How to lower the entry barrier to your scientific software

Gabriele Bozzola, PhD

gbozzola@caltech.edu
(Views are my own)
I am a (Scientific) Software Engineer

An open-source climate model in Julia

Ask me more about any of these!
I am a (Scientific) Software Engineer

An open-source climate model in Julia

I also review scientific open-source software

Ask me more about any of these!
This talk in one slide
Scientific software has fundamentally unique characteristics and needs ...
Scientific software has fundamentally unique characteristics and needs ...

... that lead to unique risks and opportunities ...
This talk in one slide

Scientific software has fundamentally unique characteristics and needs ...

... that lead to unique risks and opportunities ...

... that we can start addressing with a user/dev/scientist centered approach to documentation ...
Scientific software has fundamentally unique characteristics and needs ...

... that lead to unique risks and opportunities ...

... that we can start addressing with a user/dev/scientist centered approach to documentation ...

... that we can elevate code from just a tool to a self-contained contribution ...
Scientific software has fundamentally unique characteristics and needs ...

... that lead to unique risks and opportunities ...

... that we can start addressing with a user/dev/scientist centered approach to documentation ...

... that we can elevate code from just a tool to a self-contained contribution ...

... to accelerate science!
Scientific software has unique characteristics and needs
POV: You are an average piece of scientific software

- You have been developed by a graduate student over 5 years (or their advisor 25 years ago)
- People learn how to use you through oral tradition
- You have no automated tests
- You lead to reproducible results only on even days
- You are required to be correct
POV: You are an average piece of scientific software

- You have been developed by a graduate student over 5 years (or their advisor 25 years ago)
- People learn how to use you through oral tradition
- You have no automated tests
- You lead to reproducible results only on even days
- You are required to be correct

- You were used to drive new science and publish papers
- You contain lots of lessons learned
- You could be used for future projects
- You have lots of potential!
Problem:
There is a lot of unrealized scientific potential!

Science killers:

- Time spent understanding the code
- Duplication of efforts
- Incorrect code/usage
- Unknown mismatch in assumptions
- ...

Problem:
There is a lot of unrealized scientific potential!

Science killers:
- Time spent understanding the code
- Duplication of efforts
- Incorrect code/usage
- Unknown mismatch in assumptions
- ...

Opportunity:
Code as a self-contained scientific contribution

Science enabler:
- Openness
- Ease of use and extension
- No hidden knowledge
- Sharing the “lessons learned”
- ...

Problem: There is a lot of unrealized scientific potential!

Science killers:
- Time spent understanding the code
- Duplication of efforts
- Incorrect code/usage
- Unknown mismatch in assumptions
- ...

Opportunity: Code as a self-contained scientific contribution

Science enabler:
- Openness
- Ease of use and extension
- No hidden knowledge
- Sharing the “lessons learned”
- ...

Documentation mitigates risks and contributes to elevating status of code from tool to scientific contribution
A practical framework for effective technical documentation

Gabriele Bozzola, PhD

gbozzola@caltech.edu
(Views are my own)
Extending Daniele Procida’s diataxis.fr for scientific code

Diátaxis

A systematic approach to technical documentation authoring.

Two core principles:

Explicitly address users/developers/maintainers/scientists needs
Explicitly address how people learn and seek information
Doc Braun’s lab is studying time travel

The lab is developing **TheLorean.jl**: A Julia code to compute flux capacitance
Doc Braun’s lab is studying time travel

Marty McDrive
Graduate student
Mostly a user

The lab is developing **TheLorean.jl**: A Julia code to compute flux capacitance
Doc Braun’s lab is studying time travel

Marty McDrive
Graduate student
Mostly a user

Tera Connor
Postdoc
User and developer

The lab is developing **TheLorean.jl**: A Julia code to compute flux capacitance
Doc Braun’s lab is studying time travel

Marty McDrive
Graduate student
Mostly a user

Tera Connor
Postdoc
User and developer

Dr Barnsworth
“Competing” researcher
Interested in methods and capabilities

The lab is developing **TheLorean.jl**: A Julia code to compute flux capacitance
Doc Braun’s lab is studying time travel

Marty McDrive
Graduate student
Mostly a user

Dr Barnsworth
“Competing” researcher
Interested in methods and capabilities

Tera Connor
Postdoc
User and developer

The lab is developing **TheLorean.jl**: A Julia code to compute flux capacitance

To use, to extend, to learn from
So, you decided you want to learn to <insert craft>
THEORETICAL KNOWLEDGE
PRACTICAL SKILL

THEORETICAL KNOWLEDGE
WHILE LEARNING
WHILE LEARNING

WHILE DOING
The key idea:

DOCUMENTATION IS NOT ONE THING,
AND IS NOT FOR ONE PERSON
TO USE
TUTORIALS
LEARNING-ORIENTED
Serve our study
UNDERSTANDING-ORIENTED
EXPLANATION
TO EXTEND
TO LEARN FROM
Adapted from diataxis.fr

TO USE
HOW-TO GUIDES
TASK-ORIENTED
Serve our work
INFORMATION-ORIENTED
REFERENCE
TO EXTEND
TO LEARN FROM

Practical steps
Theoretical knowledge
TUTORIALS

GOAL: Get the user started, provide familiarity with the vocabulary
- Provide a complete picture before they start
- Ensure the user sees results immediately
- Describe concrete steps, not abstract concepts
- Offer only minimum, necessary, explanation
- Ignore options and alternatives

