

HIGH-AVAILABILITY CLUSTERING IN
RED HAT ENTERPRISE LINUX

Thomas Cameron, RHCA, RHCSS, RHCDS, RHCVA, RHCX

Global Cloud Strategy Evangelist
June 29th, 2016

Contact info

● thomas@redhat.com
● @ThomasDCameron on Twitter
● http://www.facebook.com/RedHatThomas
● http://people.redhat.com/tcameron

Agenda

Agenda

● What is clustering?
– HA
– Computational

● What we're going to discuss today
● Host installation
● Set up the iSCSI target (server)
● Set up the iSCSI initiators (clients)

Agenda

● Install the clustering software
● Start the cluster
● Configure STONITH
● Set up an active/passive Apache cluster
● Add a clustered filesystem
● Test

Types of Clusters

● Generally speaking, there are two common types of clusters
– High availability
– Computational

High Availability Clusters

● Multiple nodes serving the same workload. Primary design goal is that if one node
goes down, the application continues with minimal interruption.

● Can use shared storage
– Clustered DB
– Clustered web apps
– Clustered file servers

Computational Clusters

● Multiple nodes working on the same or similar datasets. Design goal is to throw
massive resources at a complex problem to solve it quickly.

● Typically uses local or network storage
– Monte Carlo simulations for financial services
– Oil field reservoir simulation and modeling
– Chip design and simulation and modeling

What we're covering today

High Availability Clustering

● We're going to do a very basic cluster. We'd never use this design for production, but it
is great for self-study and attaining a basic understanding of clustering.
– Single ethernet network
– iSCSI storage
– Three nodes

Host installation & requirements

Kickstart

● Super basic kickstart – just @core and @base

Disable the Firewall

● We would not do this in production – this is only for lab purposes
– systemctl disable firewalld
– systemctl stop firewalld
– iptables -L

Set up time

● Run “timedatectl status” to make sure that the systemd time and date service is active
and using NTP

Set up passwordless ssh between hosts

● On each node, run ssh-keygen

Distribute keys

● Use ssh-copy-id to distribute the keys to every host in the cluster (including itself)
– Something like “for i in host1 host2 host3 host4; do ssh-copy-id $i; done”

Distribute keys

● Make sure you can log into all of the machines without being prompted to accept the
key

Distribute keys

● Make sure that you can log in via short and long hostname. Don't quit until get this
result:

Set up the iSCSI target (server)

Linux-IO Target (LIO)

● Linux-IO Target (LIO™) has been the Linux SCSI target since kernel version 2.6.38.
– Linux-IO Target is based on a SCSI engine that implements the semantics of a SCSI

target as described in the SCSI Architecture Model (SAM), and supports its
comprehensive SPC-3/SPC-4 feature set in a fabric-agnostic way. The SCSI target
core does not directly communicate with initiators and it does not directly access
data on disk.

Source: http://linux-iscsi.org/wiki/Target

http://linux-iscsi.org/wiki/Target

Cheat Sheet

● I love the “cheat sheet” at http://linux-iscsi.org/wiki/ISCSI#Cheat_sheet

http://linux-iscsi.org/wiki/ISCSI#Cheat_sheet

Create the partition

● Use your favorite partitioning tool. Since this is a small disk, I used fdisk. For larger
disks, parted makes sense.

● I created a new primary partition, using the rest of the disk. Again, this is just for a lab,
in the real world I would probably use LVM.

● Reboot if prompted

Install the iSCSI management software

● There are a number of ways we can create an iSCSI export. The simplest is probably
targetcli
– yum install targetcli

● Brings in necessary python libs and utils as dependencies

Enable the “target” service

● The target service is what causes LIO to read its config at boot time.

Using targetcli

● targetcli can be used interactively via a shell or from the command line. We'll use the
shell.

