
Confidential Use Only – Do Not Share

INFRASTRUCTURE

Production Engineer
SCaLE 17x – March 2019

Internal Services Have Customers Too!

KC Braunschweig

Internal Services Have Customers Too!

Internal Services Have Customers Too!

Internal Services Have Customers Too!

• SCaLE Volunteer

Who Am I?

@kcbraunschweig

• SCaLE Volunteer
• Ticketmaster - Web Operations
• Edmunds.com - Systems Engineering

Who Am I?

@kcbraunschweig

• SCaLE Volunteer
• Ticketmaster - Web Operations
• Edmunds.com - Systems Engineering
• Facebook - Production Engineering

• OS & Config Management (Chef)
• Logging Infrastructure (Scribe, Hadoop & LogDevice)
• Coordination Infrastructure (Apache Zookeeper)

Who Am I?

@kcbraunschweig

• Intro
• Facebook Service Examples
• Service Maturity Scenarios
• Conclusions

Agenda

Facebook Service Examples

• Originally a purpose built logging framework for dozens of use
cases

• “Today we have well over 100 applications using this” – Bobby Johnson
2009 [2]

• Now the transport layer for all logging, stream processing
• Many 1000s of categories and >1TB/s [3]

• 10+ years becoming a massive multi-tenant service

Facebook Examples
Scribe

[2] “Scribe Tech Talk” https://www.facebook.com/Engineering/videos/650882334523/
[3] “The History of Logging @Facebook (Abridged)”
https://www.usenix.org/conference/lisa18/presentation/braunschweig

• All systems-level configuration at Facebook
• Designed for a small team to manage a massive fleet
• Delegate responsibility to customer teams

• “Have 4 people manage 10s of thousands of heterogeneous
systems” – Phil Dibowitz 2014 [1]

• ~6 years of maturing

Facebook Examples
Chef

[1] “Really large scale systems configuration” https://www.youtube.com/watch?v=rEWHmk8vBYk

• Originally backing 2 major use cases:
• Service discovery system
• Application configuration distribution system
• One team with a handful of ensembles

• Now Zookeeper as a Service
• Hundreds of ensembles [4]
• One Zookeeper team with many customer teams

Facebook Examples
Zookeeper

[4] “Zookeeper Meetup” https://www.facebook.com/zkmeetup/videos/559260314523351/

Service Maturity Scenarios

• You don’t get to pick where to start
• What’s right? What’s wrong?
• What do we need to make things better?

Facebook Examples
Plan of attack

Config Smell
Monitoring Zookeeper ensembles

• ”Where are the monitoring configs?” – Zookeeper team n00b

* Ensembles have names e.g. zk.global.42

Config Smell
Monitoring Zookeeper ensembles

• ”Where are the monitoring configs?” – Zookeeper team n00b

* Ensembles have names e.g. zk.global.42

Config Smell
Monitoring Zookeeper ensembles

filter(zk\.global\.(0[389]|29|4[2-8]|6[589]|72|103))

• ”Where are the monitoring configs?” – Zookeeper team n00b

* Ensembles have names e.g. zk.global.42

Config Smell
Monitoring Zookeeper ensembles

filter(zk\.global\.(0[389]|29|4[2-8]|6[589]|72|103))

filter(zk\.global\.(0[389]|29|4[2-8]|6[589]|72))

and 2 other places with slight variations

• ”Where are the monitoring configs?” – Zookeeper team n00b

* Ensembles have names e.g. zk.global.42

Config Smell
Monitoring Zookeeper ensembles

filter(zk\.global\.(0[389]|29|4[2-8]|6[589]|72|103))

filter(zk\.global\.(0[389]|29|4[2-8]|6[589]|72))

and 2 other places with slight variations

• Growing number of ensembles
• Wormhole [5] team uses a growing subset of ensembles
• Wormhole monitoring is slightly different due to their workload

Config Smell
Monitoring Zookeeper ensembles

[5] “Wormhole: Reliable Pub-Sub to Support Geo-replicated Internet Services”
https://www.usenix.org/system/files/conference/nsdi15/nsdi15-paper-sharma.pdf

• That’s a little better

Config Smell
Monitoring Zookeeper ensembles

Special wormhole ensembles – keep updated!
WH=filter(zk\.global\.(0[389]|29|4[2-8]|6[589]|72|103))

• That’s a lot better

Config Smell
Monitoring Zookeeper ensembles

filter(get_ensembles_by_customer(‘wormhole’))

• That’s a lot better or is it?

Config Smell
Monitoring Zookeeper ensembles

filter(get_ensembles_by_customer(‘wormhole’))
filter(get_ensembles_by_customer(‘wormhole2’))

• That’s a lot better or is it?

