
Buffer overflows and counter meassures

Johannes Segitz
SUSE Security Team

2019-03-08

1 of 41

whoami

Johannes Segitz, security engineer at SUSE (Nuremberg, Germany)

• code review

• product pentesting

Joined April 2014, got Heartbleed as signing bonus

2 of 41

whoami

Johannes Segitz, security engineer at SUSE (Nuremberg, Germany)

• code review

• product pentesting

Joined April 2014, got Heartbleed as signing bonus

2 of 41

Outline

Buffer overflows and protections:

• Stack canaries

• Fortify source

• Address space layout randomization

• No-execute memory (NX, WˆX)

Used by SUSE products, there are other protection mechanisms out
there

3 of 41

Outline

Buffer overflows and protections:

• Stack canaries

• Fortify source

• Address space layout randomization

• No-execute memory (NX, WˆX)

Used by SUSE products, there are other protection mechanisms out
there

3 of 41

Outline

Requires some C and assembler background, but I’ll explain most on
the fly

Stop me if I’m going to fast with the examples

This is short overview, not something to make you 31337 4axx0rs

Also I will try to keep it at least a bit interactive

4 of 41

Outline

Requires some C and assembler background, but I’ll explain most on
the fly

Stop me if I’m going to fast with the examples

This is short overview, not something to make you 31337 4axx0rs

Also I will try to keep it at least a bit interactive

4 of 41

Outline

Requires some C and assembler background, but I’ll explain most on
the fly

Stop me if I’m going to fast with the examples

This is short overview, not something to make you 31337 4axx0rs

Also I will try to keep it at least a bit interactive

4 of 41

Outline

Requires some C and assembler background, but I’ll explain most on
the fly

Stop me if I’m going to fast with the examples

This is short overview, not something to make you 31337 4axx0rs

Also I will try to keep it at least a bit interactive

4 of 41

General mechanism

We’re talking here about stack based buffer overflows and counter
meassures

A problem in languages in which you manage your own memory
(primary example is C)

Really simple example:

1 #include <string.h>

2
3 int main(int argc , char **argv) {

4 char buffer [20];

5
6 strcpy(buffer , argv [1]);

7
8 return EXIT_SUCCESS;

9 }

5 of 41

General mechanism

We’re talking here about stack based buffer overflows and counter
meassures

A problem in languages in which you manage your own memory
(primary example is C)

Really simple example:

1 #include <string.h>

2
3 int main(int argc , char **argv) {

4 char buffer [20];

5
6 strcpy(buffer , argv [1]);

7
8 return EXIT_SUCCESS;

9 }

5 of 41

General mechanism

We’re talking here about stack based buffer overflows and counter
meassures

A problem in languages in which you manage your own memory
(primary example is C)

Really simple example:

1 #include <string.h>

2
3 int main(int argc , char **argv) {

4 char buffer [20];

5
6 strcpy(buffer , argv [1]);

7
8 return EXIT_SUCCESS;

9 }

5 of 41

General mechanism

The problem is that for a given buffer size too much data is placed in
there

Usually a size check is just missing

Sometimes the check is there but faulty or can be circumvented
(think integer overflows)

6 of 41

General mechanism

The problem is that for a given buffer size too much data is placed in
there

Usually a size check is just missing

Sometimes the check is there but faulty or can be circumvented
(think integer overflows)

6 of 41

General mechanism

The problem is that for a given buffer size too much data is placed in
there

Usually a size check is just missing

Sometimes the check is there but faulty or can be circumvented
(think integer overflows)

6 of 41

Why is this a problem?

Because in data of the application and control information about
execution is mixed

7 of 41

Why is this a problem?

Part of the control information (saved instruction pointer RIP/EIP) is
the address where execution will continue after the current function

8 of 41

Why is this a problem?

If a buffer overflow happens this control information can be
overwritten

If this is done carefully arbitrary code can be executed

9 of 41

Why is this a problem?

If a buffer overflow happens this control information can be
overwritten

If this is done carefully arbitrary code can be executed

9 of 41

Why is this a problem?

10 of 41

Other overwrites

Not only saved RIP/EIP can be highjacked. Think of

• Function pointers

• Exceptions handlers

• Other application specific data (is admin flag ...)

So what can be done against these problems?

Just use Java for everything. Done! We’re safe ;)

11 of 41

Other overwrites

Not only saved RIP/EIP can be highjacked. Think of

• Function pointers

• Exceptions handlers

• Other application specific data (is admin flag ...)

So what can be done against these problems?

Just use Java for everything. Done! We’re safe ;)

11 of 41

Other overwrites

Not only saved RIP/EIP can be highjacked. Think of

• Function pointers

• Exceptions handlers

• Other application specific data (is admin flag ...)