● Check the current config with “ls”

Define the backing store for your LUN

● You have to tell the LIO iSCSI target software about the block device you want to use
– cd /backstores/block (“cd” is optional)
– create [lun] /dev/[device] (I called mine lun0 on vdb1)
– ls to check results

● /backstores/block create lun0 /dev/vdb1

Create an iSCSI Qualified Name (IQN) record

● /iscsi
● create (you can specify and IQN, but it's easier to let it auto-generate it for you)

Export the LUN

● Now you need to make that LUN available via that portal and IQN
– cd /iscsi/[your_iqn]/tpg1/luns
– create /backstores/block/[lun]
– ls

Enable Demo Mode

● This is dangerous! Don't do this in production, you'll want to set ACLs. We're doing this
in a compressed time frame for a demo setup.

● Go to your target portal group (TPG) and set the following attributes:
– cd /iscsi/[your_IQN]/tpg1/
– set attribute authentication=0
– set attribute demo_mode_write_protect=0
– set attribute generate_node_acls=1
– set attribute cache_dynamic_acls=1

Check the top level view

● cd /
● ls

Save the configuration

● saveconfig
● Exiting saves as well

Check out /etc/target/saveconfig.json

● cat the file

Set up the iSCSI initiators (clients)

Install the software on each cluster node

● yum install iscsi-initiator-utils

Check that the iSCSI initiator service is enabled

● systemctl status iscsi
– It should be enabled but dead since it has not been started yet

Discover the target

● Note that there are no iscsi processes running
● /var/lib/scsi is empty
● iscsiadm --mode discoverydb --type sendtargets --portal [portal] --discover
● Afterwards, the iscsid process is running
● /var/lib/iscsi is populated

Log into the target

● Note that the kernel only “sees” block devices for locally installed hard drives
● iscsiadm --mode node --targetname [iqn] --portal [portal] --login
● You should see a new block device

Log into the target

● Lather, rinse, repeat for each initiator

We'll come back to this shared storage later

● For now, let's move on to setting up the clustering software

Corosync and Pacemaker

About corosync and pacemaker

● Low level infrastructure corosync provides reliable messaging, membership and
quorum information about the cluster (red)

About corosync and pacemaker

● Resource management Pacemaker provides the brain (illustrated in blue) that
processes and reacts to events regarding the cluster. These events include:

– nodes joining or leaving the cluster
– resource events caused by failures,

maintenance, scheduled activities
– other administrative actions

About corosync and pacemaker

● Pacemaker will compute the ideal state of the cluster and plot a path to achieve it after
any of these events. This may include moving resources, stopping nodes and even
forcing them offline with remote power switches.

The Pacemaker Stack

● When combined with Corosync, Pacemaker also supports popular open source cluster
filesystems.

● Due to recent standardization within the cluster filesystem community, they make use
of a common distributed lock manager which makes use of Corosync for its messaging
capabilities and Pacemaker for its membership (which nodes are up/down) and
fencing services.

Internal Components

● Pacemaker itself is composed of four key components (illustrated below in the same
color scheme as the previous diagram):
– CIB (aka. Cluster Information Base)
– CRMd (aka. Cluster Resource Management daemon)
– PEngine (aka. PE or Policy Engine)
– STONITHd

Internal Components

● The CIB uses XML to represent both the cluster’s configuration and current state of all
resources in the cluster. The contents of the CIB are automatically kept in sync across
the entire cluster and are used by the PEngine to compute the ideal state of the cluster
and how it should be achieved.

● This list of instructions is then fed to the DC (Designated Co-ordinator). Pacemaker
centralizes all cluster decision making by electing one of the CRMd instances to act as
a master. Should the elected CRMd process, or the node it is on, fail… a new one is
quickly established.

Internal Components

● The DC carries out the PEngine’s instructions in the required order by passing them to
either the LRMd (Local Resource Management daemon) or CRMd peers on other
nodes via the cluster messaging infrastructure (which in turn passes them on to their
LRMd process).

● The peer nodes all report the results of their operations back to the DC and based on
the expected and actual results, will either execute any actions that needed to wait for
the previous one to complete, or abort processing and ask the PEngine to recalculate
the ideal cluster state based on the unexpected results.

