Bloat In
PostgreSQL.:
A Taxonomy

PostgreSQL@SCalLE20x — March 10, 2023

https://speakerdeck .com/peterg/bloat -postgresql-scale

https://speakerdeck.com/peterg/bloat-postgresql-scale

Peter

https://speakerdeck.com/peterg/bloat-postgresql-scale

https://speakerdeck.com/peterg/bloat-postgresql-scale

Outline

= Most discussions of VACUUMY/bloat take a practical approach

- Starting point is VACUUM itself, and the impact to the user
application

- Can recommend “Managing Your Tuple Graveyard” talk from
Chelsea Dole, which is on at 3:30 today in Ballroom A

= |'m going to take a bottom-up approach instead

- Starting point is bloat itself, and effects that tend to naturally
emerge from the user application

- Might help you to develop a mental model that holds together
existing knowledge of how these things work

- Theoretical focus, but grounded in practicalities

hitps://speakerdeck.com/peterg/bloat-postgresql-scale

https://speakerdeck.com/peterg/bloat-postgresql-scale

Overview

1. Structure

Logical vs. Physical structures, TIDs as “physiological” identifiers

hitps://speakerdeck.com/peterg/bloat-postgresql-scale

https://speakerdeck.com/peterg/bloat-postgresql-scale

Structure

Life

Domain

J

~N

Kingdom

Phylum J

N\

Class

J

Order

Family

0
)

0
)

~N

Genus

J

‘%
0
0

Species J

Pictured: The basic scheme of modern classification (Wikipedia)

hitps://speakerdeck.com/peterg/bloat-postgresgl-scale

https://speakerdeck.com/peterg/bloat-postgresql-scale

Logical vs. Physical

Database systems like Postgres use access methods to
abstract away physical representation.

» MVCC more or less versions entries in objects (relations).

- “Readers don’t block writers, writers don’t block
readers’

- Baked into everything, necessitates cleaning up old
VErsions

» Postgres heap relations (tables) generally store newly
inserted tuples in whatever order is convenient.

» [ndex relations often have multiple versions, too.

hitps://speakerdeck.com/peterg/bloat-postgresql-scale

https://speakerdeck.com/peterg/bloat-postgresql-scale

Heap (table) structure

Heap structure is optimized for sequential access, and access by
index scans, which lookup entries using tuple identifiers (TIDs).

= Tuples are identitied by TID (e.g., '(2,32) "', '(43,89)"),
which must be stable so that index scans won’t break.

= TID is a "physiological” identifier.
- Physical across pages/blocks — block number.
- Logical within pages/blocks — item identifier.

= “Hybrid” of logical and physical that retains many of the
advantages of strictly logical and strictly physical identifiers

hitps://speakerdeck.com/peterg/bloat-postgresql-scale

https://speakerdeck.com/peterg/bloat-postgresql-scale

Index structure

Indexes make access to specific records efficient through key-
based searching by SQL queries.

= B-Tree indexes have strict rules about which key values go
on which “logical node”

- Unlike the heap, where there are no “built in” rules
governing where newly inserted heap tuples can be placed

- “Strictly logical”

= B-Tree indexes do not have rules about the physical location
of any given key value

- A page split can change the physical location of some of
the entries for a given logical node

hitps://speakerdeck.com/peterg/bloat-postgresql-scale

https://speakerdeck.com/peterg/bloat-postgresql-scale

Index structure (cont. 1)

Clearly the only kind of index lookup that can ever work reliably is a
key search — using the whole key (or at least a prefix column)

= Going the other way (from heap entry to index entry) is harder
- Pruning of dead heap tuples in heap pages destroys the
information required to look up corresponding dead entries

in indexes (by freeing the tuples that contain the indexed
key)

- VACUUM can only clean up indexes in bulk through a linear
scan of each and every index, which matches on TID only

- No “retail deletion” of individual entries in indexes takes
place (not obvious how VACUUM could ever do this)

hitps://speakerdeck.com/peterg/bloat-postgresql-scale

https://speakerdeck.com/peterg/bloat-postgresql-scale

Index structure (cont. 2)

These dependencies have important conseguences for
VACUUM

= They make VACUUM an inherently bulk operation, that

must work at the level of the whole table and its indexes
collectively

» Postgres uses opportunistic cleanup technigues to make
up for this

- These work at the level of individual pages, incrementally
and on-demand, during query execution

- Complements VACUUM — makes up for its weaknesses,
and vice-versa

hitps://speakerdeck.com/peterg/bloat-postgresql-scale

https://speakerdeck.com/peterg/bloat-postgresql-scale

Overview

2. A bottom-up take on bloat

Page level view of bloat, VACUUM, and opportunistic cleanup

hitps://speakerdeck.com/peterg/bloat-postgresql-scale

https://speakerdeck.com/peterg/bloat-postgresql-scale

A bottom-up take on
bloat

Nucleus
Nuclear pore
Chromatin
Nuclear envelope
Nucleus
Nucleolus
Peroxisome
Microtubule
Lysosome

Free Ribosomes

3 Mitochondrion

Plasma membrane . / ‘ 2) Intermediate Filaments
Golgi vesicles

(golgi apparatus)
Ribosomes
Rough endoplasmic reticulum

Smooth endoplasmic reticulum
Actin filaments

Cytoplasm

ecretory vesicle

Centrosome
(with 2 centrioles)

Flagellum

Pictured: Animal Cell (Wikipedia)

https://speakerdeck.com/peterg/bloat-postgresql-scale

https://speakerdeck.com/peterg/bloat-postgresql-scale

Database pages as “cells”

= PostgreSQL storage consists of 8KIB pages
= Page model”

- Individual page modifications can be made
atomic with low-level techniques

- High level atomic operations (transactions) can
be composed from simpler atomic operations
(WAL-logged atomic page operations)

hitps://speakerdeck.com/peterg/bloat-postgresql-scale

https://speakerdeck.com/peterg/bloat-postgresql-scale

"Linux Is evolution, not intelligent
design”

‘Bad programmers worry about
the code. Good programmers
worry apout data structures and

thelir relationships.”

— Linus Torvalds

hitps://speakerdeck.com/peterg/bloat-postgresql-scale

https://speakerdeck.com/peterg/bloat-postgresql-scale

Evolutionary pressure

= Like cells in living organisms, the structure of pages
shares a lot across disparate access methods (e.g.,
heap, B-Tree, ...)