So what can be done against these problems?

Just use Java for everything. Done! We’re safe ;)

11 of 41

Simple 32 bit exploitation

1 #include <unistd.h>

2
3 void vulnerable(void) {

4 char buffer [256];

5
6 read(0, buffer , 512);

7
8 return;

9 }

10
11 int main(int argc , char **argv) {

12 vulnerable ();

13
14 return EXIT_SUCCESS;

15 }

12 of 41

Simple 32 bit exploitation

Demo time

13 of 41

Mitigations: Stack canaries

14 of 41

Mitigations: Stack canaries

General idea: Compiler generates extra code that puts a canary value
at predefined locations within a stack frame

Before returning check if canary is still valid

Types:

• Terminator canaries: NULL, CR, LF, and -1

• Random canaries

• Random XOR canaries

15 of 41

Mitigations: Stack canaries

General idea: Compiler generates extra code that puts a canary value
at predefined locations within a stack frame

Before returning check if canary is still valid

Types:

• Terminator canaries: NULL, CR, LF, and -1

• Random canaries

• Random XOR canaries

15 of 41

Mitigations: Stack canaries

General idea: Compiler generates extra code that puts a canary value
at predefined locations within a stack frame

Before returning check if canary is still valid

Types:

• Terminator canaries: NULL, CR, LF, and -1

• Random canaries

• Random XOR canaries

15 of 41

Mitigations: Stack canaries

General idea: Compiler generates extra code that puts a canary value
at predefined locations within a stack frame

Before returning check if canary is still valid

Types:

• Terminator canaries: NULL, CR, LF, and -1

• Random canaries

• Random XOR canaries

15 of 41

Mitigations: Stack canaries

General idea: Compiler generates extra code that puts a canary value
at predefined locations within a stack frame

Before returning check if canary is still valid

Types:

• Terminator canaries: NULL, CR, LF, and -1

• Random canaries

• Random XOR canaries

15 of 41

Mitigations: Stack canaries

Four variants in gcc:

• -fstack-protector: code only for functions that put ≥ 8 bytes
buffers on the stack

• -fstack-protector-strong:
◦ local variable is an array (or union containing an array), regardless of

array type or length
◦ uses register local variables
◦ local variable address is used as part of the right hand side of an

assignment or function argument

• -fstack-protector-all: extra code for each and every function

• -fstack-protector-explicit: extra code every function
annotated with stack protect

16 of 41

Mitigations: Stack canaries

Four variants in gcc:

• -fstack-protector: code only for functions that put ≥ 8 bytes
buffers on the stack

• -fstack-protector-strong:
◦ local variable is an array (or union containing an array), regardless of

array type or length
◦ uses register local variables
◦ local variable address is used as part of the right hand side of an

assignment or function argument

• -fstack-protector-all: extra code for each and every function

• -fstack-protector-explicit: extra code every function
annotated with stack protect

16 of 41

Mitigations: Stack canaries

Four variants in gcc:

• -fstack-protector: code only for functions that put ≥ 8 bytes
buffers on the stack

• -fstack-protector-strong:
◦ local variable is an array (or union containing an array), regardless of

array type or length
◦ uses register local variables
◦ local variable address is used as part of the right hand side of an

assignment or function argument

• -fstack-protector-all: extra code for each and every function

• -fstack-protector-explicit: extra code every function
annotated with stack protect

16 of 41

Mitigations: Stack canaries

Four variants in gcc:

• -fstack-protector: code only for functions that put ≥ 8 bytes
buffers on the stack

• -fstack-protector-strong:
◦ local variable is an array (or union containing an array), regardless of

array type or length
◦ uses register local variables
◦ local variable address is used as part of the right hand side of an

assignment or function argument

• -fstack-protector-all: extra code for each and every function

• -fstack-protector-explicit: extra code every function
annotated with stack protect

16 of 41

Mitigations: Stack canaries

Short reminder of the example code:

1 #include <string.h>

2
3 int main(int argc , char **argv)

4 {

5 char buffer [20];

6
7 strcpy(buffer , argv [1]);

8
9 return EXIT_SUCCESS;

10 }

17 of 41

Mitigations: Stack canaries

Original code:

1 00000000000006 b0 <main >:

2 6b0: 55 push rbp

3 6b1: 48 89 e5 mov rbp ,rsp

4 6b4: 48 83 ec 30 sub rsp ,0x30

5 6b8: 89 7d dc mov DWORD PTR [rbp -0x24],edi

6 6bb: 48 89 75 d0 mov QWORD PTR [rbp -0x30],rsi

7 6bf: 48 8b 45 d0 mov rax ,QWORD PTR [rbp -0x30]