Internal Components

● In some cases, it may be necessary to power off nodes in order to protect shared data
or complete resource recovery. For this Pacemaker comes with STONITHd. STONITH
is an acronym for Shoot-The-Other-Node-In-The-Head and is usually implemented
with a remote power switch. In Pacemaker, STONITH devices are modeled as
resources (and configured in the CIB) to enable them to be easily monitored for failure,
however STONITHd takes care of understanding the STONITH topology such that its
clients simply request a node be fenced and it does the rest.

Types of Pacemaker Clusters

● Pacemaker makes no assumptions about your environment, this allows it to support
practically any redundancy configuration including Active/Active, Active/Passive, N+1,
N+M, N-to-1 and N-to-N.

● In this document we will focus on the setup of a highly available Apache web server
with an Active/Passive configuration using GFS2.

References

Source:
http://clusterlabs.org/doc/en-US/Pacemaker/1.1-pcs/html/Clusters_from_Scratch/_pacemaker_architecture.html

http://clusterlabs.org/doc/en-US/Pacemaker/1.1-pcs/html/Clusters_from_Scratch/_pacemaker_architecture.html

Install the clustering software

Make sure the correct repositories are set up

● The Cluster software is in the High Availability repo. You'll have access to it if you buy
a subscription to this add-on.

Install corosync and pacemaker on the nodes

● yum -y install lvm2-cluster corosync pacemaker pcs fence-agents-all
– lvm2-cluster provides cluster-aware logical volume capabilities
– corosync and pacemaker (as described before)
– pcs is the pacemaker and corosync administration tool. It can be used from the

command line, and it also provides pcsd, which exposes a web-based UI. We'll use
the web UI for today.

– fence-agents-all provides fence agents for all supported fence devices

Enable and start the pcsd service

● systemctl enable pcsd.service
● systemctl start pcsd.service

Administrative user

● For now, the clustering software used the “hacluster” account for administration. Set
this user's password across all the nodes:

● echo [password] | passwd --stdin hacluster

Configure the Cluster

Authorize the Nodes

● From any node: pcs cluster auth [node, node, node]
● Note that the user configuration file and security token files are created in /var/lib/pcsd

Set up the cluster

● From any node: pcs cluster setup --name [name] [node, node, node]
● Note that there is now a corosync.conf file in /etc/corosync

This generates the corosync config file

● /etc/corosync/corosync.conf

Anable the cluster services on all nodes

● From any node: pcs cluster enable --all
● Note that this does not start the services, it only enables them

Start the cluster

● From any node: pcs cluster start --all

It will take a few seconds for the nodes to sync

● This is normal and expected

Verify Corosync Installation

● corosync-cfgtool -s

Verify Corosync Installation

● corosync-cmapctl | grep members

Verify Corosync Installation

● crm_verify -L -V

Log into the web UI

Connect via https to port 2224

● Any system in the cluster can be used (no more single management node!).

Connect via https to port 2224

● Any system in the cluster can be used (no more single management node!).
● And there was much

rejoicing!!!

Accept the self-signed certificate

● Pretty standard process

Log in as hacluster

● Use the password set earlier for hacluster

Connect to any of the nodes

● In this case, hideo.tc.redhat.com
● Choose “add existing”

Accessing the nodes

Navigate through and check each node

● They should all have pacemaker, corosync, and pcsd running

Accessing the cluster

Inspect the Cluster Properties Tab

● This is where general options which affect cluster-wide settings

Context-dependent Help Available

● Hover the mouse over a setting for more information

Configure fencing

What is Fencing?

● If a node stops responding, the cluster will attempt to remove that node from the
cluster.

● This is referred to as STONITH (Shoot The Other Node In The Head)
● You don't want multiple machines to e.g. write to the same datastore without doing

distributed lock management, so it's best to just take the unresponsive node out of the
equation.

What is Fencing?

