
IoT Without a Net: A Practical Guide To
Working With Microcontrollers The Open

Source Way

https://github.com/pmezydlo/SPI_slave_driver_implementation/wiki

Presentation Outline
Who Am I? 1
Exactly What Kind of Hardware Are We Talking About? 2
Example Reference Architecture 3
Example Boards 4
Microcontroller Architecture / CPU Families 5
Hybrid and "Combo" Boards 6
What About Software Tools? 7
Toolchains, SDKs, and Architectures 8

Bare-Metal and Firmware 8
Vendor vs. Open Source Tools 9
Examples: nRF52 DK, ESP8266, FPGA, PRU-ICSS 10
Examples: Altera socfpga 11
Examples: PRU-ICSS, TI AM335x, AM437x, AM571x 12
Examples: PRU-ICSS Cont. 13
How To Choose? 14
Where to Go Next 15
License and Thanks! 16

Who Am I?

Gentoo Linux Developer

OpenEmbedded contributor

BeagleBoard GSoC Mentor

Grumpy toolchain guy (part-time)

Geeky software tool maintainer

http://bbb.io/gsoc
https://github.com/sarnold
https://github.com/VCTLabs

Systems Architecture guy

Principal Scientist VCT Labs

http://bbb.io/gsoc
https://github.com/sarnold
https://github.com/VCTLabs

Exactly What Kind of Hardware Are We
Talking About?

• Primary Characteristics

• Stand-alone or separate real-time CPU core(s)

• Can also come in combination or hybrid configurations

• Requires firmware flashing to do something

• Includes both hard and soft processor cores

• Interfaces for debug, RAM/peripherals, Linux runtime

• Typical Applications

• IoT, industrial, automotive, consumer, hobbyist

• Fixed and mobile sensor platforms

• Wearables, remote instrumentation, mesh networks

• Autopilots (drones, rovers, UAVs) and robotics

• Vehicle navigation, entertainment, communication

• Machine control (3D printing, milling, process control)

• Door/entry control, locks, power, LEDs, appliances

Example Reference
Architecture

"A microcontroller (or MCU, short
for microcontroller unit) is a small
computer or System on Chip (SoC)
in a single integrated circuit
containing a processor core,
memory, and programmable I/O
peripherals (may also include
program memory)."

[1]
https://en.wikipedia.org/wiki/Microcontroller

https://en.wikipedia.org/wiki/Microcontroller

Example Boards

AVR/ARM: Arduinos

Cortex-M4: nRF52 DK

Xtensa LX-106: ESP8266

P8X32A microcontroller

Microcontroller Architecture / CPU Families
• 4 most "common" architecture families in DIY and FOSS

• 8051, PIC and AVR are Harvard architecture, which uses separate
memory spaces for RAM and programs, while ARM is von Neumann
architecture (program and RAM share the same memory space)

• ARM is a 16 or 32 bit architecture, others are byte (8-bit) architecture

• 8051 and PIC have limited stack space - limited to 128 bytes for the
8051, 8 words or less for PIC

• 8051, AVR and ARM can directly address all available RAM, while PIC
can only directly address 256 bytes

• 8051 and PIC need multiple clock cycles per instruction, while AVR and
ARM can execute most instructions in a single clock cycle

• AVR and ARM have great open source compilers, libs, examples

• Still around: PowerPC, MIPS, STM, TI, Toshiba, Freescale/NXP, etc

• Combination/Hybrid and Special Purpose Architectures/Implementations

• PRU-ICSS / PRUSSv2 - Programmable Real-Time Unit and Industrial
Communication Subsystem

• DSP - Digital Signal Processor

• FPGA - Field Programmable Gate Array

• Massively Parallel - Parallax Propeller, Parallela, Transputer

https://en.wikipedia.org/wiki/Harvard_architecture
https://en.wikipedia.org/wiki/Von_Neumann_architecture
https://en.wikipedia.org/wiki/Von_Neumann_architecture
http://elinux.org/Ti_AM33XX_PRUSSv2
https://en.wikipedia.org/wiki/Digital_signal_processor
https://en.wikipedia.org/wiki/Field-programmable_gate_array
https://en.wikipedia.org/wiki/Parallax_Propeller
https://www.parallella.org/board/
https://en.wikipedia.org/wiki/Transputer

Hybrid and "Combo" Boards
Most embedded Linux boards have co-processors for graphics or network
acceleration but here we're talking about something a little different. While the
bulk of microcontrollers are stand-alone, there are several options available with
both an ARM host and separate microcontroller cores.