8 6c3: 48 83 c0 08 add rax ,0x8

9 6c7: 48 8b 10 mov rdx ,QWORD PTR [rax]

10 6ca: 48 8d 45 e0 lea rax ,[rbp -0x20]

11 6ce: 48 89 d6 mov rsi ,rdx

12 6d1: 48 89 c7 mov rdi ,rax

13 6d4: e8 87 fe ff ff call 560 <strcpy@plt >

14 6d9: b8 00 00 00 00 mov eax ,0x0

15 6de: c9 leave

16 6df: c3 ret

18 of 41

Mitigations: Stack canaries

Protected code:
1 0000000000000720 <main >:

2 720: 55 push rbp

3 721: 48 89 e5 mov rbp ,rsp

4 724: 48 83 ec 30 sub rsp ,0x30

5 728: 89 7d dc mov DWORD PTR [rbp -0x24],edi

6 72b: 48 89 75 d0 mov QWORD PTR [rbp -0x30],rsi

7 72f: 64 48 8b 04 25 28 00 mov rax ,QWORD PTR fs:0x28

8 736: 00 00

9 738: 48 89 45 f8 mov QWORD PTR [rbp -0x8],rax

10 73c: 31 c0 xor eax ,eax

11 73e: 48 8b 45 d0 mov rax ,QWORD PTR [rbp -0x30]

12 742: 48 83 c0 08 add rax ,0x8

13 746: 48 8b 10 mov rdx ,QWORD PTR [rax]

14 749: 48 8d 45 e0 lea rax ,[rbp -0x20]

15 74d: 48 89 d6 mov rsi ,rdx

16 750: 48 89 c7 mov rdi ,rax

17 753: e8 68 fe ff ff call 5c0 <strcpy@plt >

18 758: b8 00 00 00 00 mov eax ,0x0

19 75d: 48 8b 4d f8 mov rcx ,QWORD PTR [rbp -0x8]

20 761: 64 48 33 0c 25 28 00 xor rcx ,QWORD PTR fs:0x28

21 768: 00 00

22 76a: 74 05 je 771 <main+0x51 >

23 76c: e8 5f fe ff ff call 5d0 <__stack_chk_fail@plt >

24 771: c9 leave

25 772: c3 ret

19 of 41

Mitigations: Stack canaries

Protected code:
1 0000000000000720 <main >:

2 720: 55 push rbp

3 721: 48 89 e5 mov rbp ,rsp

4 724: 48 83 ec 30 sub rsp ,0x30

5 728: 89 7d dc mov DWORD PTR [rbp -0x24],edi

6 72b: 48 89 75 d0 mov QWORD PTR [rbp -0x30],rsi

7 72f: 64 48 8b 04 25 28 00 mov rax ,QWORD PTR fs:0x28

8 736: 00 00

9 738: 48 89 45 f8 mov QWORD PTR [rbp -0x8],rax

10 73c: 31 c0 xor eax ,eax

11 73e: 48 8b 45 d0 mov rax ,QWORD PTR [rbp -0x30]

12 742: 48 83 c0 08 add rax ,0x8

13 746: 48 8b 10 mov rdx ,QWORD PTR [rax]

14 749: 48 8d 45 e0 lea rax ,[rbp -0x20]

15 74d: 48 89 d6 mov rsi ,rdx

16 750: 48 89 c7 mov rdi ,rax

17 753: e8 68 fe ff ff call 5c0 <strcpy@plt >

18 758: b8 00 00 00 00 mov eax ,0x0

19 75d: 48 8b 4d f8 mov rcx ,QWORD PTR [rbp -0x8]

20 761: 64 48 33 0c 25 28 00 xor rcx ,QWORD PTR fs:0x28

21 768: 00 00

22 76a: 74 05 je 771 <main+0x51 >

23 76c: e8 5f fe ff ff call 5d0 <__stack_chk_fail@plt >

24 771: c9 leave

25 772: c3 ret

19 of 41

Mitigations: Stack canaries

Protected code:
1 0000000000000720 <main >:

2 720: 55 push rbp

3 721: 48 89 e5 mov rbp ,rsp

4 724: 48 83 ec 30 sub rsp ,0x30

5 728: 89 7d dc mov DWORD PTR [rbp -0x24],edi

6 72b: 48 89 75 d0 mov QWORD PTR [rbp -0x30],rsi

7 72f: 64 48 8b 04 25 28 00 mov rax ,QWORD PTR fs:0x28

8 736: 00 00

9 738: 48 89 45 f8 mov QWORD PTR [rbp -0x8],rax

10 73c: 31 c0 xor eax ,eax

11 73e: 48 8b 45 d0 mov rax ,QWORD PTR [rbp -0x30]

