Maybe sticky sessions
weren't a bad idea

y |

o5 S LTIET,

ol

(AR :
' e
N\ X
e P S
.- ..!
- ...,.
I

.t\.

E

’

eiResy

Trends

Tradeoffs

Nuance

Status Quo

1. Write my PHP / Java / Rails

2. Connect it to an RDBMS

Buy lots of web servers & really big databases

Storing state In an
application

Just what the heck is state anyway?
How do we store it today

Some history

Ok, but why?

Caveats

More information

State of the state

e Data vs. behavior

* A coupling with time and space

Time

* "happens before’
e memory barriers

e synchronization primitives

Space

e threads
* DIOCESSES

* SEervers

State I1s a lens

def fact(i: Int) = { return 1 * fact(i - 1) }

State I1s a lens

def dolt(i: Int) = { log("you sent $i") }

State-less vs. State-ful

e Store data in a database

e Ship data => behavior

State-less applications

* Deployed behind a load balancer

 Most common CRUD applications

my engineers wrote this @

‘ _-N

/

S
el
N

This thing "works"

B _-N)

el

~

\

don't care who's at fault

State-ful

‘ _-N

/

\

S
e

State-ful applications

e Store data with the behavior

e Data does not move when worked on

Sticky sessions

o Sticky sessions are an http concept that glues a
session to a server

 Keeps sessions In a single place

Sticky session

e DHT

* Non-D HT

How

Major motivators

Pertormance
Correctness
Programmer ergonomics

Resilience

CPU cache 1ns 1s

Main memory 120ns 2 min
Disk 50-150us 14 hours
Network 500 ps 6 days

CPU cache 1ns 1s

Main memory 120ns 2 min
Disk 50-150us 14 hours
Network 500 ps 6 days

CPU cache 1ns 1s

Main memory 120ns 2 min
Disk 50-150us 14 hours
Network 500 ps 6 days

Correctness

Data & behavior co-existing means we can
reason about safely changing state

Resllience

e Classes of error around txns
e Connection pools

 Faillure can be handled

How do we do this...

Runtimes

* Long lived processes
 [hreading model

» Control over memory

Frameworks

e Supports some way to make remote calls
* [reats concurrency as a first class citizen

* A concept of clustering

Some examples

The downside

Serialization

e De-serialize the future

e De-serialize the past

Thundering herds

e Startup time (deployment)

* Rebalance performance

But it worked on my computer?!1?

Delicious memory

 Unbounded, in-memory data structures

But it worked on my computer?!?

Copyrg Inspiration

Any distributed database: Riak, Cassandra,
Dynamo

Akka distributed data / cluster sharding
Orleans

Unison

CRDTs

Just what the heck is state anyway?
How do we store it today

Some history

Ok, but why?

Caveats

More information

Thank you.

Thank you.

