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Outline

= Most discussions of VACUUMY/bloat take a practical approach

- Starting point is VACUUM itself, and the impact to the user
application

- Can recommend “Managing Your Tuple Graveyard” talk from
Chelsea Dole, which is on at 3:30 today in Ballroom A

= |'m going to take a bottom-up approach instead

- Starting point is bloat itself, and effects that tend to naturally
emerge from the user application

- Might help you to develop a mental model that holds together
existing knowledge of how these things work

- Theoretical focus, but grounded in practicalities
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Overview

1. Structure

Logical vs. Physical structures, TIDs as “physiological” identifiers
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Pictured: The basic scheme of modern classification (Wikipedia)
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Logical vs. Physical

Database systems like Postgres use access methods to
abstract away physical representation.

» MVCC more or less versions entries in objects (relations).

- “Readers don’t block writers, writers don’t block
readers’

- Baked into everything, necessitates cleaning up old
VErsions

» Postgres heap relations (tables) generally store newly
inserted tuples in whatever order is convenient.

» [ndex relations often have multiple versions, too.
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Heap (table) structure

Heap structure is optimized for sequential access, and access by
index scans, which lookup entries using tuple identifiers (TIDs).

= Tuples are identitied by TID (e.g., '(2,32) "', '(43,89)"),
which must be stable so that index scans won’t break.

= TID is a "physiological” identifier.
- Physical across pages/blocks — block number.
- Logical within pages/blocks — item identifier.

= “Hybrid” of logical and physical that retains many of the
advantages of strictly logical and strictly physical identifiers
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Index structure

Indexes make access to specific records efficient through key-
based searching by SQL queries.

= B-Tree indexes have strict rules about which key values go
on which “logical node”

- Unlike the heap, where there are no “built in” rules
governing where newly inserted heap tuples can be placed

- “Strictly logical”

= B-Tree indexes do not have rules about the physical location
of any given key value

- A page split can change the physical location of some of
the entries for a given logical node
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Index structure (cont. 1)

Clearly the only kind of index lookup that can ever work reliably is a
key search — using the whole key (or at least a prefix column)

= Going the other way (from heap entry to index entry) is harder
- Pruning of dead heap tuples in heap pages destroys the
information required to look up corresponding dead entries

in indexes (by freeing the tuples that contain the indexed
key)

- VACUUM can only clean up indexes in bulk through a linear
scan of each and every index, which matches on TID only

- No “retail deletion” of individual entries in indexes takes
place (not obvious how VACUUM could ever do this)
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Index structure (cont. 2)

These dependencies have important conseguences for
VACUUM

= They make VACUUM an inherently bulk operation, that

must work at the level of the whole table and its indexes
collectively

» Postgres uses opportunistic cleanup technigues to make
up for this

- These work at the level of individual pages, incrementally
and on-demand, during query execution

- Complements VACUUM — makes up for its weaknesses,
and vice-versa
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Overview

2. A bottom-up take on bloat

Page level view of bloat, VACUUM, and opportunistic cleanup
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A bottom-up take on
bloat
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Pictured: Animal Cell (Wikipedia)
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Database pages as “cells”

= PostgreSQL storage consists of 8KIB pages
= Page model”

- Individual page modifications can be made
atomic with low-level techniques

- High level atomic operations (transactions) can
be composed from simpler atomic operations
(WAL-logged atomic page operations)
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"Linux Is evolution, not intelligent
design”

‘Bad programmers worry about
the code. Good programmers
worry apout data structures and

thelir relationships.”

— Linus Torvalds
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Evolutionary pressure

= Like cells in living organisms, the structure of pages
shares a lot across disparate access methods (e.g.,
heap, B-Tree, ...)