12 742: 48 83 c0 08 add rax ,0x8

13 746: 48 8b 10 mov rdx ,QWORD PTR [rax]

14 749: 48 8d 45 e0 lea rax ,[rbp -0x20]

15 74d: 48 89 d6 mov rsi ,rdx

16 750: 48 89 c7 mov rdi ,rax

17 753: e8 68 fe ff ff call 5c0 <strcpy@plt >

18 758: b8 00 00 00 00 mov eax ,0x0

19 75d: 48 8b 4d f8 mov rcx ,QWORD PTR [rbp -0x8]

20 761: 64 48 33 0c 25 28 00 xor rcx ,QWORD PTR fs:0x28

21 768: 00 00

22 76a: 74 05 je 771 <main+0x51 >

23 76c: e8 5f fe ff ff call 5d0 <__stack_chk_fail@plt >

24 771: c9 leave

25 772: c3 ret

19 of 41

Mitigations: Stack canaries

Demo time

20 of 41

Limitations of stack canaries

Limitations:

• Does not protect data before the canary (especially function
pointers). Some implementions reorder variables to minimize this
risk

• Does not protect against generic write primitives

• Can be circumvented with exeption handlers

• Chain buffer overflow with information leak

• No protection for inlined functions

• Can be used to cause DoS

21 of 41

Limitations of stack canaries

Limitations:

• Does not protect data before the canary (especially function
pointers). Some implementions reorder variables to minimize this
risk

• Does not protect against generic write primitives

• Can be circumvented with exeption handlers

• Chain buffer overflow with information leak

• No protection for inlined functions

• Can be used to cause DoS

21 of 41

Limitations of stack canaries

Limitations:

• Does not protect data before the canary (especially function
pointers). Some implementions reorder variables to minimize this
risk

• Does not protect against generic write primitives

• Can be circumvented with exeption handlers

• Chain buffer overflow with information leak

• No protection for inlined functions

• Can be used to cause DoS

21 of 41

Limitations of stack canaries

Limitations:

• Does not protect data before the canary (especially function
pointers). Some implementions reorder variables to minimize this
risk

• Does not protect against generic write primitives

• Can be circumvented with exeption handlers

• Chain buffer overflow with information leak

• No protection for inlined functions

• Can be used to cause DoS

21 of 41

Limitations of stack canaries

Limitations:

• Does not protect data before the canary (especially function
pointers). Some implementions reorder variables to minimize this
risk

• Does not protect against generic write primitives

• Can be circumvented with exeption handlers

• Chain buffer overflow with information leak

• No protection for inlined functions

• Can be used to cause DoS

21 of 41

Limitations of stack canaries

Limitations:

• Does not protect data before the canary (especially function
pointers). Some implementions reorder variables to minimize this
risk

• Does not protect against generic write primitives

• Can be circumvented with exeption handlers

• Chain buffer overflow with information leak

• No protection for inlined functions

• Can be used to cause DoS

21 of 41

Limitations of stack canaries

Limitations:

• Does not protect data before the canary (especially function
pointers). Some implementions reorder variables to minimize this
risk

• Does not protect against generic write primitives

• Can be circumvented with exeption handlers

• Chain buffer overflow with information leak

• No protection for inlined functions

• Can be used to cause DoS

21 of 41

Mitigations: Fortify source

Transparently fix insecure functions to prevent buffer overflows
(memcpy, memset, strcpy, . . .).

What is checked: For statically sized buffers the compiler can check
calls to certain functions.

Enable it with -DFORTIFY SOURCE=2 (only with optimization).

22 of 41

Mitigations: Fortify source

Transparently fix insecure functions to prevent buffer overflows
(memcpy, memset, strcpy, . . .).

What is checked: For statically sized buffers the compiler can check
calls to certain functions.

Enable it with -DFORTIFY SOURCE=2 (only with optimization).

22 of 41

Mitigations: Fortify source

Transparently fix insecure functions to prevent buffer overflows
(memcpy, memset, strcpy, . . .).

What is checked: For statically sized buffers the compiler can check
calls to certain functions.

Enable it with -DFORTIFY SOURCE=2 (only with optimization).

22 of 41

Mitigations: Fortify source

Transparently fix insecure functions to prevent buffer overflows
(memcpy, memset, strcpy, . . .).

What is checked: For statically sized buffers the compiler can check
calls to certain functions.

Enable it with -DFORTIFY SOURCE=2 (only with optimization).