• General purpose microcontrollers (not DSPs)

• Can be Cortex (ARM), AVR, FPGA, other

Examples:
• TI Beagleboard / Beaglebone boards (AM335X ARMv7 w/ PRU cores)

• Altera "hybrid" Arm/FPGA boards (socfpga ARMv7 w/ 1 CycloneV FPGA)

• Udoo / Udoo Neo boards (i.MX6 ARMv7 w/ 1 ARM Cortex-M core)

What About Software Tools?
Just like every (beagle) dog has his/her day, every arch has its toolchain...

nerdboy in #gentoo-embedded

The typical embedded Linux cross-toolchain is built to target processor
architectures different from the build host and has 4 main parts:

• a cross compiler for C and C++ (in the case of gcc, possibly more languages)

• a cross binutils (the build tools needed by the compiler)

• a set of libraries and headers for the supported languages

• a set of kernel headers for the target platform

The (cross) compiler prefix (triplet) contains several bits of important info:
• machine-vendor-OS (where OS can be two fields and vendor can be left out)

gcc-config -l
[1] armv7a-hardfloat-linux-gnueabi-5.4.0 *
[2] armv7m-hardfloat-eabi-5.4.0 *
[4] mips64-unknown-linux-gnueabi-5.3.0 *
[8] x86_64-pc-linux-gnu-5.4.0 *

http://wiki.osdev.org/Target_Triplet

Toolchains, SDKs, and Architectures

Bare-Metal and Firmware
Each micro-controller/real-time core has an architecture and instruction set, which
any toolchain must support (or at least a viable subset). Most have both vendor
support and a gcc port, although in some cases the gcc port might be new and
essentially still under development (eg, the TI PRUSS toolchain).

The toolchain itself is mainly the compiler/linker/loader and a standard C library
(of which there are several). In order to build anything "fancy" you also need a
Software Development Kit (or SDK). Sometimes you can live with either the
compiler runtime and/or libc, but a good set of libraries with documented
interfaces is always a Good Thing. Depending on the target board there is
typically a vendor SDK and (hopefully) several open source alternatives.

Places to start:
• AVR-Ada Blog by Tero Koskinen

• tkoskine bitbucket repos - Tools for AVR and ARM in multiple languages

• Embedded Project Blog - by Stefan Wendler

• wendlers github installer - Best installer for propeller tools

You should always do your homework (for a real project) or just pick one and try it
and see...

http://arduino.ada-language.com/
https://bitbucket.org/tkoskine/
http://www.kaltpost.de/?page_id=63
https://github.com/wendlers/install-propeller-toolchain

Vendor vs. Open Source Tools
Vendor boards typically have a vendor SDK and vendor toolchain options
(sometimes including GCC) whereas open source hardware generally relies on a
GCC toolchain (with some interesting exceptions). The more "mainstream" the
architecture, the more likely it is to have a mature GCC option.

"Common" architectures
• ARM: Cortex-M/R "official" toolchain is GNU ARM

• AVR: Atmel Studio is based on GNU AVR

"Oddball" architectures
• TI PRU-ICSS: "official" toolchain w/ full debug support is CGT and CCS

• Parallax Propeller (original) toolchain is based on SPIN

The rub: FPGAs
• FPGAs tend to be more vendor-specific (both hardware and toolchains)

• Open source firmware toolchains do exist (some components may be
missing and/or immature)

• Each board typically has its own interface to host side and may require
custom Linux integration, etc

• Peripherals implemented on the FPGA side may also need custom DT and
driver support for Linux, etc

https://developer.arm.com/open-source/gnu-toolchain/gnu-rm
http://gnutoolchains.com/avr/
http://processors.wiki.ti.com/index.php/PRU-ICSS
http://software-dl.ti.com/codegen/non-esd/downloads/download.htm#PRU
http://www.ti.com/tool/ccstudio-sitara
http://www.learn.parallax.com/projects/propeller-spin-language
https://coertvonk.com/technology/logic/quartus-cycloneiv-de0nano-15932
http://www.clifford.at/icestorm/
https://github.com/VCTLabs/u-boot/blob/v2016.03-yocto/doc/README.socfpga

Examples: nRF52 DK, ESP8266, FPGA,
PRU-ICSS
Great, we have a toolchain/SDK and a devel-kit/eval board - now what?

• Compile some firmware/bootloader or try the vendor flash demo

• Connect any necessary cables, etc (for nRF52 connect the NFC antenna)

• Hook up a serial/debug interface (microUSB or serial pins or even host USB)

• If needed, apply power (eg, flip the ON/OFF switch)

Each SoC/board should have "standard" interfaces, along with any
vendor-specific things for flashing firmware. The nRF52 DK uses a mass-storage
interface for this, while Altera SoCs have a "USB Blaster" host port.

