589]]172]103))

filter (zk\.global\. (0[389]129|4[2-8]|6[589]]72))

and 2 other places with slight variations

* Ensembles have names e.g. zk.global .42

Config Smell

Monitoring Zookeeper ensembles

* Growing number of ensembles

* Wormhole [5] team uses a growing subset of ensembles

* Wormhole monitoring is slightly different due to their workload

[5] “Wormhole: Reliable Pub-Sub to Support Geo-replicated Internet Services”
https://www.usenix.org/system/files/conference/nsdi15/nsdi15-paper-sharma.pdf

Config Smell

Monitoring Zookeeper ensembles

* That’s a little better

Special wormhole ensembles - keep updated!

WH=filter (zk\.global\. (0[389]129|4[2-8]|6[589]]172]103))

Config Smell

Monitoring Zookeeper ensembles

 That’s a lot better

filter (get ensembles by customer (‘wormhole’))

Config Smell

Monitoring Zookeeper ensembles

e That’s a lot better or is it?

filter (get ensembles by customer (‘wormhole’))

filter (get ensembles by customer (‘wormhole2’))

Config Smell

Monitoring Zookeeper ensembles

e That’s a lot better or is it?

filter (get ensembles by customer (‘wormhole’))
filter (get ensembles by customer (‘wormhole2’))
filter
filter
filter (get ensembles by customer (‘ipsum’))

get ensembles by customer(‘stargate’))

get ensembles by customer (‘lorem’))

(
(
(
(
(
(

(
(
(
(
(
(

filter (get ensembles by customer (‘adnauseum’))

Config Smell

Monitoring Zookeeper ensembles

* How about this

filter (get ensembles by sla(‘hipri’))

Config Smell

Monitoring Zookeeper ensembles

* Or better yet

for sla, ensembles 1n get ensembles by sla() .items ()

do stuff for each sla

filter (ensembles)

Config Smell

Monitoring Zookeeper ensembles

What do we need?

* Separate customer metadata from service implementation
* Define scalable service offerings

* Canonical store of customer metadata

Customer Metadata
Scribe Categories

Customer Metadata

Scribe Categories

Background

* Log events are written to scribe categories
* Categories must be registered

* Registration has required fields

Customer Metadata
Scribe Categories

$ dmv find kctestl -f json

[{
"Category": "kctestl",
"Blacklist Threshold": ”1GBR",
"Encryption": ”“Yes",
"Importance": "normal",
"MailTo": "",
"MaxRate": ”“"1MB",
"Modified": "2018-10-08T09:00:17",
"Modified By": "security oncall",
"Oncall": "scribe oncall",
"Owner": "kcb",

"Retention": 1,

Customer Metadata
Scribe Categories

$ dmv find kctestl -f json

[{
"Category": "kctestl",
"Blacklist Threshold": ”1GBR",
"Encryption": ”“Yes",
"Importance": "normal",
"MailTo": "",
"MaxRate": ”“"1MB",
"Modified": "2018-10-08T09:00:17",
"Modified By": "security oncall",
"Oncall": "scribe oncall",
"Owner": "kcb",

"Retention": 1,

Customer Metadata
Scribe Categories

* + Know who our customers are

Customer Metadata
Scribe Categories

$ dmv find kctestl -f json

[{
"Category": "kctestl",
"Blacklist Threshold": “1GB",
"Encryption": ”“Yes",
"Importance": "normal",
"MailTo": "",
"MaxRate": ”“"1MB",
"Modified": "2018-10-08T09:00:17",
"Modified By": "security oncall",
"Oncall": "scribe oncall",
"Owner": "kcb",

"Retention": 1,

Customer Metadata
Scribe Categories

* + Know who our customers are

* - Implementation leakage

Customer Metadata
Scribe Categories

$ dmv find kctestl -f json

[{
"Category": "kctestl",
"Blacklist Threshold": ”1GBR",
"Encryption": “Yes",
"Importance": "normal",
"MailTo": "",
"MaxRate": ”“"1MB",
"Modified": "2018-10-08T09:00:17",
"Modified By": "security oncall",
"Oncall": "scribe oncall",
"Owner": "kcb",

"Retention": 1,

Customer Metadata

Scribe Categories

* + Know who our customers are
* - Implementation leakage

 ~Metadata is intended state not actual state

Customer Metadata
Scribe Categories

$ dmv find kctestl -f json

[{
"Category": "kctestl",
"Blacklist Threshold": ”1GBR",
"Encryption": ”“Yes",
"Importance": "normal",
"MailTo": "",
"MaxRate": ”“"1MB",
"Modified": "2018-10-08T09:00:17",
"Modified By": "security oncall",
"Oncall": "scribe oncall",
"Owner": "kcb",

"Retention": 1,

Customer Metadata

Scribe Categories

* + Know who our customers are

* - Implementation leakage

 ~Metadata is intended state not actual state

* ~ Clear expectations?