Config Smell
Monitoring Zookeeper ensembles

filter(get_ensembles_by_customer(‘wormhole’))
filter(get_ensembles_by_customer(‘wormhole2’))
filter(get_ensembles_by_customer(‘stargate’))
filter(get_ensembles_by_customer(‘lorem’))
filter(get_ensembles_by_customer(‘ipsum’))
filter(get_ensembles_by_customer(‘adnauseum’))
...

• How about this

Config Smell
Monitoring Zookeeper ensembles

filter(get_ensembles_by_sla(‘hipri’))

• Or better yet

Config Smell
Monitoring Zookeeper ensembles

for sla, ensembles in get_ensembles_by_sla().items()
do stuff for each sla
filter(ensembles)

What do we need?
• Separate customer metadata from service implementation
• Define scalable service offerings
• Canonical store of customer metadata

Config Smell
Monitoring Zookeeper ensembles

Customer Metadata
Scribe Categories

Background
• Log events are written to scribe categories
• Categories must be registered
• Registration has required fields

Customer Metadata
Scribe Categories

Customer Metadata
Scribe Categories

$ dmv find kctest1 -f json
[{

"Category": "kctest1",
"Blacklist Threshold": ”1GB",
"Encryption": ”Yes",
"Importance": "normal",
"MailTo": "",
"MaxRate": ”1MB",
"Modified": "2018-10-08T09:00:17",
"Modified By": "security_oncall",
"Oncall": "scribe_oncall",
"Owner": "kcb",
"Retention": 1,

}]

Customer Metadata
Scribe Categories

$ dmv find kctest1 -f json
[{

"Category": "kctest1",
"Blacklist Threshold": ”1GB",
"Encryption": ”Yes",
"Importance": "normal",
"MailTo": "",
"MaxRate": ”1MB",
"Modified": "2018-10-08T09:00:17",
"Modified By": "security_oncall",
"Oncall": "scribe_oncall",
"Owner": "kcb",
"Retention": 1,

}]

• + Know who our customers are

Customer Metadata
Scribe Categories

Customer Metadata
Scribe Categories

$ dmv find kctest1 -f json
[{

"Category": "kctest1",
"Blacklist Threshold": ”1GB",
"Encryption": ”Yes",
"Importance": "normal",
"MailTo": "",
"MaxRate": ”1MB",
"Modified": "2018-10-08T09:00:17",
"Modified By": "security_oncall",
"Oncall": "scribe_oncall",
"Owner": "kcb",
"Retention": 1,

}]

• + Know who our customers are
• - Implementation leakage

Customer Metadata
Scribe Categories

Customer Metadata
Scribe Categories

$ dmv find kctest1 -f json
[{

"Category": "kctest1",
"Blacklist Threshold": ”1GB",
"Encryption": ”Yes",
"Importance": "normal",
"MailTo": "",
"MaxRate": ”1MB",
"Modified": "2018-10-08T09:00:17",
"Modified By": "security_oncall",
"Oncall": "scribe_oncall",
"Owner": "kcb",
"Retention": 1,

}]

• + Know who our customers are
• - Implementation leakage
• ~ Metadata is intended state not actual state

Customer Metadata
Scribe Categories

Customer Metadata
Scribe Categories

$ dmv find kctest1 -f json
[{

"Category": "kctest1",
"Blacklist Threshold": ”1GB",
"Encryption": ”Yes",
"Importance": "normal",
"MailTo": "",
"MaxRate": ”1MB",
"Modified": "2018-10-08T09:00:17",
"Modified By": "security_oncall",
"Oncall": "scribe_oncall",
"Owner": "kcb",
"Retention": 1,

}]

• + Know who our customers are
• - Implementation leakage
• ~ Metadata is intended state not actual state
• ~ Clear expectations?

Customer Metadata
Scribe Categories

Customer Metadata
Scribe Categories

$ dmv find kctest1 -f json
[{

"Category": "kctest1",
"Blacklist Threshold": ”1GB",
"Encryption": ”Yes",
"Importance": "normal",
"MailTo": "",
"MaxRate": ”1MB",
"Modified": "2018-10-08T09:00:17",
"Modified By": "security_oncall",
"Oncall": "scribe_oncall",
"Owner": "kcb",
"Retention": 1,

}]

• + Know who our customers are
• - Implementation leakage
• ~ Metadata is intended state not actual state
• ~ Clear expectations?
• + Customer data for operations