• Flashing your firmware is board/vendor-specific

• nRF52 supports mass-storage/JLink/UART

• ESP8266 supports USB/serial (esptool.py)

• DE-0/DE-1 supports u-boot, USB Blaster, and JTAG (power-on only)

• BeagleBone loads PRU code on boot (from /lib/firmware)

• Debug from x86 (desktop, laptop) or ARM (RPi3, BB, Udoo)

• JLink connected to USB, debug console (possibly BLE)

• Provide 5v/3.3v power as needed

https://en.wikipedia.org/wiki/Switch
https://www.segger.com/jlink-debug-probes.html
https://github.com/espressif/esptool
https://en.wikipedia.org/wiki/JTAG

Examples: Altera socfpga
DE-0 Nano and DE-1 SoC Kits (CycloneV FPGA plus ARM Cortex-A9)

Another "rub": the Altera socfpga boards are a different species, since the
hardware peripherals are literally split, ie some are connected to the ARM HPS
side, and others are connected to the FPGA side. On the HPS (Linux) side all you
get is ethernet and a serial console with an FPGA firmware blob. What?!?

Linux - FPGA Integration

The big issue is the FPGA demos aren't buildable without rolling back to (very) old
toolchains/u-boot/kernel (or a lot of fiddling and poking). Why? There's an
important piece of integration glue missing/broken from the vendor tools and the
u-boot side is virtually undocumented (see here for the missing README content
that was lost in patch limbo).

Finally, there's the problem of too much documentation (really!). As several
university courses use socfpga boards to teach processor design, such as ECE
5760 at Cornell, they make a good starting point.

Best advice to get started is the LinuxOnArm wiki and DE1_SOC_Linux_FB
Demo project. Use the vct-socfpga-bsp-platform and 4.4-altera kernel to build a
rootfs with the right kernel and u-boot patches (follow the DE1 FB readme for
details).

https://github.com/VCTLabs/u-boot/blob/v2016.03-yocto/doc/README.socfpga
https://people.ece.cornell.edu/land/courses/ece5760/DE1_SOC/index.html
https://people.ece.cornell.edu/land/courses/ece5760/DE1_SOC/index.html
https://eewiki.net/display/linuxonarm/DE0-Nano-SoC+Kit
https://github.com/VCTLabs/DE1_SOC_Linux_FB
https://github.com/VCTLabs/DE1_SOC_Linux_FB
https://github.com/VCTLabs/vct-socfpga-bsp-platform

Examples: PRU-ICSS, TI AM335x, AM437x,
AM571x

Hmm, Kernels and kernels and PRUSS interfaces...

nerdboy in #beagle-gsoc

Given how long beagleboards and beaglebones have been around, there have
been several long-lived TI and BeagleBoard.Org kernel branches, and you may
still run across projects, demos, or examples that still require a 3.8 or 3.14 kernel.
The PRU interfaces have evolved over that time, so using the latest available
versions of PRU sample projects and the TI-staging kernels should "match".

• Old kernels/PRU firmware use the old UIO PRUSS interface

• Newer kernels/pru-software-support-package use the Remoteproc interface

• Old TI kernel branches include 3.8 and 3.14, newer branches are 4.4 and 4.9

• New beaglebone patches should appear in the bb-kernel mainline build

• To get started, read Using the C language to program the am335x PRU

• Clone the pru-software-support-package repo, install the CCS compiler
package, and either use a bb-kernel build with debian rootfs or build
everything with the vct-beagleboard-bsp-platform

• Follow along (as much as possible) with the TI Training in Hands-on Labs

https://github.com/beagleboard/am335x_pru_package/tree/master/pru_sw/old_example
http://processors.wiki.ti.com/index.php/PRU-ICSS_Remoteproc_Driver
https://eewiki.net/display/linuxonarm/BeagleBone+Black#BeagleBoneBlack-Mainline
https://www.embeddedrelated.com/showarticle/603.php
https://git.ti.com/pru-software-support-package
https://eewiki.net/display/linuxonarm/BeagleBone+Black#BeagleBoneBlack-Mainline
https://github.com/VCTLabs/vct-beagleboard-bsp-platform
http://processors.wiki.ti.com/index.php/PRU_Training:_Hands-on_Labs

Examples: PRU-ICSS Cont.
GCC vs. TI PRU C compiler issues and resources

• PRU ELF file format - merged, both PRU-GCC and TI toolchain use 0x90 for
machine code

• TI ELF PRU Relocations - Work is ongoing to make Binutils and TI ELF
relocations compatible