Customer Metadata
Scribe Categories

$ dmv find kctestl -f json

[{
"Category": "kctestl",
"Blacklist Threshold": ”1GBR",
"Encryption": ”“Yes",
"Importance": "normal",
"MailTo": "",
"MaxRate": ”“"1MB",
"Modified": "2018-10-08T09:00:17",
"Modified By": "security oncall",
"Oncall": "scribe oncall",
"Owner": "kcb",

"Retention": 1,

Customer Metadata

Scribe Categories

* + Know who our customers are

* - Implementation leakage

* ~Metadata is intended state not actual state
* ~ Clear expectations?

* + Customer data for operations

Customer Metadata
Scribe Categories

$ dmv find kctestl -f json

[{
"Category": "kctestl",
"Blacklist Threshold": ”1GBR",
"Encryption": ”“Yes",
"Importance": "normal",
"MailTo": "",
"MaxRate": ”“"1MB",
"Modified": "2018-10-08T09:00:17",
"Modified By": "security oncall",
"Oncall": "scribe oncall",
"Owner": "kcb",

"Retention": 1,

Customer Metadata

Scribe Categories

* + Know who our customers are

* - Implementation leakage

* ~ Metadata is intended state not actual state
* ~ Clear expectations?

* + Customer data for operations

* + Change history

Customer Metadata
Scribe Categories

$ dmv find kctestl -f json

[{
"Category": "kctestl",
"Blacklist Threshold": ”1GBR",
"Encryption": ”“Yes",
"Importance": "normal",
"MailTo": "",
"MaxRate": ”“"1MB",
"Modified": "2018-10-08T09:00:17",
"Modified By": "security oncall",
"Oncall": "scribe oncall",
"Owner": "kcb",

"Retention": 1,

Customer Metadata

Scribe Categories

* + Know who our customers are

* - Implementation leakage

* ~Metadata is intended state not actual state
* ~ Clear expectations?

* + Customer data for operations

* + Change history

* - Implicit offerings create implicit expectations

Customer Metadata
Scribe Categories

How can we make this better?

* Manage intended -> actual state

Customer Metadata
Convergence & Failure

Intended state vs. actual state -> convergence

Customer Metadata
Convergence & Failure

Intended state vs. actual state -> convergence

"Blacklist Threshold": ”1GR",
"MaxRate": "1MB",

Customer Metadata
Convergence & Failure

Intended state vs. actual state -> convergence

"Blacklist Threshold": ”1GR",
"MaxRate": "1MB",

system aggregate rate limits vs. capacity

impossible desires + naive guardrails =

Customer Metadata
Convergence & Failure

Intended state vs. actual state -> convergence

"Blacklist Threshold": ”1GR",
"MaxRate": "1MB",

system aggregate rate limits vs. capacity

impossible desires + naive guardrails = converge on system failure

Customer Metadata
Convergence & Failure

Intended state vs. actual state -> convergence

"Blacklist Threshold": ”1GR",
"MaxRate": "1MB",

system aggregate rate limits vs. capacity

impossible desires + naive guardrails = converge on system failure

impossible desires + safe limits =

Customer Metadata
Convergence & Failure

Intended state vs. actual state -> convergence

"Blacklist Threshold": ”1GR",
"MaxRate": "1MB",

system aggregate rate limits vs. capacity

impossible desires + naive guardrails = converge on system failure

impossible desires + safe limits = converge on customer failure

Customer Metadata
Convergence & Failure

Intended state vs. actual state -> convergence

"Blacklist Threshold": ”1GR",
"MaxRate": "1MB",

system aggregate rate limits vs. capacity

impossible desires + naive guardrails = converge on system failure

impossible desires + safe limits = converge on customer failure

reasonable desires + safe limits + unexpected failure =

Customer Metadata
Convergence & Failure

Intended state vs. actual state -> convergence

"Blacklist Threshold": ”1GR",
"MaxRate": "1MB",

system aggregate rate limits vs. capacity

impossible desires + naive guardrails = converge on system failure

impossible desires + safe limits = converge on customer failure

reasonable desires + safe limits + unexpected failure = ?

Customer Metadata
Scribe Categories

How can we make this better?
* Manage intended -> actual state

* Clarify expectations

Customer Metadata
Expectations

$ dmv find kctestl -f json

[{
"Category": "kctestl",
"Blacklist Threshold": ”1GBR",
"Encryption": ”“Yes",
"Importance": "normal",
"MailTo": "",
"MaxRate": ”“"1MB",
"Modified": "2018-10-08T09:00:17",
"Modified By": "security oncall",
"Oncall": "scribe oncall",
"Owner": "kcb",

"Retention": 1,

Customer Metadata
Expectations

Edit Task

Enter task title

& OWNER Choose an owner

* Tasks - Internal task ticketing system
* Tasks have priorities
UBN = UnBreak Now!