= [he high level structures are very dissimilar, but the
structure of individual pages is nevertheless much
more similar than different

= [00 much complexity to manage without breaking
down into manageable pieces with commonality

- What else could possibly work?

hitps://speakerdeck.com/peterg/bloat-postgresql-scale

https://speakerdeck.com/peterg/bloat-postgresql-scale

Activities M wxHexEditor v Tue Sep 4, 10:51

wxHexEditor 0.25 Beta Development for Linux =
File Edit View Tools Devices Options Help
iuﬁ.ti?’_t@ QI) & d
atalnterpreter 3] e o 2 o |
Unﬂgnzd Big Endian 2610‘ ’
Binary (00000000 - Eqit| 0T 15€00 01 02 03 04 05 06 07 08 09 GA 6B 6C 6D OE OF 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 0123456789ABCDEF0123456789ABCDEF
5 bt [o 00000000 00 00 00 28 00 00 00 0O 60 04 60 CC 00 00 01 00 20 0420 60 00 00 00 50 9F 60 01 A® 9E 60 01(...hL........ P
‘ 000032F0 9D 60 01 40 9D 60 O1 90 9C 60 01 EO 9B 60 01 30 9B 60 01 80 9A 60 01 DO 99 60 01 20 99 60 01 .. .@.0.0. . .
) 7 68 000064760 98 60 61 CO 97 60 01 10 97 60 01 60 96 60 01 BO 95 60 01 00 95 60 01 50 94 60 01 A0 93 60 OLlp.°.P.°...0
32 bit 537461504 000096 FO 92 60 01 40 92 60 61 90 91 60 01 EO 90 60 01 30 90 60 01 80 8F 60 01 DO 8E 60 01 20 8E 60 01 .. .@.0.0. .>.
64 bit 11258961493368= 00012870 8D 60 01 CO 8C 60 61 10 8C 60 01 60 8B 60 01 BO 8A 60 01 60 8A 60 01 50 89 60 01 A® 88 60 01 p.P.
Float |1.1605343994119. (000160 F8 87 4C 01 50 87 4C 01 A8 86 4C 01 EO 85 90 01 20 1C 01 BO 8¥90 01 4C 01 ..L.P.L...L..... IS D L.
Double/5.5626660817227//00019258 826Q. 01 BO 8A4C 01 00 81 01 00 00 00 00 PO 00 00 ¢ 00 O0X. ...L...

00 0 0 00
00 00 00 00 00

infopanel 5100022400 00 00 ODQ_00 OU~GG
Name: 2610 000256
Path: /code/ 00028862 OA 00 00 E1 04 00 OO 82,00 01 00 00 P 00 f0 92700 00 01 00 00 0O D....vreerrnerrrnannnn.. Puerinn
postgresql/public/,/ 00032000 00 60 060 15 60 00 00 Q0 OONQQ 00 00 b 00/p2700 00 00 00 0O 0O 0O . .. vvvvvssseeeeeeeaneeeaeeannns
datajbase/1314g (090352 1A 08 00 60 62 00 00 60 00 00 00 DE~QO PHQY 00 00 00 00 00 80 00 Of HE O 00 00 00 60 00 08 B0 evererrurernereaeeenen
Size: 32.0 KB 000384/1A 00 00 00 02 00 00 00 OO 00 00 00 BD ORLU™S Cs($0 01 00 OO 00 00 GO 00 00cuun. 4' P
e FEEREEE 00041615 00 00 00 02 00 00 OGO 00 00 OO0 00 00 OY OU™S 4D 00 00 00 00 00 00 00cvunn. M.......
’ 0004482C 00 14 00 03 09 20 FF FF 03 00 00 00 ZO 00 00 01 00 01 G0 01 00 G0 1, oo oo - s ol - -
00048000 01 00 01 01 G0 00 0O 68 00 00 00 O 00 00 00 01 00 0O OO0 00 0O 0O 60 he o
000512 FE FF 00 00 70 00 00 00 01 00 00 00 FH 00 00 00 00 00 OO0 OO OO 00 00 OO| .. .Pr vt v nnnnnns
00054470 00 00 00 01 00 00 GO 0O 00 00 OQ/1A 00 00 Q0 BD 07 00 00 68 00 00 OO P......vvv ittt h...
00057601 00 00 00 O OO 00 0O 15 00 00 PO O1 00 00 lgol 00 00 OOROO 00 OO OO
0006084C 00 00 00 00 00 00 0O 2B 00 14700 03 09 26 PO 60 OA 00 00 2C OA 00 O L....... P ...
00064002 00 02 00 O1 00 00 01 00 01 @O O1 01 @700 §0 00 OO0 00 00 15 00 00 00cuuu.n.. Yo00o0o00oan0an00s
00067202 00 00 00 O OO 00 00 01 0Q/02 00 S 00 00 40 1A 00 00 00 02 00 00 00ttt ae e
00070400 00 00 OO OO OO0 00 OO GO GO 00 L& 80 00 OO0 GO 01 00 COLO 00 00 OO CGP 1A 00 0 00 02 00 00 OO i it ittt e et ene e
00073600 00 00 G0 BD 07 00 00 BB/ ¥ 00 70 00 00 00 01 GO OF 00 00 GO 00 Op 15 00 OO0 OO 62 00 00 0O [Yaoo0anoanooonaonaoas
00076800 00 00 00 OO 00 00 0O 4B 00 £O 00 00 00 00 Of 2A 00 14 00 03 09 20 FF........ K....... B - .
000800 FF 603 00 00 00 00 00 COAS5 OA 00 00 2B OA 00 00 01 0Q/01 00 01 0O 00 Of 00 01 00 01 01 00 00 00 0o o0 - - ool - e
00083268 00 00 00 01 00 00 QF OO 00 00 GO 15 00 00 O 01 GO 00 O OO0 00 00 OCA FE FF 00 00 70 00 00 OO h........coviiieiineennnnnn. Do oo
00086401 00 00 00 OO 00 000 1A 00 00 0O O1 00 00 O OLO OO GO OO 00 OO EOY70 00 OO0 OO0 01 00 0 00ccvviieinennnnnn. | I
00089600 00 00 00 1A 00 OF 0O 01 00 OO0 0O 00 00 GO 00 Bpp0O7 0O 00 68 OO 00 OOYO1 OO 00 OO O 60 00 00cccvnn.. 3
00092815 00 00 00 01 00 L0 GO 00 00 OO OGO 00 0O 0O 00 4A 00 00 00 00 00 00 0Ovvvvvnnn.
00096029 00 14 00 03 Of 20 FF FF 03 00 00 00 00 G0 00 5F OA 00 00 2B OA 00 00104 00 04 00 01 60 00 01) Soafrs o NS CEN -
00099200 01 00 01 01 40 00 GO 80 00 GO 0O 01 OO0 GO 00 0O GO OO0 00 15 0O 00 00 P4 00 00 00 00 00 00 OOttt ittt e ennnnnnnn
00102401 00 02 00 0 00 04 0O AO 00 00 00 01 00 GO 00 OO0 OO 00 OO0 1A 0O 00 00 P4 00 00 00 00 00 00 OO .. vv ittt et s nnnnnnnn
00105600 00 00 00 4O OO0 00 OO OO OO 00 CO OO 00 OO0 GO AO 00 00 GO 01 00 OO OO GO 00 OO0 OO0 1A 00 00 0Ocivrii it in s ene s
00108804 00 00 Y 00 00 OO0 GO BD 07 00 00 BD 07 00 00 BD 07 00 00 BB 07 00 00 g0 00 00 00 OL 00 00 00cuuirrrinnneernnnnnnnnn
00112000 00 00 FO 15 00 00 OO 04 00 OO0 0O 00 00 GO 00 00 G0 00 00 00 O 00 00 ¥ e
00115249 00 000 00 00 00 GO 28 00 14 00 03 09 20 FF FF 03 00 00 00 00 00 00 C4 OA 00 00 2A OA 00 GO I....... 5o RS ..
00118401 00 Z1 00 01 00 00 01 00 01 00 01 01 00 00 0O 68 00 GO 00 01 GO OO OO0 OO OO 00 0O 15 00 00 00 he ool
00121601 06/00 00 0O 00 OG0 GO FE FF 00 00 70 00 0O 00 01 GO 0O OO OO OO 00 OO 1A 00 OO0 0O O1 00 00 00 Doooooononcanoanoanoos
00124800 g 00 OO0 CO OO OO OO 70 OO0 00 0O O1 OO 0O GO GO OO 6O CO 1A 00 OO0 GO 01 00 OO GO 6O 00 00 O P
001280 BR/07 00 00 68 00 00 GO 01 00 OO OO 00 OO GO 00 15 OO0 00 00 01 GO 00 00 O 00 00 00 G0 00 00 00h.. ...ttt
001312 48 00 00 00 PO 00 0O GO 27 00 14 00 03 09 20 FF FF 03 00 00 00 00 00 00 H.o...... e ...
001344 5E OA 00 00 2A OA 00 00 03 00 03 00 01 00 00 01 00 01 00 O1 01 00 0O GO 78 00 O GO 01 00 0 O ~. .. *., Xuweunnn
00137600 00 00 00 15 00 00 GO 03 00 OO0 OO 00 OO GO 00 06 GO 05 00 01 GO 00 00 90 00 00 00 O1L 00 00 00 sttt ine et ennnnnnnn
00140800 00 00 OO0 1A 00 00 0O 03 00 OO OO OO0 OO GO 00 OO0 OO OO OO OO OO OO0 OO0 OO 00 00 00 90 00 00 OO ...ttt et snnnnnnnn
00144001 00 00 00 OO OO 00 OO 1A 00 00 OO O3 00 OO0 CO OO 00 OO GO BD 07 00 GO0 1F 27 00 0 BD 07 00 00ccvuiieiiiieenns e,