Tutorials are learning-oriented
TUTORIALS

GOAL: Get the user started, provide familiarity with the vocabulary/tools

- Provide a complete picture before they start
- Ensure the user sees results immediately
- Describe concrete steps, not abstract concepts
- Offer only minimum, necessary, explanation
- Ignore options and alternatives

Tutorials are learning-oriented
TUTORIALS

GOAL: Get the user started, provide familiarity with:

- Provide a complete picture before they start
- Ensure the user sees results immediately
- Describe concrete steps, not abstract concept
- Offer only minimum, necessary, explanation
- Ignore options and alternatives

Tutorials are learning-oriented

I like this because it allows me to get familiar with the code on my own.
HOW-TO GUIDE

GOAL: Provide steps to accomplish something

- Describe a sequence of actions
- Solve a problem
- Don’t explain concepts
- Be flexible
- Omit the unnecessary

How-to guides are goal oriented
HOW-TO GUIDE

GOAL: Provide steps to accomplish something

- Describe a sequence of actions
- Solve a problem
- Don’t explain concepts
- Be flexible
- Omit the unnecessary

How-to guides are goal oriented

I like this because I want to use this code for specific scientific applications
A tool to bridge learning-doing bridge: EXAMPLES

GOAL: Demonstrate real-life usage

- Showcase and provide idiomatic implementations
- Be starting point for typical use cases
- Maintain a pedagogical spirit
- Can be small or large
- Must-have in scientific software

Examples bridge learning and doing
EXPLANATION

GOAL: Provide holistic understanding, Clarify the Whys

- Make connections
- Provide context
- Talk about the subject
- Discuss alternatives and opinions
- Don’t instruct

Explanation is understanding oriented
EXPLANATION

GOAL: Provide holistic understanding, Clarify the Whys

- Make connections
- Provide context
- Talk about the subject
- Discuss alternatives and opinions
- Don’t instruct

Explanation is understanding oriented

I like this because it gives me confidence to make large changes
REFERENCE

GOAL: Provide authoritative information on how things are and work

- Do nothing but describe
- Be consistent
- Be accurate

Reference is consultation oriented
REFERENCE

GOAL: Provide authoritative information on how things are and work

- Do nothing but describe
- Be consistent
- Be accurate

Reference is consultation oriented
REFERENCE
- Function signatures
- Public APIs
- System architecture
- Object hierarchy
- ...
REFERENCE
- Function signatures
- Public APIs
- System architecture
- Object hierarchy
- ...

REFERENCE for scientific software
- Spell out assumptions, methods, formalism, equations
- Define acronyms
- List and link relevant papers
- List all the working features (in one place)
REFERENCE
- Function signatures
- Public APIs
- System architecture
- Object hierarchy
- ...

REFERENCE for scientific software
- Spell out assumptions, methods, formalism, equations
- Define acronyms
- List and link relevant papers
- List all the working features (in one place)

I like this because it allows me to get a high-level view on the science
<table>
<thead>
<tr>
<th>GOAL</th>
<th>TUTORIALS</th>
<th>HOW-TO GUIDES</th>
<th>EXPLANATION</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Get started, Become familiar</td>
<td>Accomplish a specific task</td>
<td>Build understanding</td>
<td>Describe</td>
<td></td>
</tr>
<tr>
<td>ORIENTED TO</td>
<td>Learning</td>
<td>Tasks</td>
<td>Grokking</td>
<td>Consultation</td>
</tr>
<tr>
<td>TARGETING</td>
<td>New users</td>
<td>Users</td>
<td>Advanced users/developers</td>
<td>Everyone (+ scientific community)</td>
</tr>
</tbody>
</table>

EXAMPLES
How to lower the entry barrier to your scientific software

This framework provide natural entry points for everyone at any stage

Important: This is not the final word!
Frequently Asked Questions

> I only want to spend 15 minutes on documentation, what should I prioritize?

One paragraph where you explain what your code is supposed to accomplish, what input it expects, and what outputs it produces.
Frequently Asked Questions

> I only want to spend 15 minutes on documentation, what should I prioritize?

One paragraph where you explain what your code is supposed to accomplish, what input it expects, and what outputs it produces.

> I only want to spend one hour on documentation, what should I prioritize?

A **features** page/section
- Immediately useful to everyone that is not you
- Clearly identifies what features are supposed to work
Frequently Asked Questions

> I only want to spend 15 minutes on documentation, what should I prioritize?

One paragraph where you explain what your code is supposed to accomplish, what input it expects, and what outputs it produces.

> I only want to spend one hour on documentation, what should I prioritize?

A features page/section
- Immediately useful to everyone that is not you
- Clearly identifies what features are supposed to work

> I want to write the best documentation ever, what should I do?

I don’t know. Think about the core principles. :)

>
Assess your project with these at-home tests

The survivability test:

Would someone with reasonable experience be able to independently use and extend my code?
Assess your project with these at-home tests

The survivability test:

Would someone with reasonable experience be able to independently use and extend my code?

The accessibility test:

Would a beginner graduate student be able to use and extend my code with proper guidance?
My call for action

Think of scientific software as a standalone scientific contribution

Design your documentation by keeping in mind that documentation is not one thing and not for one person

Get in touch with me:
gbozzola@caltech.edu
Linkedin: gabrielebozzola