= [he high level structures are very dissimilar, but the
structure of individual pages is nevertheless much
more similar than different

= [00 much complexity to manage without breaking
down into manageable pieces with commonality

- What else could possibly work?
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Bloat at the page level

= Bloat at the level of individual pages looks similar
across index and heap pages

- Opportunistic cleanup techniques are fairly similar
across heap and index pages, despite the
differences that exist at the highest level (the level
of whole tables)

= This is not the view that “drives” VACUUM, though

- VACU
a who
“high

UM is an operation that works at the level of
e table (including its indexes) — so the

evel view” IS more relevant
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Name: 16513 016640E0 9A 40 00 00 80 01 0O CO 9A 40 00 AO 9A 40 00 80 9A 40 00 00 80 01 00 60 9A 40 00 40 9A 40 00 ..@....... @...@...Q@..... .@.Q.@
Path: /code/ 01667200 80 01 00 00 80 01 0O 20 9A 40 00 00 80 01 00 00 80 01 00 00 9A 40 0O EO 99 40 00 60 80 01 00 ........ @ @...@.....
postgresql/public/,/ ©016704C0 99 40 00 A® 99 40 00 00 80 ©1 60 80 99 40 00 00 80 O1 0@ 60 99 40 00 40 99 40 00 20 99 40 00 ..@...Q....... @ ... S.e.e.e. .@
data/base/13148 01673600 99 40 00 EO 98 40 00 CO 98 40 00 AO 98 40 00 80 98 40 00 60 98 40 00 0O 80 01 00 00 80 01 00 ..@...@...@...@...@. @ -vvvvrn.
Size:  40.0 KB 01676846 98 40 00 20 98 46 00 60 98 40 00 00 80 01 00 E® 97 40 00 CO 97 46 60 A 97 40 00 60 80 01 00@.€. .@...@....... @...@...Q@.....
Access: Read-Write 01680080 97 40 00 60 97 46 00 40 97 40 00 20 97 40 00 00 97 40 00 E® 96 40 60 CO 96 40 00 A® 96 40 00 ..@.'.@.€.C. .@...@...C...C...Q
: 01683280 96 40 00 00 80 01 0O 60 96 40 00 40 96 40 00 00 80 01 00 20 96 40 00 0O 96 40 0O EO 95 40 00 ..@..... @.@.@..... @...@...@
016864 CO 95 40 00 A® 95 40 00 80 95 40 00 60 95 40 00 40 95 40 00 20 95 40 00 0O 80 01 00 00 95 40 00 ..@...@...@. .@.@.@. .@....... @
016896 E0 94 40 00 00 80 01 0O CO 94 40 00 A0 94 40 00 80 94 40 00 60 94 40 00 40 94 40 00 00 80 01 00 ..@....... @...Q...Q. .Q.Q.@.....
01692820 94 40 00 00 80 01 0O 0O 80 01 OO 0O 94 40 0O EO 93 40 00 00 80 01 0O CO 93 40 00 AO 93 40 00 .@........... @ . @ ... @...@
01696000 80 01 00 80 93 40 00 60 93 40 00 0O 80 01 00 40 93 40 00 20 93 40 00 00 93 40 00 EO 92 40 00 ...... @. .@..... @.@. .@...@...@
01699200 80 01 00 00 80 01 0O 0O 80 O1 O CO 92 40 00 A0 92 40 00 80 92 40 00 0O 80 01 00 00 80 01 00 .............. @ . @@,
01702460 92 40 00 40 92 40 00 20 92 40 00 00 80 01 00 00 80 01 00 00 80 01 00 00 92 40 00 00 80 01 00 *.@.@.@. .@. - :vvvvrrnnnn.. @.....
01705600 80 01 00 EO 91 40 00 CO 91 40 00 A® 91 40 00 80 91 40 00 00 80 01 00 60 91 40 00 40 91 40 00 ...... @...@...Q@...Q@..... .Q.Q.@