Customer Metadata
Scribe Categories

Customer Metadata
Scribe Categories

$ dmv find kctest1 -f json
[{

"Category": "kctest1",
"Blacklist Threshold": ”1GB",
"Encryption": ”Yes",
"Importance": "normal",
"MailTo": "",
"MaxRate": ”1MB",
"Modified": "2018-10-08T09:00:17",
"Modified By": "security_oncall",
"Oncall": "scribe_oncall",
"Owner": "kcb",
"Retention": 1,

}]

• + Know who our customers are
• - Implementation leakage
• ~ Metadata is intended state not actual state
• ~ Clear expectations?
• + Customer data for operations
• + Change history

Customer Metadata
Scribe Categories

Customer Metadata
Scribe Categories

$ dmv find kctest1 -f json
[{

"Category": "kctest1",
"Blacklist Threshold": ”1GB",
"Encryption": ”Yes",
"Importance": "normal",
"MailTo": "",
"MaxRate": ”1MB",
"Modified": "2018-10-08T09:00:17",
"Modified By": "security_oncall",
"Oncall": "scribe_oncall",
"Owner": "kcb",
"Retention": 1,

}]

• + Know who our customers are
• - Implementation leakage
• ~ Metadata is intended state not actual state
• ~ Clear expectations?
• + Customer data for operations
• + Change history
• - Implicit offerings create implicit expectations

Customer Metadata
Scribe Categories

How can we make this better?
• Manage intended -> actual state

Customer Metadata
Scribe Categories

Intended state vs. actual state -> convergence

Customer Metadata
Convergence & Failure

Intended state vs. actual state -> convergence

Customer Metadata
Convergence & Failure

"Blacklist Threshold": ”1GB",
"MaxRate": ”1MB",

Intended state vs. actual state -> convergence

Customer Metadata
Convergence & Failure

"Blacklist Threshold": ”1GB",
"MaxRate": ”1MB",

system aggregate rate limits vs. capacity
impossible desires + naïve guardrails =

Intended state vs. actual state -> convergence

Customer Metadata
Convergence & Failure

"Blacklist Threshold": ”1GB",
"MaxRate": ”1MB",

system aggregate rate limits vs. capacity
impossible desires + naïve guardrails = converge on system failure

Intended state vs. actual state -> convergence

Customer Metadata
Convergence & Failure

"Blacklist Threshold": ”1GB",
"MaxRate": ”1MB",

system aggregate rate limits vs. capacity
impossible desires + naïve guardrails = converge on system failure
impossible desires + safe limits =

Intended state vs. actual state -> convergence

Customer Metadata
Convergence & Failure

"Blacklist Threshold": ”1GB",
"MaxRate": ”1MB",

system aggregate rate limits vs. capacity
impossible desires + naïve guardrails = converge on system failure
impossible desires + safe limits = converge on customer failure

Intended state vs. actual state -> convergence

Customer Metadata
Convergence & Failure

"Blacklist Threshold": ”1GB",
"MaxRate": ”1MB",

system aggregate rate limits vs. capacity
impossible desires + naïve guardrails = converge on system failure
impossible desires + safe limits = converge on customer failure
reasonable desires + safe limits + unexpected failure =

Intended state vs. actual state -> convergence

Customer Metadata
Convergence & Failure

"Blacklist Threshold": ”1GB",
"MaxRate": ”1MB",

system aggregate rate limits vs. capacity
impossible desires + naïve guardrails = converge on system failure
impossible desires + safe limits = converge on customer failure
reasonable desires + safe limits + unexpected failure = ?

How can we make this better?
• Manage intended -> actual state
• Clarify expectations

Customer Metadata
Scribe Categories

Customer Metadata
Expectations

$ dmv find kctest1 -f json
[{

"Category": "kctest1",
"Blacklist Threshold": ”1GB",
"Encryption": ”Yes",
"Importance": "normal",
"MailTo": "",
"MaxRate": ”1MB",
"Modified": "2018-10-08T09:00:17",
"Modified By": "security_oncall",
"Oncall": "scribe_oncall",
"Owner": "kcb",
"Retention": 1,

}]

Customer Metadata
Expectations

• Tasks – Internal task ticketing system
• Tasks have priorities
• UBN = UnBreak Now!
• UBNs page the owner automatically

Customer Metadata
Expectations

• Organizationally meaningful priorities
• External accountability
• Enable better emergency response

How can we make this better?
• Manage intended -> actual state
• Clarify expectations
• Support implementation changes

Customer Metadata
Scribe Categories

• “How do I turn on something new?”