22 of 41

Mitigations: Fortify source

1 void fun(char *s) {

2 char buf[0x100];

3 strcpy(buf , s);

4 /* Don ’t allow gcc to optimise away the buf */

5 asm volatile("" :: "m" (buf));

6 }

7
8 int main(int argc , char **argv)

9 {

10 fun(argv [1]);

11
12 return EXIT_SUCCESS;

13 }

Example based on Matthias’ work

23 of 41

Mitigations: Fortify source

1 00000000000006 b0 <fun >:

2 6b0: 55 push rbp

3 6b1: 48 89 e5 mov rbp ,rsp

4 6b4: 48 81 ec 10 01 00 00 sub rsp ,0x110

5 6bb: 48 89 bd f8 fe ff ff mov QWORD PTR [rbp -0x108],rdi

6 6c2: 48 8b 95 f8 fe ff ff mov rdx ,QWORD PTR [rbp -0x108]

7 6c9: 48 8d 85 00 ff ff ff lea rax ,[rbp -0x100]

8 6d0: 48 89 d6 mov rsi ,rdx

9 6d3: 48 89 c7 mov rdi ,rax

10 6d6: e8 85 fe ff ff call 560 <strcpy@plt >

11 6db: 90 nop

12 6dc: c9 leave

13 6dd: c3 ret

24 of 41

Mitigations: Fortify source

gcc -o fortify -O2 -D FORTIFY SOURCE=2 fortify.c

1 ,0000000000000700 <fun >:

2 , 700: 48 81 ec 08 01 00 00 sub rsp ,0x108

3 , 707: 48 89 fe mov rsi ,rdi

4 , 70a: ba 00 01 00 00 mov edx ,0x100

5 , 70f: 48 89 e7 mov rdi ,rsp

6 , 712: e8 69 fe ff ff call 580 <__strcpy_chk@plt >

7 , 717: 48 81 c4 08 01 00 00 add rsp ,0x108

8 , 71e: c3 ret

9 , 71f: 90 nop

25 of 41

Mitigations: Fortify source

gcc -o fortify -O2 -D FORTIFY SOURCE=2 fortify.c

1 ,0000000000000700 <fun >:

2 , 700: 48 81 ec 08 01 00 00 sub rsp ,0x108

3 , 707: 48 89 fe mov rsi ,rdi

4 , 70a: ba 00 01 00 00 mov edx ,0x100

5 , 70f: 48 89 e7 mov rdi ,rsp

6 , 712: e8 69 fe ff ff call 580 <__strcpy_chk@plt >

7 , 717: 48 81 c4 08 01 00 00 add rsp ,0x108

8 , 71e: c3 ret

9 , 71f: 90 nop

25 of 41

Mitigations: Fortify source

Demo time

26 of 41

Limitation of fortify source

Limitations / problems:

• Limited to some functions/situations

• Can still lead to DoS

• Developers might keep using these functions

But it comes with almost no cost, so enable it

27 of 41

Limitation of fortify source

Limitations / problems:

• Limited to some functions/situations

• Can still lead to DoS

• Developers might keep using these functions

But it comes with almost no cost, so enable it

27 of 41

Limitation of fortify source

Limitations / problems:

• Limited to some functions/situations

• Can still lead to DoS

• Developers might keep using these functions

But it comes with almost no cost, so enable it

27 of 41

Limitation of fortify source

Limitations / problems:

• Limited to some functions/situations

• Can still lead to DoS

• Developers might keep using these functions

But it comes with almost no cost, so enable it

27 of 41

Limitation of fortify source

Limitations / problems:

• Limited to some functions/situations

• Can still lead to DoS

• Developers might keep using these functions

But it comes with almost no cost, so enable it

27 of 41

Mitigations: ASLR

ASLR: Address space layout randomization

Memory segments (stack, heap and code) are loaded at random
locations

Atttackers don’t know return addresses into exploit code or C library
code reliably any more

28 of 41

Mitigations: ASLR

ASLR: Address space layout randomization

Memory segments (stack, heap and code) are loaded at random
locations

Atttackers don’t know return addresses into exploit code or C library
code reliably any more

28 of 41

Mitigations: ASLR

ASLR: Address space layout randomization

Memory segments (stack, heap and code) are loaded at random
locations

Atttackers don’t know return addresses into exploit code or C library
code reliably any more

28 of 41

Mitigations: ASLR

1 bash -c ’cat /proc/$$/maps ’

2 56392 d605000 -56392 d60d000 r-xp 00000000 fe:01 12058638 /bin/cat

3 <snip >

4 56392 dd05000 -56392 dd26000 rw-p 00000000 00:00 0 [heap]