01708800 80 01 00 20 91 40 00 0O 91 40 00 EO 90 40 00 CO 90 40 00 00 80 01 0O A® 90 40 00 80 90 40 00 . @ ..@...Q... Q... @...@
01712000 80 01 00 0O 80 01 0O 60 90 40 0O 40 90 40 00 20 90 40 00 00 90 40 00 EO 8F 40 00 00 80 01 00 ........ .@.@.@. .@...Q@...Q@.....
01715200 80 01 00 CO 8F 40 00 A® 8F 40 00 80 8F 40 00 60 8F 40 00 40 8F 40 00 20 8F 40 00 00 8F 40 00 ...... @...@...Q. .@.@.@. .@...@
01718400 80 01 00 0O 80 01 0O EO 8E 40 00 CO 8E 40 00 A0 S8E 40 00 80 8E 40 00 00 80 01 0O 60 8E 40 00 .......... @...Q...Q@...Q@..... @
01721640 8E 40 00 20 8E 40 00 00 8E 40 00 EO 8D 40 00 CO 8D 40 00 AO 8D 40 00 0O 80 01 00 00 80 01 00 @.@. .@...@...@...@...@ «vvvnnn-
01724880 8D 40 00 60 8D 40 00 40 8D 40 00 0O 80 01 00 00 80 01 00 20 8D @ .@...Q...@
01728000 80 @1 60 CO 8C 40 00 A® 8C 40 00 80 8C 40 00 60 8C 40 00 OQ 80 W @@ @, @.@
017312/00 00 00 00 00 00 0O 0O 0O 0O OO O OO OO OO0 0O 00 00 00 00 OLTAO 00 00 00 00 00 00 00 0O O 0O . ..o e e ennns
017344/4C 02 00 00 00 00 00 00 0O 0O OO OO OO0 0O 62 00 E2 00 02 00 00 09 18 00 A4 02 00 00 42 00 00 OO L. ..o oo, B..
017376/4C 02 00 00 4D 02 00 00 00 00 0O OO OO 6O 62 00 E1 00 02 20 00 05 18 00 A3 02 00 00 42 00 00 00 L. ..M. eeeeeeeens e, B..
017408/4C 02 00 00 4D 02 00 00 0O 0O 0O OO OO OO 62 0O EO 00 02 20 00 05 18 00 A2 02 00 00 42 00 00 OO0 L. ..M. .o eeeeens . B..
017440/4C 02 00 00 00 00 00 00 0O 0O OO OO OO0 6O 02 OO0 DF 00 02 00 00 09 18 00 Al 02 00 00 42 00 00 OO L. ..o, B
017472/4C 02 00 00 00 00 00 00 0O 0O OO OO 6O 6O 62 0O DE 00 02 00 00 09 18 00 AO 02 00 00 42 00 00 OO L. e e e e e eennnnn. B
017504/4C 02 00 00 00 00 00 0O 0O OO OO O 6O 6O 62 0O DD 00 02 00 00 09 18 00 9F 02 00 00 42 00 00 OO L. .o e, B
017536/4C 02 00 00 00 00 00 00 0O 0O OO OO 00 6O 62 0O DC 00 02 00 00 09 18 00 9E 02 00 00 42 00 00 OO L. ..o oo, B..
017568/4C 02 00 00 4D 02 00 00 00 00 OO OO OO 6O 62 0O DB 00 02 20 00 05 18 00 9D 02 00 00 42 00 00 00 L. ..M. eeeeeeeees e, B..
017600/4C 02 00 00 00 00 00 00 0O 0O OO OO 6O 6O 62 0O DA 00 02 00 00 09 18 00 9C 02 00 00 42 00 00 OO L. .o, B
017632/4C 02 00 00 00 00 00 0O 0O 0O OO OO OO0 6O 62 00 D9 00 02 00 00 09 18 00 9B 02 00 00 42 00 00 OO L. .o, B
017664/4C 02 00 00 00 00 00 00 00 00 OO OO 6O 6O 62 0O DS 00 02 00 00 09 18 00 9A 02 00 00 42 00 00 OO L. e e e e, B..
017696/4C 02 00 00 4D 02 00 00 0O 0O 0O OO OO 6O 62 0O D7 00 02 20 00 05 18 00 99 02 00 00 42 00 00 OO0 L. ..M. .o eeeeees e, B..
017728/4C 02 00 00 4D 02 00 00 0O 0O OO OO OO0 6O 62 00 D6 00 02 20 00 05 18 00 98 02 00 00 42 00 00 OO L. ..M. ..o eeeeeeeenn .. B..
017760/4C 02 00 00 00 00 00 00 00 00 OO OO 6O 6O 62 0O D5 00 02 00 00 09 18 00 97 02 00 00 42 00 00 OO L. v v e e e, B
017792/4C 02 00 00 00 00 00 0O 0O OO OO OO 6O 6O 02 00 D4 00 02 00 00 09 18 00 96 02 00 00 42 00 00 OO L. .o e e, B
0178244C 02 00 060 00 00 00 060 60 00 00 00 60 JJo 02 00 D3 60 02 00 60 69 18 00 95 02 00 00 42 00 60 00 L............ et B