Customer Metadata
Auditing Pattern

Customer Metadata
Auditing Pattern

$ dmv find kctest1 -f json
[{

"Category": "kctest1",
"Blacklist Threshold": ”1GB",
"Encryption": ”Yes",
"Importance": "normal",
"MailTo": "",
"MaxRate": ”1MB",
"Modified": "2018-10-08T09:00:17",
"Modified By": "security_oncall",
"Oncall": "scribe_oncall",
"Owner": "kcb",
"Retention": 1,

}]

• Goal: 100% encryption by default
• Challenges:

• Encryption is a new backend feature
• Encryption requires client upgrade, credential distribution
• Fail open/closed?

Customer Metadata
Auditing Pattern

• Goal: 100% encryption by default

Customer Metadata
Auditing Pattern

impossible desires + naïve guardrails = converge on system failure
impossible desires + safe limits = converge on customer failure
reasonable desires + safe limits + unexpected failure = ?

• Goal: 100% encryption by default

Customer Metadata
Auditing Pattern

impossible desires + naïve guardrails = converge on system failure
impossible desires + safe limits = converge on customer failure
reasonable desires + safe limits + unexpected failure = ?

change(desires + limits) + failure = ?

• Goal: 100% encryption by default
• Process:

• Mass migration (”One perfect moment”)

Customer Metadata
Auditing Pattern

• Goal: 100% encryption by default
• Process:

• Mass migration (”One perfect moment”)
• Prepare then migrate (“Big list”)

Customer Metadata
Auditing Pattern

• Goal: 100% encryption by default
• Process:

• Mass migration (”One perfect moment”)
• Prepare then migrate (“Big list”)
• Continuous auditing (“TDD for operations”)

Customer Metadata
Auditing Pattern

• Goal: 100% encryption by default
• Effective auditing

• Check metadata – is encryption enabled?
• Check dependencies – are dependencies ready for encryption?
• Check implementation – is category actually encrypted?

Customer Metadata
Auditing Pattern

Customer Metadata
Customer Input

Customer Metadata
Customer Input

$ dmv find kctest1 -f json

[{

"Blacklist Threshold": ”1GB",

"Category": "kctest1",

"Encryption": ”Yes",
"Importance": "normal",

"MailTo": "",

"MaxRate": ”1MB",

"Modified": "2018-10-08T09:00:17",

"Modified By": "security_oncall",
"Oncall": "scribe_oncall",

"Owner": "kcb",

"Retention": 1,
}]

$ dmv find kctest1 -f json
[{

"Category": "kctest1",
"Blacklist Threshold": ”1GB",
"Encryption": ”Yes",
"Importance": "normal",
"MailTo": "",
"MaxRate": ”1MB",
"Modified": "2018-10-08T09:00:17",
"Modified By": "security_oncall",
"Oncall": "scribe_oncall",
"Owner": "kcb",
"Retention": 14,

}]

• Consistent public messaging
• Group post?
• Regular cadence

Customer Metadata
Customer Input

• In-person conversations
• Gather allies
• Address complexity upfront
• Canary for automation

Customer Metadata
Customer Input

• Individual automated messaging
• Be concise and link to additional documentation
• Make it actionable
• You’ll be wrong no matter what
• Not every change is better for everyone

Customer Metadata
Customer Input

• Consistent public messaging (group posts)
• In-person conversations
• Individual automated messaging (tasks/tickets)

Customer Metadata
Customer Input

SLAs
You already have one

• If you don’t have an SLA your SLA is whatever the customer wants

SLAs
You already have one

• If you don’t have an SLA your SLA is whatever the customer wants
• The SLA is about expectations

SLAs
You already have one

• If you don’t have an SLA your SLA is whatever the customer wants
• The SLA is about expectations
• Expectations go both ways

SLAs
You already have one

• Zookeeper oncall gets UBNs for ensembles in trouble

SLAs
Zookeeper customers

• Zookeeper oncall gets UBNs for ensembles in trouble
• Hardware failure? Bad deployment?

SLAs
Zookeeper customers

• Zookeeper oncall gets UBNs for ensembles in trouble
• Hardware failure? Bad deployment?

SLAs
Zookeeper customers

filter(zk\.global\.(0[389]|29|4[2-8]|6[589]|72|103))

• Zookeeper oncall gets UBNs for ensembles in trouble
• Hardware failure? Bad deployment?
• Customer load?

SLAs
Zookeeper customers

filter(zk\.global\.(0[389]|29|4[2-8]|6[589]|72|103))

• Zookeeper oncall gets UBNs for ensembles in trouble
• Hardware failure? Bad deployment?
• Customer load?

• Manual alarm triaging is a symptom

SLAs
Zookeeper customers

• Zookeeper oncall gets UBNs for ensembles in trouble
• Hardware failure? Bad deployment?
• Customer load?