5 7fb2bd101000 -7 fb2bd296000 r-xp 00000000 fe:01 4983399

/lib/x86_64 -linux -gnu/libc -2.24. so

6 <snip >

7 7fb2bd6b2000 -7 fb2bd6b3000 r--p 00000000 fe:01 1836878

/usr/lib/locale/en_AG/LC_MESSAGES/SYS_LC_MESSAGES

8 <snip >

9 7fffd5c36000 -7 fffd5c57000 rw-p 00000000 00:00 0 [stack]

10 7fffd5ce9000 -7 fffd5ceb000 r--p 00000000 00:00 0 [vvar]

11 7fffd5ceb000 -7 fffd5ced000 r-xp 00000000 00:00 0 [vdso]

12 ffffffffff600000 -ffffffffff601000 r-xp 00000000 00:00 0 [vsyscall]

1 for i in ‘seq 1 5‘; do bash -c ’cat /proc/$$/maps | grep stack ’; done

2 7ffcb8e0f000 -7 ffcb8e30000 rw-p 00000000 00:00 0 [stack]

3 7fff64dc9000 -7 fff64dea000 rw-p 00000000 00:00 0 [stack]

4 7ffc3b408000 -7 ffc3b429000 rw-p 00000000 00:00 0 [stack]

5 7ffcee799000 -7 ffcee7ba000 rw-p 00000000 00:00 0 [stack]

6 7ffd4b904000 -7 ffd4b925000 rw-p 00000000 00:00 0 [stack]

29 of 41

Mitigations: ASLR

1 bash -c ’cat /proc/$$/maps ’

2 56392 d605000 -56392 d60d000 r-xp 00000000 fe:01 12058638 /bin/cat

3 <snip >

4 56392 dd05000 -56392 dd26000 rw-p 00000000 00:00 0 [heap]

5 7fb2bd101000 -7 fb2bd296000 r-xp 00000000 fe:01 4983399

/lib/x86_64 -linux -gnu/libc -2.24. so

6 <snip >

7 7fb2bd6b2000 -7 fb2bd6b3000 r--p 00000000 fe:01 1836878

/usr/lib/locale/en_AG/LC_MESSAGES/SYS_LC_MESSAGES

8 <snip >

9 7fffd5c36000 -7 fffd5c57000 rw-p 00000000 00:00 0 [stack]

10 7fffd5ce9000 -7 fffd5ceb000 r--p 00000000 00:00 0 [vvar]

11 7fffd5ceb000 -7 fffd5ced000 r-xp 00000000 00:00 0 [vdso]

12 ffffffffff600000 -ffffffffff601000 r-xp 00000000 00:00 0 [vsyscall]

1 for i in ‘seq 1 5‘; do bash -c ’cat /proc/$$/maps | grep stack ’; done

2 7ffcb8e0f000 -7 ffcb8e30000 rw-p 00000000 00:00 0 [stack]

3 7fff64dc9000 -7 fff64dea000 rw-p 00000000 00:00 0 [stack]

4 7ffc3b408000 -7 ffc3b429000 rw-p 00000000 00:00 0 [stack]

5 7ffcee799000 -7 ffcee7ba000 rw-p 00000000 00:00 0 [stack]

6 7ffd4b904000 -7 ffd4b925000 rw-p 00000000 00:00 0 [stack]

29 of 41

Mitigations: ASLR

cat /proc/sys/kernel/randomize va space shows you the
current settings for your system.

• 0: No randomization

• 1: Randomize positions of the stack, VDSO page, and shared
memory regions

• 2: Randomize positions of the stack, VDSO page, shared memory
regions, and the data segment

To get the full benefit you need to compile your binaries with -fPIE

30 of 41

Mitigations: ASLR

cat /proc/sys/kernel/randomize va space shows you the
current settings for your system.

• 0: No randomization

• 1: Randomize positions of the stack, VDSO page, and shared
memory regions

• 2: Randomize positions of the stack, VDSO page, shared memory
regions, and the data segment

To get the full benefit you need to compile your binaries with -fPIE

30 of 41

Mitigations: ASLR

Limitations:

• 5 - 10% performance loss on i386 machines

• Limited entropy on 32 bit systems

• Brute forcing still an issue if restart is not handled properly.

• Can be circumvented by chaining an information leak into the
exploit

• Some exotic software might rely on fixed addresses (think inline
assembly)

• Sometimes you have usable memory locations in registers

31 of 41

Mitigations: ASLR

Limitations:

• 5 - 10% performance loss on i386 machines

• Limited entropy on 32 bit systems

• Brute forcing still an issue if restart is not handled properly.

• Can be circumvented by chaining an information leak into the
exploit

• Some exotic software might rely on fixed addresses (think inline
assembly)

• Sometimes you have usable memory locations in registers

31 of 41

Mitigations: ASLR

Limitations:

• 5 - 10% performance loss on i386 machines

• Limited entropy on 32 bit systems

• Brute forcing still an issue if restart is not handled properly.