Showing Page: 11 Cursor Offset: 17837 Cursor Value: 0 Selected Block: N/A Block Size: N/A

pg_hexedit tool, with 4 byte stub dead item identifiers left behind by
heap pruning
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VACUUM

= “Top-down” structure

- Autovacuum (which is how VACUUM is typically run) is typically triggered
by table-level threshold having been exceeded.

- VACUUM is good at “putting a floor under” the problem of bloat at the
table/system level by making sure that every table gets a “clean sweep” at
some point

- But VACUUM has no direct understanding of how bloat can become
concentrated in individual pages, impacting queries disproportionately

= VACUUM generally processes each page once (sometimes twice), based on
fixed rules

- VACUUM from recent Postgres versions can bypass index vacuuming
when it turns out that there are only very few entries to delete from indexes

- But VACUUM cannot reorder work at runtime, nor can it add extra work at
runtime
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VACUUM - processing order

1. Visits heap, performing pruning, collecting dead TID references needed by
step 2.

= Mechanically similar to opportunistic pruning, but directed at all pages
that might need to be pruned, including pages that have very little bloat.

= Pruning item identifiers as dead/LP_DEAD, since index scans still need
these until after step 2 (as “tombstones”). These are the TIDs to be
removed in indexes later.

2. Visits indexes, deleting index tuples that match TID list collected in step 1.

3. Second pass over heap, to mark dead/LP_DEAD item identifiers reusable/
LP_UNUSED.

= Step 3 is more like step 2 than step 3 — same dead items TID array
indicates which TIDs are safe to make reusable

» Dead item TIDs (collected in step 1 and reliably removed from indexes in
step 2) can now finally be marked reusable
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VACUUM - processing order
(cont.)

Processing order makes sense when you think about basic rules
around lookups

» [ndexes resolve key values in heap using heap TIDs, which must
be stable over time (within a VACUUM cycle).

» |Index scans must always land on the correct heap tuple — at
the very least there needs to be a “stub” 4 byte dead/LP_DEAD
item identifier that serves as a tombstone to avoid fotal chaos.

= Cannot allow index tuples/TIDs to point to who-knows-what by
allowing premature recycling of TID/item identifier

= |n other words, VACUUM steps 1, 2, and 3 need to happen in a
fixed order
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VACUUM without steps 2 and 3

postgres=# create table deltable (delcol int primary key);
CREATE TABLE

postgres=# insert into deltable select generate_series(l, 1000);
INSERT 0 1000

postgres=# delete from deltable where delcol % 5 = 0;

DELETE 200

postgres=# vacuum (index_cleanup off, verbose) deltable;

INFO: vacuuming '"postgres.public.deltable"

INFO: finished vacuuming "postgres.public.deltable": index scans: 0
pages: 0 removed, 5 remain, 5 scanned (100.00% of total)

tuples: 200 removed, 800 remain, O are dead but not yet removable
removable cutoff: 275362920, which was 0 XIDs old when operation ended
new relfrozenxid: 275362918, which is 1 XIDs ahead of previous value
frozen: 0 pages from table (0.00% of total) had 0 tuples frozen

index scan bypassed: 5 pages from table (100.00% of total) have 200 dead item -+identifiers
avg read rate: 134.698 MB/s, avg write rate: 202.047 MB/s

buffer usage: 14 hits, 2 misses, 3 dirtied

WAL usage: 6 records, 0 full page images, 858 bytes

system usage: CPU: user: 0.00 s, system: 0.00 s, elapsed: 0.00 s
VACUUM
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Finishing off the steps we
skipped (steps 2 and 3)

postgres=# vacuum (index_cleanup on, verbose) deltable;

INFO: vacuuming "postgres.public.deltable"