* UBNs page the owner automatically

Customer Metadata
Expectations

Edit Task

Enter task title

& OWNER Choose an owner.

* Organizationally meaningful priorities
 External accountability

* Enable better emergency response

Customer Metadata

Scribe Categories

How can we make this better?

* Manage intended -> actual state
* Clarify expectations

* Support implementation changes

Customer Metadata
Auditing Pattern

* “How do | turn on something new?”

Customer Metadata
Auditing Pattern

$ dmv find kctestl -f json

[{
"Category": "kctestl",
"Blacklist Threshold": ”1GBR",
"Encryption": “Yes",
"Importance": "normal",
"MailTo": "",
"MaxRate": ”“"1MB",
"Modified": "2018-10-08T09:00:17",
"Modified By": "security oncall",
"Oncall": "scribe oncall",
"Owner": "kcb",

"Retention": 1,

Customer Metadata
Auditing Pattern

* Goal: 100% encryption by default
* Challenges:

* Encryption is a new backend feature
* Encryption requires client upgrade, credential distribution

* Fail open/closed?

Customer Metadata
Auditing Pattern

* Goal: 100% encryption by default

impossible desires + naive guardrails = converge on system failure

impossible desires + safe limits = converge on customer failure

reasonable desires + safe limits + unexpected failure = ?

Customer Metadata
Auditing Pattern

* Goal: 100% encryption by default

impossible desires + naive guardrails = converge on system failure

impossible desires + safe limits = converge on customer failure

reasonable desires + safe limits + unexpected failure = ?

change (desires + limits) + failure = ?

Customer Metadata
Auditing Pattern

* Goal: 100% encryption by default

* Process:

* Mass migration ("One perfect moment”)

Customer Metadata
Auditing Pattern

* Goal: 100% encryption by default

* Process:

Py))

* Prepare then migrate (“Big list”)

Customer Metadata
Auditing Pattern

* Goal: 100% encryption by default

* Process:

Py))

Y “UpD; f)

* Continuous auditing (“TDD for operations”)

Customer Metadata
Auditing Pattern

* Goal: 100% encryption by default
* Effective auditing

* Check metadata - is encryption enabled?
* Check dependencies - are dependencies ready for encryption?

* Check implementation - is category actually encrypted?

Customer Metadata
Customer Input

Customer Metadata
Customer Input

$ dmv find kctestl -f json

[{
"Category": "kctestl",
"Blacklist Threshold": ”1GBR",
"Encryption": ”“Yes",
"Importance": "normal",
"MailTo": "",
"MaxRate": ”“"1MB",
"Modified": "2018-10-08T09:00:17",
"Modified By": "security oncall",
"Oncall": "scribe oncall",
"Owner": "kcb",

"Retention": 14,

Customer Metadata
Customer Input

* Consistent public messaging

* Group posts

* Regular cadence

Customer Metadata
Customer Input

* In-person conversations
* Gather allies
* Address complexity upfront

* Canary for automation

Customer Metadata
Customer Input

* Individual automated messaging
* Be concise and link to additional documentation
* Make it actionable
* You’'ll be wrong no matter what

* Not every change is better for everyone

Customer Metadata

Customer Input

* Consistent public messaging (group posts)
* In-person conversations

* Individual automated messaging (tasks/tickets)

SLAs

You already have one

SLAs

You already have one

* If you don’t have an SLA your SLA is whatever the customer wants

SLAs

You already have one

* If you don’t have an SLA your SLA is whatever the customer wants

* The SLA is about expectations

SLAs

You already have one

* If you don’t have an SLA your SLA is whatever the customer wants
* The SLA is about expectations

* Expectations go both ways

SLAs

Zookeeper customers

* Zookeeper oncall gets UBNs for ensembles in trouble

SLAs

Zookeeper customers

* Zookeeper oncall gets UBNs for ensembles in trouble

* Hardware failure? Bad deployment?

SLAs

Zookeeper customers

* Zookeeper oncall gets UBNs for ensembles in trouble

* Hardware failure? Bad deployment?

filter (zk\.global\. (0[389]129|4[2-8]|6[589]]172]103))

SLAs

Zookeeper customers

* Zookeeper oncall gets UBNs for ensembles in trouble

* Hardware failure? Bad deployment?

e Customer load?

filter (zk\.global\. (0[389]129|4[2-8]|6[589]]172]103))

SLAs

Zookeeper customers

* Zookeeper oncall gets UBNs for ensembles in trouble

* Hardware failure? Bad deployment?

e Customer load?