• Can be circumvented by chaining an information leak into the
exploit

• Some exotic software might rely on fixed addresses (think inline
assembly)

• Sometimes you have usable memory locations in registers

31 of 41

Mitigations: ASLR

Limitations:

• 5 - 10% performance loss on i386 machines

• Limited entropy on 32 bit systems

• Brute forcing still an issue if restart is not handled properly.

• Can be circumvented by chaining an information leak into the
exploit

• Some exotic software might rely on fixed addresses (think inline
assembly)

• Sometimes you have usable memory locations in registers

31 of 41

Mitigations: ASLR

Limitations:

• 5 - 10% performance loss on i386 machines

• Limited entropy on 32 bit systems

• Brute forcing still an issue if restart is not handled properly.

• Can be circumvented by chaining an information leak into the
exploit

• Some exotic software might rely on fixed addresses (think inline
assembly)

• Sometimes you have usable memory locations in registers

31 of 41

Mitigations: ASLR

Limitations:

• 5 - 10% performance loss on i386 machines

• Limited entropy on 32 bit systems

• Brute forcing still an issue if restart is not handled properly.

• Can be circumvented by chaining an information leak into the
exploit

• Some exotic software might rely on fixed addresses (think inline
assembly)

• Sometimes you have usable memory locations in registers

31 of 41

Mitigations: ASLR

Limitations:

• 5 - 10% performance loss on i386 machines

• Limited entropy on 32 bit systems

• Brute forcing still an issue if restart is not handled properly.

• Can be circumvented by chaining an information leak into the
exploit

• Some exotic software might rely on fixed addresses (think inline
assembly)

• Sometimes you have usable memory locations in registers

31 of 41

Mitigations: No-execute memory

Modern processors support memory to be mapped as non-executable

Another term for this feature is NX or WˆX

The most interesting memory regions for this feature to use are the
stack and heap memory regions

A stack overflow could still take place, but it is not be possible to
directly return to a stack address for execution

1 bash -c ’cat /proc/$$/maps | grep stack ’

2 7ffcb8e0f000 -7 ffcb8e30000 rw-p 00000000 00:00 0 [stack]

32 of 41

Mitigations: No-execute memory

Modern processors support memory to be mapped as non-executable

Another term for this feature is NX or WˆX

The most interesting memory regions for this feature to use are the
stack and heap memory regions

A stack overflow could still take place, but it is not be possible to
directly return to a stack address for execution

1 bash -c ’cat /proc/$$/maps | grep stack ’

2 7ffcb8e0f000 -7 ffcb8e30000 rw-p 00000000 00:00 0 [stack]

32 of 41

Mitigations: No-execute memory

Modern processors support memory to be mapped as non-executable

Another term for this feature is NX or WˆX

The most interesting memory regions for this feature to use are the
stack and heap memory regions

A stack overflow could still take place, but it is not be possible to
directly return to a stack address for execution

1 bash -c ’cat /proc/$$/maps | grep stack ’

2 7ffcb8e0f000 -7 ffcb8e30000 rw-p 00000000 00:00 0 [stack]

32 of 41

Mitigations: No-execute memory

Modern processors support memory to be mapped as non-executable

Another term for this feature is NX or WˆX

The most interesting memory regions for this feature to use are the
stack and heap memory regions

A stack overflow could still take place, but it is not be possible to
directly return to a stack address for execution

1 bash -c ’cat /proc/$$/maps | grep stack ’

2 7ffcb8e0f000 -7 ffcb8e30000 rw-p 00000000 00:00 0 [stack]

32 of 41

Mitigations: No-execute memory

Modern processors support memory to be mapped as non-executable

Another term for this feature is NX or WˆX

The most interesting memory regions for this feature to use are the
stack and heap memory regions

A stack overflow could still take place, but it is not be possible to
directly return to a stack address for execution

1 bash -c ’cat /proc/$$/maps | grep stack ’

2 7ffcb8e0f000 -7 ffcb8e30000 rw-p 00000000 00:00 0 [stack]

32 of 41

Mitigations: NX

Limitations

• Use existing code in the exploited program

• Return to libc: Use existing functions

• ROP (Return Oriented Programming): Structure the data on the
stack so that instruction sequences ending in ret can be used

33 of 41

Mitigations: NX

Limitations

• Use existing code in the exploited program

• Return to libc: Use existing functions

• ROP (Return Oriented Programming): Structure the data on the
stack so that instruction sequences ending in ret can be used

33 of 41

Mitigations: NX

Limitations

• Use existing code in the exploited program

• Return to libc: Use existing functions

• ROP (Return Oriented Programming): Structure the data on the
stack so that instruction sequences ending in ret can be used

33 of 41

Mitigations: NX

Limitations

• Use existing code in the exploited program

• Return to libc: Use existing functions

• ROP (Return Oriented Programming): Structure the data on the
stack so that instruction sequences ending in ret can be used

33 of 41

ROP

Graphic taken from https://www.cs.columbia.edu/ angelos/Papers/theses/vpappas thesis.pdf

34 of 41

Mitigations: Are we safe?