INFO: finished vacuuming "postgres.public.deltable": index scans: 1

pages: 0 removed, 5 remain, 5 scanned (100.00% of total)

tuples: 0 removed, 800 remain, 0 are dead but not yet removable

removable cutoff: 275362920, which was 0 XIDs old when operation ended

frozen: 0 pages from table (0.00% of total) had 0 tuples frozen

index scan needed: 5 pages from table (100.00% of total) had 200 dead -+item identifiers removed
index "deltable_pkey": pages: 5 in total, 0 newly deleted, 0 currently deleted, 0 reusable
avg read rate: 0.000 MB/s, avg write rate: 70.383 MB/s

buffer usage: 31 hits, 0 misses, 1 dirtied

WAL usage: 15 records, 1 full page images, 10058 bytes

system usage: CPU: user: 0.00 s, system: 0.00 s, elapsed: 0.00 s

VACUUM

hitps://speakerdeck.com/peterg/bloat-postgresql-scale



https://speakerdeck.com/peterg/bloat-postgresql-scale

HOT UPDATEs

Heap-only tuple optimization avoids creating new index entries
during updates

= Chains together heap tuples in heap page — existing TIDs
in iIndexes can find the version of interesting by traversing
the HOT chain (version chain) from the heap page

= Avoids adding successor versions to indexes in the first
place (hence the name “heap-only tuple”).

= Optimization only applies when no indexed columns are
modified by UPDATE statements.

= "All or nothing” — successor versions Iin indexes either
avoided entirely, or required in each and every index
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Opportunistic HO+ pruning

= “Prunes away” heap tuples during query execution (not during VACUUM),
which is important for many workloads

- Including workloads that don’t manage any HOT updates! “HOT pruning”
IS a historical misnomer that caught on — all heap tuples can be pruned

= Cannot reclaim dead item identifiers in the heap page, except with heap-only
tuples

- Heap-only tuples are not directly referenced from indexes/TIDs (only
indirectly), so there is no “3 steps of VACUUM” style dependency to worry
about when pruning HOT chains

- Pruning will free a little more space in affected heap pages when there is
only ever “heap-only tuple bloat” (left by HOT updates)

- But this may not be very significant at the level of the heap page itself
(indexes are another matter). Far more space used for heap tuples than
dead stub item identifiers, which take up only 4 bytes — far less than the
tens or even hundreds of bytes it takes to store tuples themselves.
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Opportunistic index deletion

» B-Tree also independently cleans up bloat opportunistically, at
the level of individual pages

» Postgres 14 greatly improved this mechanism, by making it
specifically target non-HOT update bloat in indexes

- Limits build-up of bloat in individual index pages

- “All or nothing” nature of HOT update optimization /s still a
problem — but the worst case is vastly improved

- Can perfectly preserve the size of indexes affected by many
non-HOT updates

- Index deduplication (added in Postgres 13) also helps by
“soaking up” bursts of duplicates needed for versioning

puUrposes
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“Top-down” VACUUM versus
“bottom-up” opportunistic cleanup

= VACUUM works at the level of a whole table and its indexes, collectively
- Top-down, global
- “Puts a floor under” level of bloat in table and indexes collectively
» Opportunistic techniques work at the level of individual pages
- Bottom-up, local
- Limits the concentration of bloat in individual pages
- Runs during query processing, as often as required
- “Holds the line” for VACUUM, since VACUUM doesn’t “understand” the

ways in which different pages (from the same table/index) sometimes
have dramatically different requirements
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“‘Deleting a million rows once” versus
“deleting one row a million times”

= There is not too much difference...in theory
» [he practical differences are far greater than you might guess
= A "problem within a table” versus a “problem within a page”

- VACUUM/autovacuum is typically much more effective at
cleaning up after a bulk delete

- Opportunistic technigques require...opportunities! In general,
there may not be any SQL queries that try to read deleted data.

- Opportunistic techniques enable reuse of space for new

versions of nearby, related rows — which avoids
fragmentation
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Overview

3. VACUUM’s priorities

Space reclamation, query response time
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VACUUM design goals

VACUUM is designed to be non-disruptive.