Showing Page: 0 Cursor Offset: 275 Cursor Value: 0 Selected Block: N/A Block Size: N/A

pg_hexedit tool, with pg_index catalog relation (table)

https://speakerdeck.com/peterg/bloat-postgresql-scale

https://speakerdeck.com/peterg/bloat-postgresql-scale
https://github.com/petergeoghegan/pg_hexedit

Activities ® wxHexEditor v Tue Sep 4, 11:28 = W) [E38%~

wxHexEditor 0.25 Beta Development for Linux -)0)@

File Edit View Tools Devices Options Help

LaBEO Q2 (8 4
Datalnterpreter 2679 | .

®
1 Unsigned ([Big Endian
+0ffse00 01 02 63 04 05 06 07 08 09 OA 0B O0C D OE OF 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F0123456789ABCDEF0123456789ABCDEF

iﬂ;?’?m°°1°1 9 96940840 8D 20 00 30 8D 20 00 20 8D 20 00 10 8D 20 00 00 8D 20 00 FO 8C 20 00 EO 8C 20 00 DO 8C 20 00@. .0.

) 009440C0O 8C 20 00 BO 8C 20 00 A® 8C 20 00 90 8C 20 00 80 8C 20 00 70 8C 20 00 66 8C 20 00 56 8C 20 0Op. . . .P.
16 bit |5 00947240 8C 20 00 30 8C 20 00 20 8C 20 00 10 8C 20 00 60 8C 20 00 FO 8B 20 00 EO 8B 20 00 DO 8B 20 60@. .0.
S2gbly] 1048581 009504 C0O 8B 20 00 BO 8B 20 00 A® 8B 20 00 90 8B 20 00 80 8B 20 00 70 8B 20 00 60 8B 20 00 560 8B 20 0Op. . . .P.
64 bit 71863393845253 00953640 8B 20 00 30 8B 20 00 20 8B 20 60 10 8B 20 0O 00 8B 20 00 FO 8A 20 00 EO 8A 20 00 DO 8A 20 60@. .0.
Float |1.4693749450202 009568 CO 8A 20 00 BO 8A 20 00 A® 8A 20 00 90 8A 20 00 86 8A 20 00 760 8A 20 00 60 8A 20 00 560 8A 20 00p. . . .P.
Double|3.5505234092499/ (00960040 8A 20 00 30 8A 20 00 20 8A 20 00 10 8A 20 00 00 8A 20 00 FO 89 20 60 E® 89 20 00 DO 89 20 G0@. .0.
InfoPanel » 009632C0O 89 20 00 BO 89 20 00 AG 89 20 00 90 89 20 00 80 89 20 00 70 89 20 00 60 89 20 00 560 89 20 GOp. . . .P.
Name: 2679 00966440 89 20 00 30 89 20 00 20 89 20 00 10 89 20 60 60 89 20 00 FO 88 20 00 EO 88 20 00 DO 88 20 GO@. .0. o..
Path: /code/ 009696 CO 88 20 00 BO 88 20 00 A0 88 20 0O 90 88 20 60 00 00 00 00 00 OO0 OO0 OO0 OO0 OO 0O 00 00 00 00 OO L. suv tet tin tiririrennennennns

postgresql/public/,/ 08972800 06 06 06 06 06 66 66 66 60 60 60 60 60 60 60 60 60 60 60 00 00 00 00 00 00 00 00 00 00 00 0Oewwrrwererneeneaneanenss
data/base/13148 08976000 00 00 60 00 00 60 00 00 60 0O 00 60 00 00 60 00 00 60 00 00 60 00 00 60 00 00 00 08 00 B0 0e.eereieiieinenn.
Size: 16.0 KB 009792000 00 00 00 60 60 0O 00 00 60 60 00 00 00 60 60 00 00 00 00 60 00 00 00 00 00 00 00 00 00 B0 B0cceeeeeeeeennnnnn..
Access: Read-Write 00982400 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 60 60 00 00 00 00 00 00 00 80 B0 B0 B0t \rrvrrrrnerneaeienan