So, with

• Stack canaries

• ALSR

• NX

• Fortify source

we should be safe?!

Counter example take from http://www.antoniobarresi.com/

security/exploitdev/2014/05/03/64bitexploitation/

Leaving out fortify source to allow simple creation of buffer overflow

35 of 41

http://www.antoniobarresi.com/security/exploitdev/2014/05/03/64bitexploitation/
http://www.antoniobarresi.com/security/exploitdev/2014/05/03/64bitexploitation/

Mitigations: Are we safe?

So, with

• Stack canaries

• ALSR

• NX

• Fortify source

we should be safe?!

Counter example take from http://www.antoniobarresi.com/

security/exploitdev/2014/05/03/64bitexploitation/

Leaving out fortify source to allow simple creation of buffer overflow

35 of 41

http://www.antoniobarresi.com/security/exploitdev/2014/05/03/64bitexploitation/
http://www.antoniobarresi.com/security/exploitdev/2014/05/03/64bitexploitation/

Mitigations: Circumventing them

1 #include <stdio.h>

2 #include <string.h>

3 #include <unistd.h>

4
5 void memLeak(void) {

6 char buf [512];

7 scanf("%s", buf);

8 printf(buf);

9 }

10
11 void vulnFunc(void) {

12 char buf [1024];

13 read(0, buf , 2048);

14 }

15
16 int main(int argc , char* argv []) {

17 setbuf(stdout , NULL);

18 printf("echo > ");

19 memLeak ();

20 printf("\n");

21 printf("read > ");

22 vulnFunc ();

23
24 printf("\ndone .\n");

25
26 return EXIT_SUCCESS;

27 }

36 of 41

Mitigations: Circumventing them

To be able to use our own shellcode we need to make the stack
executable again

1 int mprotect(void *addr , size_t len , int prot);

On x86 64 the first few arguments go into registers → to set registers
we need to execute code

But NX blocks us → ROP

Finding gadgets:

1 ROPgadget.py --binary /lib64/libc.so.6 | grep ’pop rdi ’

37 of 41

Mitigations: Circumventing them

To be able to use our own shellcode we need to make the stack
executable again

1 int mprotect(void *addr , size_t len , int prot);

On x86 64 the first few arguments go into registers → to set registers
we need to execute code

But NX blocks us → ROP

Finding gadgets:

1 ROPgadget.py --binary /lib64/libc.so.6 | grep ’pop rdi ’

37 of 41

Mitigations: Circumventing them

To be able to use our own shellcode we need to make the stack
executable again

1 int mprotect(void *addr , size_t len , int prot);

On x86 64 the first few arguments go into registers → to set registers
we need to execute code

But NX blocks us → ROP

Finding gadgets:

1 ROPgadget.py --binary /lib64/libc.so.6 | grep ’pop rdi ’

37 of 41

Mitigations: Circumventing them

To be able to use our own shellcode we need to make the stack
executable again

1 int mprotect(void *addr , size_t len , int prot);

On x86 64 the first few arguments go into registers → to set registers
we need to execute code

But NX blocks us → ROP

Finding gadgets:

1 ROPgadget.py --binary /lib64/libc.so.6 | grep ’pop rdi ’

37 of 41

Mitigations: Circumventing them

Demo time

38 of 41

What we didn’t cover

A lot. For example:

• -fstack-clash-protection

• relro

39 of 41

Outlook

ROP is used in a lot of modern exploits:

• Shadow stacks

• (Hardware) control flow integrity (CFI)

• Data flow intgerity (DFI)

These mitigations are rather costly, hard to convince users to take the
hit

And they also can be circumvented

40 of 41

Outlook

ROP is used in a lot of modern exploits:

• Shadow stacks

• (Hardware) control flow integrity (CFI)

• Data flow intgerity (DFI)

These mitigations are rather costly, hard to convince users to take the
hit

And they also can be circumvented

40 of 41

Outlook

ROP is used in a lot of modern exploits:

• Shadow stacks

• (Hardware) control flow integrity (CFI)

• Data flow intgerity (DFI)

These mitigations are rather costly, hard to convince users to take the
hit

And they also can be circumvented

40 of 41

Thank you for your attention!

Questions?

41 of 41

	Introduction
	Buffer overflows