● There are numerous ways to do this.
– Managed power devices from WTI, APC and others
– Fiber channel fencing
– IPMI
– Out of band management devices (DRAC, iLO, RSA, etc.)
– SCSI reservations
– Virtual Machine fencing

Configure Fence Devices

● Choose +Add
● Choose the fence device (in this case, my lab has a manageable WTI ips-800-d20

power switch - they are typically a couple of hundred bucks on eBay, they work
amazingly well, and they are very rugged).

Configure Fence Devices

● Assign a friendly name (in this case, “summit-wti”)
● Enter the IP address or hostname (in this case, “wti.tc.redhat.com”)

Configure Fence Devices

● Go into “Optional Arguments” to set the following extra settings:
– “pcmk_host_map” in the format [hostname]:[power_port],[hostname]:[power_port],

[hostname]:[power_port]. So for my lab:
● lady3jane.tc.redhat.com:5;hideo.tc.redhat.com:4;maelcum.tc.redhat.com:6

Configure Fence Devices

● Go into “Optional Arguments” to set the following extra settings:
– For the WTI, you don't need to define a user, only “passwd”

Configure Fence Devices

● Go into “Optional Arguments” to set the following extra settings:
– I also prefer to set power_wait to 5 seconds so the system being power cycled

doesn't get damaged.
– I set “delay” to about 5 seconds, as well. We don't want to fence systems instantly

when it's only temporarily unavailable.

Configure Fence Devices

● After a few seconds, the fence device should turn green, indicating all of the systems
are aware of it and it's active.

Test Fence Devices

● You can test the fence device and host mapping using stonith_admin

Configure resources

Create Resources

● We'll start out very simple: with an Apache web server instance which does not use
shared storage. We'll add in shared storage later.

● There will be two components we need to define:
– The floating IP address
– The apache server

Configure the floating IP address

● Choose Add
● Choose Open Cluster Framework (OCF) heartbeat Class/Provider
● Choose IPaddr2 (this is new, and Linux specific, don't use the old IPaddr) type
● Give it a Resource ID (friendly name)
● Assign the IP address
● Note that you get context-sensitive hover help!

Install httpd and wget on all the nodes

● yum -y install httpd wget

Install httpd and wget on all the nodes

● Confirm that httpd is disabled - we want it started by the cluster software, not at boot
time!

Configure the Apache service

● For testing, echo the hostname into index.html on each node:
– hostname > /var/www/html/index.html

Enable Apache monitoring

cat > /etc/httpd/conf.d/status.conf << EOF

<Location /server-status>

 SetHandler server-status

 Order deny,allow

 Deny from all

 Allow from 127.0.0.1

</Location>

EOF

Configure the Apache service

● Choose Add
● Choose Open Cluster Framework (OCF) heartbeat Class/Provider
● Choose the apache type
● Give it a Resource ID (friendly name)

Wait, what?

● You see anything wrong with this picture?

We need to set two resource features

● Resource Ordering Preferences
● Resource Colocation Preferences

Resource Ordering Preferences

● Choose the summit-ip resource
● Go to Resource Ordering Preferences
● Add in the resource summit-apache
● Set summit-apache to start after summit-ip
● Click add

Resource Colocation Preferences

● Choose the summit-apache resource
● Choose Resource Colocation Preferences
● Enter summit-ip and set it to start together with summit-apache
● Click add

Apache Monitoring

● Go into the summit-apache resource and choose Optional Arguments
● Because we set up monitoring, use the URL we defined - http://localhost/server-status