' 00985600 00 00 00 60 60 0O 00 00 60 60 0O 00 00 60 60 00 00 00 00 60 00 00 00 00 00 00 00 00 00 B0 OOcceeeeeeeenennnnn..
009888000 00 00 00 60 60 0O 00 00 60 60 00 00 00 60 60 00 00 00 00 60 00 00 00 00 00 00 00 00 00 B0 OOcceeeeeeeeeennnnn..
00992000 0 00 00 60 60 0O 00 00 60 60 0O 00 00 60 60 00 00 00 00 00 00 00 00 00 00 60 0O 00 00 B0 BOceeeereerinnnnenn..
009952000 00 00 00 00 60 0O 00 00 60 60 0O 00 00 60 60 00 00 00 00 60 00 00 00 00 00 00 00 00 00 B0 OOcceeeeeeeeennnnnn..
00998400 00 00 00 60 60 0O 00 00 60 60 00 00 00 60 60 00 00 00 00 60 00 00 00 00 00 00 00 00 00 B0 B0cceeeeeeeeeennnnn..
01001600 00 00 00 60 60 0O 00 00 60 60 0O 00 00 60 60 00 00 00 00 00 00 00 00 00 00 00 0O 00 00 B0 BOceeeeeeerrnnnnennn.
01004800 00 00 00 60 60 0O 00 00 60 60 0O 00 00 60 60 00 00 00 00 60 00 00 00 00 00 00 00 00 00 B0 OOceeeeeeeeeennnnnn..
01008000 00 00 00 60 60 00 00 00 60 60 00 00 00 00 60 00 00 00 00 60 00 00 00 00 00 00 00 00 00 B0 B0cceeeeeeeeeennnnn..
010112000 0 00 00 60 60 0O 00 00 60 60 0O 00 00 60 60 00 00 00 00 00 00 00 00 00 00 00 0O 00 00 B0 B0ceeeeeeeernnnnnn..
01014400 00 00 00 60 60 0O 00 00 60 60 0O 00 00 60 60 00 00 00 00 60 00 00 00 00 00 00 00 00 00 B0 OOcceeeeeeeeennnnnn..
010176000 00 00 00 00 60 00 00 00 00 60 00 00 00 60 60 00 00 00 00 60 00 00 00 00 00 00 00 00 00 B0 B0cceeeeeeeeeennnnn..
010208000 00 00 00 60 60 0O 00 00 00 60 0O 00 00 60 60 00 00 00 00 00 00 00 00 00 00 00 00 00 00 B0 BOceeeeeeerennnnnn..
010240000 00 00 00 60 60 0O 00 00 60 60 0O 00 00 60 60 00 00 00 00 60 00 00 00 00 00 00 00 00 00 B0 OOcceeeeeeeeeennnnn..
010272000 00 00 00 60 60 00 00 00 00 60 00 0O 00 00 60 60 00 00 00 60 60 00 00 00 00 60 00 00 00 00 00 A

01030400 00 00 00 00 0O 0O 00 GO OO 00 6O 00 0O 60 00 00 60 00 00 00 00 00 00 00,2208 AA A A OO 0Ooeeerne e e
01033600 00 00 00 60 00 00 00 60 00 00 00 60 00 00 00 00 00 00 00 00 00 00 00 ooll374)indexrelid op oo
01036800 00 00 00 00 00 0O 00 00 00 00 60 00 00 00 00 00 00 08 00 OJ 00 10 00 5K 41 00 00 00 00 00 0004, \A......
01040000 00 08 00 04 00 160 00 5B 41 00 0O 00 00 OO 00 OO OO 08 00 03 00 10 00 58541 00 00 00 00 00 00 [A. ... ZA.
01043200 00 08 00 02 00 10 00 59 41 00 00 00 00 0O 00 0O 00 68 00 01 6O 10 00 58 41 00 00 00 00 00 00 YA, ... XA......

010464600 60 67 00 2F 00 10 00 57 41 00 GO0 0O 00 0O 60 6O 60 07 00 2E 00 10 00 56 41 00 GO0 00 60 60 00..../

010496600 060 67 00 2D 00 10 00 55 41 00 00 0O 0O 00 00 GO 60 07 00 2C 00 10 00 54 41 00 0O 0O 00 00 00-... .
01052800 00 07 00 2B 00 10 00 53 41 00 0O 0O 0O 0O 00 GO 60 07 00 2A 00 10 00 52 41 00 00 00 00 00 OO+...SA.......... B..RA......
01056000 60 67 00 29 00 10 00 51 41 00 0O 0O 0O 0O 60 PO 60 07 00 28 00 10 00 50 41 0O 0O 00 60 60 00....)

01059200 00 07 00 27 00 10 00 4F 41 00 0O 00 00 GO 00 0O G0 O07 00 26 G0 10 00 4E 41 00 00 0O 00 00 00 OA.......... & ..NA......
01062400 00 07 00 25 00 10 00 4D 41 00 0O 00 00 GO 00 0O GO ©07 00 24 00 10 00 4C 41 00 00 00 00 00 00%...MA.......... $...LA......
01065600 00 07 00 23 00 10 00 4B 41 00 0O 00 00 GO 00 00 GO O07 00 22 G0 10 00 4A 41 00 00 00 00 00 OO#...KA.......... “LUUJAL L.
01068800 00 07 00 21 00 10 00 49 41 00 OO 00 00 GO 00 0O GO O07 00 20 00 10 00 48 41 00 00 00 00 00 O0 ... IA.......... .. HAL L.
01072000 00 07 00 1F 00 10 00 47 41 00 0O 00 00 0O 00 0O G0 07 00 1E GO 10 00 46 41 00 00 0O 00 00 00 GA.............. FA......
01075200 00 07 00 1D 00 10 00 45 41 00 00 00 00 0O 00 0O GO 07 00 1C GO 10 00 44 41 00 00 0O 00 00 OO EA., DA......
01078400 00 07 00 1B 00 10 00 43 41 00 0O 00 00 GO 00 0O GO 07 00 1A GO 10 00 42 41 00 00 0O 00 00 OO CA.............. BA......
01081600 00 07 00 19 00 10 00 41 41 00 0O 00 00 0O 00 0O GO 07 00 18 GO 10 00 40 41 00 00 0O 00 00 0O Y S O @A......
01084800 00 07 00 17 00 10 00 3F 41 00 0O 00 00 0O 00 0O GG ©07 00 16 GO 10 00 3E 41 00 00 0O 00 00 00 AL e b
Showing Page: 6 Cursor Offset: 10388 Cursor Value: 5 Selected Block: N/A Block Size: N/A

pg_hexedit tool, with pg_index_indexrelid_index catalog relation (index)

https://speakerdeck.com/peterg/bloat-postgresql-scale

https://speakerdeck.com/peterg/bloat-postgresql-scale
https://github.com/petergeoghegan/pg_hexedit