• GCC PRU ABI and TI PRU C ABI are slightly different

See also:
• TI PRU-ICSS wiki "portal" page / resources

• PRU-ICSS Getting Started Guide

Interesting Applications:
• BeagleBone - beaglelogic, PRUDAQ, SPI slave driver (title pic)

• Altera socfpga (not the demos): DE1-SoC-Sound, I2S audio using opencores

• ESP8266: NodeMCU and microPython

https://github.com/dinuxbg/gnupru/wiki#gcc-pru-abi
http://www.ti.com/lit/ug/spruhv7a/spruhv7a.pdf
http://processors.wiki.ti.com/index.php/PRU-ICSS
http://processors.wiki.ti.com/index.php/PRU-ICSS_Getting_Started_Guide
https://github.com/abhishek-kakkar/BeagleLogic/wiki
https://github.com/google/prudaq/wiki
https://github.com/pmezydlo/SPI_slave_driver_implementation/wiki
https://github.com/VCTLabs/DE1-SoC-Sound
http://opencores.org/
https://en.wikipedia.org/wiki/NodeMCU
https://github.com/micropython/micropython/wiki

How To Choose?
It depends. What do you want to do? Educate yourself? Make a cool project?
Prototype a product idea? Automate something?

• Education - maker space, LUG group, home

• Very little open source/popular hardware is truly mainlined

• Pick a board off the LinuxOnArm wiki

• Pick a board used at the hacker space or recommended by a friend

• Pick a board with a large community and lots of projects

• Commercial product - kickstarter, customer, boss

• Understand the project requirements

• Evaluate some eval boards

• Understand the hardware limitations

• Evaluate the kernel and runtime needs

• Evaluate performance/other reqs vs. BoM costs

Where to Go Next
nRF52 DK and toolchain, flash wrapper

• https://www.nordicsemi.com/eng/Products/Bluetooth-low-enery/nRF52-DK

• https://developer.arm.com/open-source/gnu-toolchain/gnu-rm

• https://github.com/VCTLabs/nrfjprog-wrapper

BeagleBone/BeagleBoard info, PRU toolchain, Yocto BSP manifest

• https://eewiki.net/display/linuxonarm/BeagleBone+Black

• http://elinux.org/Ti_AM33XX_PRUSSv2

• https://github.com/VCTLabs/vct-beagleboard-bsp-platform

DE-0 Nano SoC info, updated demo projects, BSP manifest, vendor refs

• https://eewiki.net/display/linuxonarm/DE0-Nano-SoC+Kit

• https://github.com/VCTLabs/DE1_SOC_Linux_FB

• https://github.com/VCTLabs/DE1-SoC-Sound

• https://github.com/VCTLabs/vct-socfpga-bsp-platform

• https://github.com/altera-opensource/linux-refdesigns

https://www.nordicsemi.com/eng/Products/Bluetooth-low-enery/nRF52-DK
https://developer.arm.com/open-source/gnu-toolchain/gnu-rm
https://github.com/VCTLabs/nrfjprog-wrapper
https://eewiki.net/display/linuxonarm/BeagleBone+Black
http://elinux.org/Ti_AM33XX_PRUSSv2
https://github.com/VCTLabs/vct-beagleboard-bsp-platform
https://eewiki.net/display/linuxonarm/DE0-Nano-SoC+Kit
https://github.com/VCTLabs/DE1_SOC_Linux_FB
https://github.com/VCTLabs/DE1-SoC-Sound
https://github.com/VCTLabs/vct-socfpga-bsp-platform
https://github.com/altera-opensource/linux-refdesigns

License and Thanks!
Author: Stephen L Arnold

FOSS Hat: Gentoo Linux Developer
Contact: nerdboy@gentoo.org

Revision: 0.0.1
Date: 2017-02-27, 19:53 PST8PDT

License: CC-Attribution-ShareAlike
Copyright: 2017 Stephen Arnold

Other: All other trademarks and copyrights belong to their respective
owners.

mailto:nerdboy@gentoo.org
http://creativecommons.org/licenses/by-sa/3.0/
http://github.com/sarnold

	Who Am I?
	Exactly What Kind of Hardware Are We Talking About?
	Example Reference Architecture
	Example Boards
	Microcontroller Architecture / CPU Families
	Hybrid and "Combo" Boards
	What About Software Tools?
	Toolchains, SDKs, and Architectures
	Bare-Metal and Firmware

	Vendor vs. Open Source Tools
	Examples: nRF52 DK, ESP8266, FPGA, PRU-ICSS
	Examples: Altera socfpga
	Examples: PRU-ICSS, TI AM335x, AM437x, AM571x
	Examples: PRU-ICSS Cont.
	How To Choose?
	Where to Go Next
	License and Thanks!