Test Apache

● You can kill the httpd process to test that it gets restarted

Mar 24 11:29:23 hideo.tc.redhat.com apache(summit-apache)[11054]: INFO: apache not running
Mar 24 11:29:23 hideo.tc.redhat.com crmd[2106]: notice: process_lrm_event: LRM operation summit-apache_monitor_10000 (call=68, rc=7, cib-update=54, confirmed=false) not running
Mar 24 11:29:23 hideo.tc.redhat.com attrd[2103]: notice: attrd_cs_dispatch: Update relayed from maelcum.tc.redhat.com
Mar 24 11:29:23 hideo.tc.redhat.com attrd[2103]: notice: attrd_trigger_update: Sending flush op to all hosts for: fail-count-summit-apache (3)
Mar 24 11:29:23 hideo.tc.redhat.com attrd[2103]: notice: attrd_perform_update: Sent update 65: fail-count-summit-apache=3
Mar 24 11:29:23 hideo.tc.redhat.com attrd[2103]: notice: attrd_cs_dispatch: Update relayed from maelcum.tc.redhat.com
Mar 24 11:29:23 hideo.tc.redhat.com attrd[2103]: notice: attrd_trigger_update: Sending flush op to all hosts for: last-failure-summit-apache (1395678563)
Mar 24 11:29:23 hideo.tc.redhat.com attrd[2103]: notice: attrd_perform_update: Sent update 67: last-failure-summit-apache=1395678563
Mar 24 11:29:23 hideo.tc.redhat.com apache(summit-apache)[11099]: INFO: apache is not running.
Mar 24 11:29:24 hideo.tc.redhat.com crmd[2106]: notice: process_lrm_event: LRM operation summit-apache_stop_0 (call=70, rc=0, cib-update=55, confirmed=true) ok
Mar 24 11:29:24 hideo.tc.redhat.com systemd[1]: pacemaker.service: Got notification message from PID 11146, but reception only permitted for PID 1749
Mar 24 11:29:24 hideo.tc.redhat.com apache(summit-apache)[11165]: INFO: Successfully retrieved http header at http://localhost:80

Resource Location Preferences

● You can also set up host affinity via Resource Location Preferences
● Add each of the hosts you want to run the service on and add a score. The higher the

score, the more likely the service is to run on that node.

To force a service to a host

● Use a score of INFINITY

To offline a host

● Go to Nodes
● Choose the host
● Choose “Stop”

To online a host

● Go to Nodes
● Choose the host
● Choose “Start”

To reboot a host

● Go to Nodes
● Choose the host
● Choose “Restart”

– Note: this will execute a controlled reboot within the OS (shutdown -r now), not a
fencing event

Configuring distributed lock management

Enable distributed lock management

● Create a new ocf:pacemaker class resource of controld
● Check the box for “clone” - we want this service cloned across all the nodes
● Give it a Resource ID - in this case, summit-dlm
● After a few seconds it should start and turn green

Enable distributed lock management

● You can also make sure the dlm_controld process is running on all nodes

Configuring distributed logical volume management

Enable Clustered Logical Volume Management

● Add an ofc:heartbeat Class/Provider for clvm
● Set it as cloned - we want this running on all nodes
● Give it a Resource ID - in this case, summit-clvmd

Configure clustered logical volume management

Change locking_type from 1 to 3 in /etc/lvm/lvm.conf

● lvmconf --enable-cluster

Note About the LVM Metadata Cache Daemon (lvmetad)

● From lvmetad(8): lvmetad is a metadata caching daemon for LVM. The daemon
receives notifications from udev rules (which must be installed for LVM to work
correctly when lvmetad is in use). Through these notifications, lvmetad has an up-
to-date and consistent image of the volume groups available in the system.

● From /etc/lvm/lvm.conf: Don't use lvmetad with locking type 3 as lvmetad is not yet
supported in clustered environment. If use_lvmetad=1 and locking_type=3 is set at the
same time, LVM always issues a warning message about this and then it automatically
disables lvmetad use.