Bloat at the page level

= Bloat at the level of individual pages looks similar
across index and heap pages

- Opportunistic cleanup techniques are fairly similar
across heap and index pages, despite the
differences that exist at the highest level (the level
of whole tables)

= This is not the view that “drives” VACUUM, though

- VACU
a who
“high

UM is an operation that works at the level of
e table (including its indexes) — so the

evel view” IS more relevant

hitps://speakerdeck.com/peterg/bloat-postgresql-scale

https://speakerdeck.com/peterg/bloat-postgresql-scale

Activities

M wxHexEditor v

File Edit View Tools Devices Options Help

Tue Sep 4,11:17

wxHexEditor 0.25 Beta Development for Linux

iﬁT}EPQQ» & ¢
atalnterpreter 3] PR ——
1 Unsigned ([Big Endian 16513‘
Binary (00000000 Eqit|*0T75€00 01 02 63 04 05 06 07 68 69 6A OB OC 0D OF OF 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 0123456789ABCDEF0123456789ABCDEF
5 it [0 016384/00 00 00 00 A® 4E 70 01 0O 00 00 00 AO 03 40 OC 00 20 0420 00 00 00 00 EO 9F 40 00 0080 0100 Np.L..... @.. @..... -
_ 016416CO 9F 40 00 00 80 01 0O A® 9F 40 00 80 9F 40 00 60 9F 40 00 40 9F 40 00 20 9F 40 00 00 80 01 00 ..@....... @...Q." .Q.Q.@. .@.....
Lojol512 01644800 80 01 00 00 9F 40 0O EO 9E 40 00 CO 9E 40 00 A0 9E 40 00 80 9E 40 00 60 9E 40 00 0O 80 01 60 @...Q@...@...@...@. .@.....
32 bit -754974208 01648000 80 01 00 00 80 01 0O 40 9E 40 00 20 9E 40 00 00 80 01 00 00 80 01 0O 0O 9E 40 0O EO 9D 40 00 @@ @ ... @...@
64 bit 2202563248640 |916512CO 9D 40 00 A® 9D 40 00 80 9D 40 00 00 80 01 00 60 9D 40 00 0O 80 ©1 0O 40 9D 40 0O 20 9D 40 00..@...@...@..... @ @.Q. .@
Float -549789368320 01654400 9D 40 00 0O 80 01 00 EO 9C 40 00 CO 9C 40 00 A® 9C 40 00 0O 80 O1 0O 80 9C 40 0O 0O 80 01 00 ..@..-.... @ ..@Q...Q.nnn-... @.....
Double 1.0882108339455 01657600 80 01 00 60 9C 40 00 40 9C 40 00 20 9C 40 00 00 9C 40 00 00 80 01 0O EO 9B 40 00 00 80 01 00@.@.@. .@...@....... @.....
InfoPanel » 016608CO 9B 40 00 AO 9B 40 00 80 9B 40 00 60 9B 40 00 40 9B 40 00 20 9B 40 00 00 9B 40 00 00 80 01 0O ..@...@...@. .@.@.@. .@...@.....
Name: 16513 016640E0 9A 40 00 00 80 01 0O CO 9A 40 00 AO 9A 40 00 80 9A 40 00 00 80 01 00 60 9A 40 00 40 9A 40 00 ..@....... @...@...Q@..... .@.Q.@
Path: /code/ 01667200 80 01 00 00 80 01 0O 20 9A 40 00 00 80 01 00 00 80 01 00 00 9A 40 0O EO 99 40 00 60 80 01 00 @ @...@.....
postgresql/public/,/ ©016704C0 99 40 00 A® 99 40 00 00 80 ©1 60 80 99 40 00 00 80 O1 0@ 60 99 40 00 40 99 40 00 20 99 40 00 ..@...Q....... @ ... S.e.e.e. .@
data/base/13148 01673600 99 40 00 EO 98 40 00 CO 98 40 00 AO 98 40 00 80 98 40 00 60 98 40 00 0O 80 01 00 00 80 01 00 ..@...@...@...@...@. @ -vvvvrn.
Size: 40.0 KB 01676846 98 40 00 20 98 46 00 60 98 40 00 00 80 01 00 E® 97 40 00 CO 97 46 60 A 97 40 00 60 80 01 00@.€. .@...@....... @...@...Q@.....
Access: Read-Write 01680080 97 40 00 60 97 46 00 40 97 40 00 20 97 40 00 00 97 40 00 E® 96 40 60 CO 96 40 00 A® 96 40 00 ..@.'.@.€.C. .@...@...C...C...Q
: 01683280 96 40 00 00 80 01 0O 60 96 40 00 40 96 40 00 00 80 01 00 20 96 40 00 0O 96 40 0O EO 95 40 00 ..@..... @.@.@..... @...@...@
016864 CO 95 40 00 A® 95 40 00 80 95 40 00 60 95 40 00 40 95 40 00 20 95 40 00 0O 80 01 00 00 95 40 00 ..@...@...@. .@.@.@. .@....... @
016896 E0 94 40 00 00 80 01 0O CO 94 40 00 A0 94 40 00 80 94 40 00 60 94 40 00 40 94 40 00 00 80 01 00 ..@....... @...Q...Q. .Q.Q.@.....
01692820 94 40 00 00 80 01 0O 0O 80 01 OO 0O 94 40 0O EO 93 40 00 00 80 01 0O CO 93 40 00 AO 93 40 00 .@........... @ . @ ... @...@
01696000 80 01 00 80 93 40 00 60 93 40 00 0O 80 01 00 40 93 40 00 20 93 40 00 00 93 40 00 EO 92 40 00 @. .@..... @.@. .@...@...@
01699200 80 01 00 00 80 01 0O 0O 80 O1 O CO 92 40 00 A0 92 40 00 80 92 40 00 0O 80 01 00 00 80 01 00 @ . @@,
01702460 92 40 00 40 92 40 00 20 92 40 00 00 80 01 00 00 80 01 00 00 80 01 00 00 92 40 00 00 80 01 00 *.@.@.@. .@. - :vvvvrrnnnn.. @.....
01705600 80 01 00 EO 91 40 00 CO 91 40 00 A® 91 40 00 80 91 40 00 00 80 01 00 60 91 40 00 40 91 40 00 @...@...Q@...Q@..... .Q.Q.@
01708800 80 01 00 20 91 40 00 0O 91 40 00 EO 90 40 00 CO 90 40 00 00 80 01 0O A® 90 40 00 80 90 40 00 . @ ..@...Q... Q... @...@
01712000 80 01 00 0O 80 01 0O 60 90 40 0O 40 90 40 00 20 90 40 00 00 90 40 00 EO 8F 40 00 00 80 01 00@.@.@. .@...Q@...Q@.....
01715200 80 01 00 CO 8F 40 00 A® 8F 40 00 80 8F 40 00 60 8F 40 00 40 8F 40 00 20 8F 40 00 00 8F 40 00 @...@...Q. .@.@.@. .@...@
01718400 80 01 00 0O 80 01 0O EO 8E 40 00 CO 8E 40 00 A0 S8E 40 00 80 8E 40 00 00 80 01 0O 60 8E 40 00 @...Q...Q@...Q@..... @
01721640 8E 40 00 20 8E 40 00 00 8E 40 00 EO 8D 40 00 CO 8D 40 00 AO 8D 40 00 0O 80 01 00 00 80 01 00 @.@. .@...@...@...@...@ «vvvnnn-
01724880 8D 40 00 60 8D 40 00 40 8D 40 00 0O 80 01 00 00 80 01 00 20 8D @ .@...Q...@
01728000 80 @1 60 CO 8C 40 00 A® 8C 40 00 80 8C 40 00 60 8C 40 00 OQ 80 W @@ @, @.@
017312/00 00 00 00 00 00 0O 0O 0O 0O OO O OO OO OO0 0O 00 00 00 00 OLTAO 00 00 00 00 00 00 00 0O O 0O . ..o e e ennns
017344/4C 02 00 00 00 00 00 00 0O 0O OO OO OO0 0O 62 00 E2 00 02 00 00 09 18 00 A4 02 00 00 42 00 00 OO L. ..o oo, B..
017376/4C 02 00 00 4D 02 00 00 00 00 0O OO OO 6O 62 00 E1 00 02 20 00 05 18 00 A3 02 00 00 42 00 00 00 L. ..M. eeeeeeeens e, B..
017408/4C 02 00 00 4D 02 00 00 0O 0O 0O OO OO OO 62 0O EO 00 02 20 00 05 18 00 A2 02 00 00 42 00 00 OO0 L. ..M. .o eeeeens . B..
017440/4C 02 00 00 00 00 00 00 0O 0O OO OO OO0 6O 02 OO0 DF 00 02 00 00 09 18 00 Al 02 00 00 42 00 00 OO L. ..o, B
017472/4C 02 00 00 00 00 00 00 0O 0O OO OO 6O 6O 62 0O DE 00 02 00 00 09 18 00 AO 02 00 00 42 00 00 OO L. e e e e e eennnnn. B
017504/4C 02 00 00 00 00 00 0O 0O OO OO O 6O 6O 62 0O DD 00 02 00 00 09 18 00 9F 02 00 00 42 00 00 OO L. .o e, B
017536/4C 02 00 00 00 00 00 00 0O 0O OO OO 00 6O 62 0O DC 00 02 00 00 09 18 00 9E 02 00 00 42 00 00 OO L. ..o oo, B..
017568/4C 02 00 00 4D 02 00 00 00 00 OO OO OO 6O 62 0O DB 00 02 20 00 05 18 00 9D 02 00 00 42 00 00 00 L. ..M. eeeeeeeees e, B..
017600/4C 02 00 00 00 00 00 00 0O 0O OO OO 6O 6O 62 0O DA 00 02 00 00 09 18 00 9C 02 00 00 42 00 00 OO L. .o, B
017632/4C 02 00 00 00 00 00 0O 0O 0O OO OO OO0 6O 62 00 D9 00 02 00 00 09 18 00 9B 02 00 00 42 00 00 OO L. .o, B
017664/4C 02 00 00 00 00 00 00 00 00 OO OO 6O 6O 62 0O DS 00 02 00 00 09 18 00 9A 02 00 00 42 00 00 OO L. e e e e, B..
017696/4C 02 00 00 4D 02 00 00 0O 0O 0O OO OO 6O 62 0O D7 00 02 20 00 05 18 00 99 02 00 00 42 00 00 OO0 L. ..M. .o eeeeees e, B..
017728/4C 02 00 00 4D 02 00 00 0O 0O OO OO OO0 6O 62 00 D6 00 02 20 00 05 18 00 98 02 00 00 42 00 00 OO L. ..M. ..o eeeeeeeenn .. B..
017760/4C 02 00 00 00 00 00 00 00 00 OO OO 6O 6O 62 0O D5 00 02 00 00 09 18 00 97 02 00 00 42 00 00 OO L. v v e e e, B
017792/4C 02 00 00 00 00 00 0O 0O OO OO OO 6O 6O 02 00 D4 00 02 00 00 09 18 00 96 02 00 00 42 00 00 OO L. .o e e, B
0178244C 02 00 060 00 00 00 060 60 00 00 00 60 JJo 02 00 D3 60 02 00 60 69 18 00 95 02 00 00 42 00 60 00 L............ et B