* Manual alarm triaging is a symptom

SLAs

Zookeeper customers

* Zookeeper oncall gets UBNs for ensembles in trouble

* Hardware failure? Bad deployment?

e Customer load?

* Manual alarm triaging is a symptom

* The system can’t defend itself from bad actors

SLAs

Zookeeper customers

* Zookeeper oncall gets UBNs for ensembles in trouble
* Hardware failure? Bad deployment?

e Customer load?

* Manual alarm triaging is a symptom
* The system can’t defend itself from bad actors

* We don’t have metadata or we’re not using it

SLAs

Zookeeper customers

* Zookeeper oncall gets UBNs for ensembles in trouble

* Hardware failure? Bad deployment?

e Customer load?

* Manual alarm triaging is a symptom
* The system can’t defend itself from bad actors
* We don’t have metadata or we’re not using it

* Fear of conflict or visibility

SLAs

Zookeeper customers

What do we need?

* Written SLA

* Expectations go both ways

* Problems are solved by the right team

e Published metrics

Monitoring
The p100 problem

Monitoring
The p100 problem

* Monitoring is part of the service

Monitoring
The p100 problem

* Monitoring is part of the service

* 15 99% availability good?

Monitoring
The p100 problem
* Monitoring is part of the service

* 15 99% availability good?
* 100/10000 servers failing chef runs

Monitoring
The p100 problem

* Monitoring is part of the service

* 15 99% availability good?
* 100/10000 servers failing chef runs

* 1/100 database masters failing chef runs

Monitoring
The p100 problem

* Monitoring is part of the service

* 15 99% availability good?
* 100/10000 servers failing chef runs
* 1/100 database masters failing chef runs

* 1/100 zookeeper ensembles unavailable

Monitoring
The p100 problem

* Monitoring is part of the service

* 15 99% availability good?

100/10000 servers failing chef runs
1/100 database masters failing chef runs
1/100 zookeeper ensembles unavailable

10/1000 scribe categories failing writes

Monitoring
The p100 problem - chef monitoring

e Chef team

* Chef backend infrastructure (is the service up)

* Global run success (is chef working for customers)

Monitoring
The p100 problem - chef monitoring

e Chef team

* Chef backend infrastructure (is the service up)

* Global run success (is chef working for customers)

e Customer teams

* Per-customer run success

Monitoring
The p100 problem - chef monitoring

e Chef team

* Chef backend infrastructure (is the service up)

* Global run success (is chef working for customers)

e Customer teams

* Per-customer run success

* Sane defaults + flexibility

* Tunable thresholds (mandatory minimums)

Monitoring
The p100 problem - chef monitoring

e Chef team

* Chef backend infrastructure (is the service up)

* Global run success (is chef working for customers)

e Customer teams
* Per-customer run success
* Sane defaults + flexibility

* Tunable thresholds (mandatory minimums)

 Configurable notifications

Monitoring
The p100 problem - chef monitoring

* Chef team
* Chef backend infrastructure (is the service up)

* Global run success (is chef working for customers)

e Customer teams
* Per-customer run success
* Sane defaults + flexibility

* Tunable thresholds (mandatory minimums)
 Configurable notifications

* Automatic dependencies

Monitoring
The p100 problem - chef monitoring

What do we need?

* Monitoring of our service

* Monitoring as a service

Additional complexity

Everything was going so well

Additional complexity

Lifecycle - Decommissioning

* zookeeper - what if an ensemble becomes unused?
* scribe - what if a category becomes unused?

* What does unused mean?

* Would you be able to tell?

Additional complexity

Customers with customers

Additional complexity

Customers with customers

 Metadata service load

Additional complexity

Customers with customers

 Metadata service load

* Customers blaming their customers

Additional complexity

Customers with customers

 Metadata service load

* Customers blaming their customers
* Incidents
* Ownership
* Monitoring

* Capacity

Conclusions

Service Maturity Goals and Tips
Config Smell

* Separate customer metadata from service implementation

* Define scalable service levels

Service Maturity Goals and Tips

Customer Metadata

* Know who your customers are

* Define expectations for success and failure (convergence)
* Use organizationally meaningful data (task priorities)

* Plan for future changes (auditing pattern)

* Automated tasks are great (for irritating colleagues)

Service Maturity Goals and Tips

SLAs and Monitoring

* If you don’t have an SLA your SLA is whatever the customer wants
* Expectations and accountability go both ways

* Monitoring is part of the service you offer

Service Maturity Goals and Tips
Additional Complexity

* Manage the whole lifecycle

* Your customers will build services out of your service

Service Maturity Goals and Tips

Final thoughts

* There is no one right answer

* You don’t get to pick where to start

* You do get to decide what your service is and what it isn’t

* Leave things better than you found them

facebook Thank you

facebook Questions

facebook