Note About the LVM Metadata Cache Daemon (lvmetad)

● Change use_lvmetad = 1 to use_lvmetad = 0
● perl -pi.orig -e 's/use_lvmetad = 1/use_lvmetad = 0/' /etc/lvm/lvm.conf

Configure shared storage

Create a partition on the iSCSI block device

● Use your favorite partitioning tool. Here, I use fdisk to create a 10G partition

Log out and back in to discover the partitions on the other
nodes

● iscsiadm --mode node --targetname iqn.2003-01.org.linux-
iscsi.neuromancer.x8664:sn.f63ec35cd646 --portal neuromancer.tc.redhat.com
--logout

● iscsiadm --mode node --targetname iqn.2003-01.org.linux-
iscsi.neuromancer.x8664:sn.f63ec35cd646 --portal neuromancer.tc.redhat.com --login

Create a Physical Volume

● pvcreate /dev/sdb1

Create a Volume Group

● vgcreate --clustered y vg_summit /dev/sdb1
– Don't forget the “--clustered y” argument!

Create a Logical Volume

● lvcreate -l 2559 -n lv_web vg_summit

You can use pvs, lvs and vgs to scan LVM components from
the other nodes

● From each node, just run those commands:
– pvs (reports info about physical volumes)
– vgs (reports information about volume groups)
– lvs (reports information about logical volumes)

Install gfs2-utils

● yum -y install gfs2-utils

Create a GFS2 Filesystem on the Clustered Logical Volume

● mkfs.gfs2 -j 3 -t summit:gfs0 /dev/vg_summit/lv_web
– -j 3 is the number of journals - one per node. Extras are fine, too.
– -t summit:gfs0 is [clustername]:[fsname]. “summit” is the name of the cluster we

defined, and “gfs0” is the name I gave the filesystem being created.
– /dev/vg_summit/lv_web is the block device being formatted. In this case, a clustered

logical volume

Add shared storage resource

Create a New Filesystem Resource

● Create a new ofc:heartbeat resource of type Filesystem
● Check the box to clone the resource - we wanted it mounted on all the servers
● Give it a Resource ID - in this case, “summit-gfs0”
● Define the block device - in this case, the clustered logical volume

“/dev/vg_summit/lv_web”
● Define the filesystem type - in this case, gfs2
● Click “Create Resource”

The GFS2 Mountpoint Should Be Visible on All Nodes

● Run “mount | grep gfs2” on each node

Test Your Web Site

● Create an index.html
– echo gfs > /var/www/html/index.html

Migrate the Web Site

● Set the priority of the ip address resource to INFINITY (one at a time) on each node

Test crashes

We've Already Crashed httpd

● Now let's crash the cluster nodes!
● sync the filesystem first!
● sync; echo s > /proc/sysrq-trigger
● echo c > /proc/sysrq-trigger

Now go forth and cluster!

THANK YOU!

● If you liked today's session, please leave feedback!
● Slides available at http://people.redhat.com/tcameron and on the Summit 2016 web

site!

QUESTIONS?

SECTION HEADLINE

SECTION HEADLINE

Log into the web UI

SECTION HEADLINE

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213
	Slide 214
	Slide 215
	Slide 216
	Slide 217
	Slide 218
	Slide 219
	Slide 220
	Slide 221
	Slide 222
	Slide 223
	Slide 224
	Slide 225
	Slide 226
	Slide 227
	Slide 228
	Slide 229
	Slide 230
	Slide 231
	Slide 232
	Slide 233
	Slide 234
	Slide 235
	Slide 236
	Slide 237
	Slide 238
	Slide 239
	Slide 240
	Slide 241
	Slide 242
	Slide 243
	Slide 244
	Slide 245
	Slide 246
	Slide 247
	Slide 248
	Slide 249
	Slide 250
	Slide 251
	Slide 252
	Slide 253
	Slide 254
	Slide 255
	Slide 256
	Slide 257
	Slide 258
	Slide 259
	Slide 260
	Slide 261
	Slide 262
	Slide 263
	Slide 264
	Slide 265
	Slide 266
	Slide 267
	Slide 268
	Slide 269
	Slide 270
	Slide 271
	Slide 272
	Slide 273
	Slide 274
	Slide 275
	Slide 276
	Slide 277
	Slide 278
	Slide 279
	Slide 280
	Slide 281
	Slide 282
	Slide 283
	Slide 284
	Slide 285
	Slide 286
	Slide 287
	Slide 288
	Slide 289