Showing Page: 11 Cursor Offset: 17837 Cursor Value: 0 Selected Block: N/A Block Size: N/A

pg_hexedit tool, with 4 byte stub dead item identifiers left behind by
heap pruning

https://speakerdeck.com/peterg/bloat-postgresql-scale

https://speakerdeck.com/peterg/bloat-postgresql-scale
https://github.com/petergeoghegan/pg_hexedit

VACUUM

= “Top-down” structure

- Autovacuum (which is how VACUUM is typically run) is typically triggered
by table-level threshold having been exceeded.

- VACUUM is good at “putting a floor under” the problem of bloat at the
table/system level by making sure that every table gets a “clean sweep” at
some point

- But VACUUM has no direct understanding of how bloat can become
concentrated in individual pages, impacting queries disproportionately

= VACUUM generally processes each page once (sometimes twice), based on
fixed rules

- VACUUM from recent Postgres versions can bypass index vacuuming
when it turns out that there are only very few entries to delete from indexes

- But VACUUM cannot reorder work at runtime, nor can it add extra work at
runtime

hitps://speakerdeck.com/peterg/bloat-postgresql-scale

https://speakerdeck.com/peterg/bloat-postgresql-scale

VACUUM - processing order

1. Visits heap, performing pruning, collecting dead TID references needed by
step 2.

= Mechanically similar to opportunistic pruning, but directed at all pages
that might need to be pruned, including pages that have very little bloat.