• Manual alarm triaging is a symptom
• The system can’t defend itself from bad actors

SLAs
Zookeeper customers

• Zookeeper oncall gets UBNs for ensembles in trouble
• Hardware failure? Bad deployment?
• Customer load?

• Manual alarm triaging is a symptom
• The system can’t defend itself from bad actors
• We don’t have metadata or we’re not using it

SLAs
Zookeeper customers

• Zookeeper oncall gets UBNs for ensembles in trouble
• Hardware failure? Bad deployment?
• Customer load?

• Manual alarm triaging is a symptom
• The system can’t defend itself from bad actors
• We don’t have metadata or we’re not using it
• Fear of conflict or visibility

SLAs
Zookeeper customers

What do we need?
• Written SLA
• Expectations go both ways
• Problems are solved by the right team
• Published metrics

SLAs
Zookeeper customers

Monitoring
The p100 problem

• Monitoring is part of the service

Monitoring
The p100 problem

• Monitoring is part of the service
• Is 99% availability good?

Monitoring
The p100 problem

• Monitoring is part of the service
• Is 99% availability good?

• 100/10000 servers failing chef runs

Monitoring
The p100 problem

• Monitoring is part of the service
• Is 99% availability good?

• 100/10000 servers failing chef runs
• 1/100 database masters failing chef runs

Monitoring
The p100 problem

• Monitoring is part of the service
• Is 99% availability good?

• 100/10000 servers failing chef runs
• 1/100 database masters failing chef runs
• 1/100 zookeeper ensembles unavailable

Monitoring
The p100 problem

• Monitoring is part of the service
• Is 99% availability good?

• 100/10000 servers failing chef runs
• 1/100 database masters failing chef runs
• 1/100 zookeeper ensembles unavailable
• 10/1000 scribe categories failing writes

Monitoring
The p100 problem

• Chef team
• Chef backend infrastructure (is the service up)
• Global run success (is chef working for customers)

Monitoring
The p100 problem – chef monitoring

• Chef team
• Chef backend infrastructure (is the service up)
• Global run success (is chef working for customers)

• Customer teams
• Per-customer run success

Monitoring
The p100 problem – chef monitoring

• Chef team
• Chef backend infrastructure (is the service up)
• Global run success (is chef working for customers)

• Customer teams
• Per-customer run success

• Sane defaults + flexibility
• Tunable thresholds (mandatory minimums)

Monitoring
The p100 problem – chef monitoring

• Chef team
• Chef backend infrastructure (is the service up)
• Global run success (is chef working for customers)

• Customer teams
• Per-customer run success

• Sane defaults + flexibility
• Tunable thresholds (mandatory minimums)
• Configurable notifications

Monitoring
The p100 problem – chef monitoring

• Chef team
• Chef backend infrastructure (is the service up)
• Global run success (is chef working for customers)

• Customer teams
• Per-customer run success

• Sane defaults + flexibility
• Tunable thresholds (mandatory minimums)
• Configurable notifications
• Automatic dependencies

Monitoring
The p100 problem – chef monitoring

What do we need?
• Monitoring of our service
• Monitoring as a service

Monitoring
The p100 problem – chef monitoring

Additional complexity
Everything was going so well

• zookeeper – what if an ensemble becomes unused?
• scribe – what if a category becomes unused?
• What does unused mean?
• Would you be able to tell?

Additional complexity
Lifecycle - Decommissioning

Additional complexity
Customers with customers

• Metadata service load

Additional complexity
Customers with customers

• Metadata service load
• Customers blaming their customers

Additional complexity
Customers with customers

• Metadata service load
• Customers blaming their customers

• Incidents
• Ownership
• Monitoring
• Capacity

Additional complexity
Customers with customers

Conclusions

• Separate customer metadata from service implementation
• Define scalable service levels

Service Maturity Goals and Tips
Config Smell

• Know who your customers are
• Define expectations for success and failure (convergence)
• Use organizationally meaningful data (task priorities)
• Plan for future changes (auditing pattern)
• Automated tasks are great (for irritating colleagues)

Service Maturity Goals and Tips
Customer Metadata

• If you don’t have an SLA your SLA is whatever the customer wants
• Expectations and accountability go both ways
• Monitoring is part of the service you offer

Service Maturity Goals and Tips
SLAs and Monitoring

• Manage the whole lifecycle
• Your customers will build services out of your service

Service Maturity Goals and Tips
Additional Complexity

• There is no one right answer
• You don’t get to pick where to start
• You do get to decide what your service is and what it isn’t
• Leave things better than you found them

Service Maturity Goals and Tips
Final thoughts

Thank you

Questions