= Heavyweight lock strength doesn't block user queries,
including INSERTs, UPDATESs, and DELETEs.

» [ndexes are scanned in physical order during VACUUM,
not logical order (B-Tree and GiST only).

= Preserving worst case query response time is arguably the
primary goal.

- Not impacting response time while VACUUM runs
matters almost as much

- Reclaiming space is only a secondary goal.
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Space reclamation

Space reclamation is important in extreme cases

= Modest amounts of free space can be reclaimed eventually in
more common cases, where guery response time matters most.

» VACUUM occasionally truncates heap tables, giving space
back to the operating system

» |Indexes have their own unique restrictions on space reuse

- Only whole index pages can be reclaimed by the free space
map — undersized pages cannot be merged together.

- Look out for “pages deleted” for indexes in autovacuum log
output (on Postgres 14+)
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VACUUM and table size

Big tables vs. small tables

= Big tables (however you define them) aren’t processed any differently
than small tables by VACUUM

- But they should be thought of as qualitatively different things in practice

= Bigger tables must receive fewer individual VACUUM operations, each
of which will be longer and more expensive (compared to a similar table
with far fewer rows)

- The table doesn'’t stop accumulating garbage while VACUUM runs

- But VACUUM only removes tuples that were already garbage when
the VACUUM operation began

- “Too big to fail” dynamics may come into play (e.g., autovacuum
cancellation can hurt a lot more with larger tables)
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VACUUM and table size (cont.)

Breaking big VACUUMSs down into smaller VACUUMSs is a good strategy
= Table partitioning can help with this

- Individual partitions/child tables are processed as independent
tables by VACUUM

= More frequent VACUUMSs by autovacuum may also help
- Works best with append-mostly tables with few or no garbage tuples
- Number of pages scanned by each VACUUM (as opposed to
skipped using the visibility map) is important — heap pages set all-
visible must remain all-visible rather than being processed/scanned

again and again.

- Postgres 15 was the first version that instrumented “pages scanned”
in autovacuum log reports (as well as in VACUUM VERBOSE)
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Incremental autovacuum of a large and
continually growing table, with updates

automatic vacuum of table "postgres.public.order_line": index scans: 0

pages: O removed, 7385017 remain, 2091215 scanned (28.32% of total)

tuples: 4964150 removed, 451619205 remain, 2728993 are dead but not yet removable

removable cutoff: 76733064, which was 2311556 XIDs old when operation ended

frozen: 406579 pages from table (5.51% of total) had 24215117 tuples frozen

index scan bypassed: 124263 pages from table (1.68% of total) have 406397 dead item -identifiers
avg read rate: 28.617 MB/s, avg write rate: 19.705 MB/s

buffer usage: 2115525 hits, 1945133 misses, 1339404 dirtied

WAL usage: 2042719 records, 405011 full page images, 2881770710 bytes

system usage: CPU: user: 14.81 s, system: 18.83 s, elapsed: 531.03 s

hitps://speakerdeck.com/peterg/bloat-postgresql-scale



https://speakerdeck.com/peterg/bloat-postgresql-scale

Overview

4. Conclusions

Summary of the central ideas from 1 - 3
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Conclusions about bloat In
PostgreSQL

= VACUUM is tasked with removing old garbage tuples that are
obsolete to all possible transactions.

- Recent Postgres versions are much better at showing you
what'’s really going on

= Opportunistic technigues (HOT Pruning, deletion in B-Tree

indexes) also exist. Garbage collection usually happens both
ways.

- Even recent Postgres versions make it hard to tell how much of
this has happened

- But can be inferred from VACUUM instrumentation (particularly
autovacuum logging), to a degree
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Conclusions about bloat In
PostgreSQL (cont.)

= Opportunistic technigues are restricted by the same
ordering requirements that dictate high-level steps
VACUUM performs.

- Index scans cannot be allowed to land on an unrelated
tuple due to heap TID recycling.

- S0 even workloads/tables that do a great deal of cleanup
opportunistically are bound to eventually require
vacuuming to mark dead item identifiers for reuse

= There is an important complementary relationship between
VACUUM and opportunistic cleanup
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