= Pruning item identifiers as dead/LP_DEAD, since index scans still need
these until after step 2 (as “tombstones”). These are the TIDs to be
removed in indexes later.

2. Visits indexes, deleting index tuples that match TID list collected in step 1.

3. Second pass over heap, to mark dead/LP_DEAD item identifiers reusable/
LP_UNUSED.

= Step 3 is more like step 2 than step 3 — same dead items TID array
indicates which TIDs are safe to make reusable

» Dead item TIDs (collected in step 1 and reliably removed from indexes in
step 2) can now finally be marked reusable

hitps://speakerdeck.com/peterg/bloat-postgresql-scale

https://speakerdeck.com/peterg/bloat-postgresql-scale

VACUUM - processing order
(cont.)

Processing order makes sense when you think about basic rules
around lookups

» [ndexes resolve key values in heap using heap TIDs, which must
be stable over time (within a VACUUM cycle).

» |Index scans must always land on the correct heap tuple — at
the very least there needs to be a “stub” 4 byte dead/LP_DEAD
item identifier that serves as a tombstone to avoid fotal chaos.

= Cannot allow index tuples/TIDs to point to who-knows-what by
allowing premature recycling of TID/item identifier

= |n other words, VACUUM steps 1, 2, and 3 need to happen in a
fixed order

hitps://speakerdeck.com/peterg/bloat-postgresql-scale

https://speakerdeck.com/peterg/bloat-postgresql-scale

VACUUM without steps 2 and 3

postgres=# create table deltable (delcol int primary key);
CREATE TABLE

postgres=# insert into deltable select generate_series(l, 1000);
INSERT 0 1000

postgres=# delete from deltable where delcol % 5 = 0;

DELETE 200

postgres=# vacuum (index_cleanup off, verbose) deltable;

INFO: vacuuming '"postgres.public.deltable"

INFO: finished vacuuming "postgres.public.deltable": index scans: 0
pages: 0 removed, 5 remain, 5 scanned (100.00% of total)

tuples: 200 removed, 800 remain, O are dead but not yet removable
removable cutoff: 275362920, which was 0 XIDs old when operation ended
new relfrozenxid: 275362918, which is 1 XIDs ahead of previous value
frozen: 0 pages from table (0.00% of total) had 0 tuples frozen

index scan bypassed: 5 pages from table (100.00% of total) have 200 dead item -+identifiers
avg read rate: 134.698 MB/s, avg write rate: 202.047 MB/s

buffer usage: 14 hits, 2 misses, 3 dirtied

WAL usage: 6 records, 0 full page images, 858 bytes

system usage: CPU: user: 0.00 s, system: 0.00 s, elapsed: 0.00 s
VACUUM

hitps://speakerdeck.com/peterg/bloat-postgresql-scale

https://speakerdeck.com/peterg/bloat-postgresql-scale

Finishing off the steps we
skipped (steps 2 and 3)

postgres=# vacuum (index_cleanup on, verbose) deltable;

INFO: vacuuming "postgres.public.deltable"

INFO: finished vacuuming "postgres.public.deltable": index scans: 1

pages: 0 removed, 5 remain, 5 scanned (100.00% of total)

tuples: 0 removed, 800 remain, 0 are dead but not yet removable

removable cutoff: 275362920, which was 0 XIDs old when operation ended

frozen: 0 pages from table (0.00% of total) had 0 tuples frozen

index scan needed: 5 pages from table (100.00% of total) had 200 dead -+item identifiers removed
index "deltable_pkey": pages: 5 in total, 0 newly deleted, 0 currently deleted, 0 reusable
avg read rate: 0.000 MB/s, avg write rate: 70.383 MB/s

buffer usage: 31 hits, 0 misses, 1 dirtied

WAL usage: 15 records, 1 full page images, 10058 bytes

system usage: CPU: user: 0.00 s, system: 0.00 s, elapsed: 0.00 s

VACUUM

hitps://speakerdeck.com/peterg/bloat-postgresql-scale

https://speakerdeck.com/peterg/bloat-postgresql-scale

HOT UPDATEs

Heap-only tuple optimization avoids creating new index entries
during updates

= Chains together heap tuples in heap page — existing TIDs
in iIndexes can find the version of interesting by traversing
the HOT chain (version chain) from the heap page

= Avoids adding successor versions to indexes in the first
place (hence the name “heap-only tuple”).

= Optimization only applies when no indexed columns are
modified by UPDATE statements.

= "All or nothing” — successor versions Iin indexes either
avoided entirely, or required in each and every index

hitps://speakerdeck.com/peterg/bloat-postgresql-scale

https://speakerdeck.com/peterg/bloat-postgresql-scale
https://www.postgresql.org/docs/current/storage-hot.html

Opportunistic HO+ pruning

= “Prunes away” heap tuples during query execution (not during VACUUM),
which is important for many workloads

- Including workloads that don’t manage any HOT updates! “HOT pruning”
IS a historical misnomer that caught on — all heap tuples can be pruned

= Cannot reclaim dead item identifiers in the heap page, except with heap-only
tuples

- Heap-only tuples are not directly referenced from indexes/TIDs (only
indirectly), so there is no “3 steps of VACUUM” style dependency to worry
about when pruning HOT chains

- Pruning will free a little more space in affected heap pages when there is
only ever “heap-only tuple bloat” (left by HOT updates)

- But this may not be very significant at the level of the heap page itself
(indexes are another matter). Far more space used for heap tuples than
dead stub item identifiers, which take up only 4 bytes — far less than the
tens or even hundreds of bytes it takes to store tuples themselves.

hitps://speakerdeck.com/peterg/bloat-postgresql-scale

https://speakerdeck.com/peterg/bloat-postgresql-scale

Opportunistic index deletion

» B-Tree also independently cleans up bloat opportunistically, at
the level of individual pages

» Postgres 14 greatly improved this mechanism, by making it
specifically target non-HOT update bloat in indexes

- Limits build-up of bloat in individual index pages

- “All or nothing” nature of HOT update optimization /s still a
problem — but the worst case is vastly improved

- Can perfectly preserve the size of indexes affected by many
non-HOT updates

- Index deduplication (added in Postgres 13) also helps by
“soaking up” bursts of duplicates needed for versioning

puUrposes

hitps://speakerdeck.com/peterg/bloat-postgresql-scale

https://speakerdeck.com/peterg/bloat-postgresql-scale
https://www.postgresql.org/docs/current/btree-implementation.html#BTREE-DELETION
https://www.postgresql.org/docs/current/btree-implementation.html#BTREE-DELETION
https://www.postgresql.org/message-id/CAGnEbogATZS1mWMVX8FzZHMXzuDEcb10AnVwwhCtXtiBpg3XLQ@mail.gmail.com

“Top-down” VACUUM versus
“bottom-up” opportunistic cleanup

= VACUUM works at the level of a whole table and its indexes, collectively
- Top-down, global
- “Puts a floor under” level of bloat in table and indexes collectively
» Opportunistic techniques work at the level of individual pages
- Bottom-up, local
- Limits the concentration of bloat in individual pages
- Runs during query processing, as often as required
- “Holds the line” for VACUUM, since VACUUM doesn’t “understand” the

ways in which different pages (from the same table/index) sometimes
have dramatically different requirements

hitps://speakerdeck.com/peterg/bloat-postgresql-scale

https://speakerdeck.com/peterg/bloat-postgresql-scale

“‘Deleting a million rows once” versus
“deleting one row a million times”

= There is not too much difference...in theory
» [he practical differences are far greater than you might guess
= A "problem within a table” versus a “problem within a page”

- VACUUM/autovacuum is typically much more effective at
cleaning up after a bulk delete

- Opportunistic technigques require...opportunities! In general,
there may not be any SQL queries that try to read deleted data.

- Opportunistic techniques enable reuse of space for new

versions of nearby, related rows — which avoids
fragmentation

hitps://speakerdeck.com/peterg/bloat-postgresql-scale

https://speakerdeck.com/peterg/bloat-postgresql-scale

Overview

3. VACUUM’s priorities

Space reclamation, query response time

hitps://speakerdeck.com/peterg/bloat-postgresql-scale

https://speakerdeck.com/peterg/bloat-postgresql-scale

https://speakerdeck.com/peterg/bloat-postgresql-scale

VACUUM design goals

VACUUM is designed to be non-disruptive.

= Heavyweight lock strength doesn't block user queries,
including INSERTs, UPDATESs, and DELETEs.

» [ndexes are scanned in physical order during VACUUM,
not logical order (B-Tree and GiST only).

= Preserving worst case query response time is arguably the
primary goal.

- Not impacting response time while VACUUM runs
matters almost as much

- Reclaiming space is only a secondary goal.

hitps://speakerdeck.com/peterg/bloat-postgresql-scale

https://speakerdeck.com/peterg/bloat-postgresql-scale

Space reclamation

Space reclamation is important in extreme cases

= Modest amounts of free space can be reclaimed eventually in
more common cases, where guery response time matters most.

» VACUUM occasionally truncates heap tables, giving space
back to the operating system

» |Indexes have their own unique restrictions on space reuse

- Only whole index pages can be reclaimed by the free space
map — undersized pages cannot be merged together.

- Look out for “pages deleted” for indexes in autovacuum log
output (on Postgres 14+)

hitps://speakerdeck.com/peterg/bloat-postgresql-scale

https://speakerdeck.com/peterg/bloat-postgresql-scale

VACUUM and table size

Big tables vs. small tables

= Big tables (however you define them) aren’t processed any differently
than small tables by VACUUM

- But they should be thought of as qualitatively different things in practice

= Bigger tables must receive fewer individual VACUUM operations, each
of which will be longer and more expensive (compared to a similar table
with far fewer rows)

- The table doesn'’t stop accumulating garbage while VACUUM runs

- But VACUUM only removes tuples that were already garbage when
the VACUUM operation began

- “Too big to fail” dynamics may come into play (e.g., autovacuum
cancellation can hurt a lot more with larger tables)

hitps://speakerdeck.com/peterg/bloat-postgresql-scale

https://speakerdeck.com/peterg/bloat-postgresql-scale

VACUUM and table size (cont.)

Breaking big VACUUMSs down into smaller VACUUMSs is a good strategy
= Table partitioning can help with this

- Individual partitions/child tables are processed as independent
tables by VACUUM

= More frequent VACUUMSs by autovacuum may also help
- Works best with append-mostly tables with few or no garbage tuples
- Number of pages scanned by each VACUUM (as opposed to
skipped using the visibility map) is important — heap pages set all-
visible must remain all-visible rather than being processed/scanned

again and again.

- Postgres 15 was the first version that instrumented “pages scanned”
in autovacuum log reports (as well as in VACUUM VERBOSE)

hitps://speakerdeck.com/peterg/bloat-postgresql-scale

https://speakerdeck.com/peterg/bloat-postgresql-scale

Incremental autovacuum of a large and
continually growing table, with updates

automatic vacuum of table "postgres.public.order_line": index scans: 0

pages: O removed, 7385017 remain, 2091215 scanned (28.32% of total)

tuples: 4964150 removed, 451619205 remain, 2728993 are dead but not yet removable

removable cutoff: 76733064, which was 2311556 XIDs old when operation ended

frozen: 406579 pages from table (5.51% of total) had 24215117 tuples frozen

index scan bypassed: 124263 pages from table (1.68% of total) have 406397 dead item -identifiers
avg read rate: 28.617 MB/s, avg write rate: 19.705 MB/s

buffer usage: 2115525 hits, 1945133 misses, 1339404 dirtied

WAL usage: 2042719 records, 405011 full page images, 2881770710 bytes

system usage: CPU: user: 14.81 s, system: 18.83 s, elapsed: 531.03 s

hitps://speakerdeck.com/peterg/bloat-postgresql-scale

https://speakerdeck.com/peterg/bloat-postgresql-scale

Overview

4. Conclusions

Summary of the central ideas from 1 - 3

hitps://speakerdeck.com/peterg/bloat-postgresql-scale

https://speakerdeck.com/peterg/bloat-postgresql-scale

Conclusions about bloat In
PostgreSQL

= VACUUM is tasked with removing old garbage tuples that are
obsolete to all possible transactions.

- Recent Postgres versions are much better at showing you
what'’s really going on

= Opportunistic technigues (HOT Pruning, deletion in B-Tree

indexes) also exist. Garbage collection usually happens both
ways.

- Even recent Postgres versions make it hard to tell how much of
this has happened

- But can be inferred from VACUUM instrumentation (particularly
autovacuum logging), to a degree

hitps://speakerdeck.com/peterg/bloat-postgresql-scale

https://speakerdeck.com/peterg/bloat-postgresql-scale

Conclusions about bloat In
PostgreSQL (cont.)

= Opportunistic technigues are restricted by the same
ordering requirements that dictate high-level steps
VACUUM performs.

- Index scans cannot be allowed to land on an unrelated
tuple due to heap TID recycling.

- S0 even workloads/tables that do a great deal of cleanup
opportunistically are bound to eventually require
vacuuming to mark dead item identifiers for reuse

= There is an important complementary relationship between
VACUUM and opportunistic cleanup

hitps://speakerdeck.com/peterg/bloat-postgresql-scale

https://speakerdeck.com/peterg/bloat-postgresql-scale

