

Introduction to Vitess
sharding framework for MySQL

Enterprise Customer Engineer, PlanetScale

@mcrauwel

Matthias Crauwels

• Living in Ghent, Belgium 󰎐
• Bachelor Computer Science

• ~25 years Linux user / admin

• ~15 years PHP developer

• ~10 years MySQL DBA

• 3rd year at PlanetScale

• Enterprise Customer Engineer

• Father of Leander

Who am I?
// Introduction

About PlanetScale
PlanetScale is the world’s most scalable and reliable OLTP database. Built on
Vitess, our cloud platform is trusted by some of the world’s largest brands. We
offer a range of deployment options including multi-tenant cloud, single-tenant,
or bring your own cloud account with PlanetScale Managed.

PlanetScale was founded in 2018 by the co-creators and maintainers of the
Vitess open source project. We are a globally-distributed company that values
high performance, accountability, and integrity.

About Vitess
PlanetScale is powered by Vitess, the open-source database technology
that was invented at YouTube in 2010 to solve the scaling issues they faced
with their massive MySQL database.

Vitess went on to become open source as a CNCF project and continues to
scale massive companies like Slack, GitHub, and more.

Vitess serves millions of QPS in production

Agenda

● Architecture

● MySQL Compatibility

● VReplication

● Online Schema Changes

● Automatic failovers

// Introduction

Architecture

What is Vitess?

● Cloud Native Database

● Massively Scalable

● Highly Available

● MySQL Compatible

// Architecture

Concepts

● Keyspace

● Shard

● Topology server

// Architecture

Vitess Architecture
// Architecture

Keyspace

MySQL Compatibility

Vitess provides an illusion

● A single database (server)

● MySQL 8.0 and above

● A single, dedicated connection

// MySQL Compatibility

Vitess needs to deal with

● Database frameworks

● ORMs

● Legacy code

● Third Party Applications

// MySQL Compatibility

VReplication

Use cases

● Migration

○ Import data into Vitess

● (Re)sharding

○ Move data around

● Materialisation

○ Improve query performance

○ Materialise unsharded data on each shard

// VReplication

Import workflow

● Create an “external” keyspace with a vttablet pointing to an existing
MySQL server.

● Create a Vitess keyspace

● Use the MoveTables command to create a VReplication Workflow to move
data into Vitess

● Confirm that all data was migrated (VDiff)

● Switch read traffic to go to Vitess

● Switch write traffic to go to Vitess

● Full support for rollback in case of issues

// VReplication

Regular MySQL as source

● Binary logs are required
○ When copying from a replica GTIDs and log_replica_updates are required
○ binary log format = ROW
○ binary log image = FULL

● 2 phases

○ Copy phase
■ Long running select - vreplication_copy_phase_duration (default 1h)
■ Throttling

● History List Length - vreplication_copy_phase_max_innodb_history_list_length
(default 1 million)

● Replication lag (source) - vreplication_copy_phase_max_mysql_replication_lag
(default 12h)

○ Catch Up phase
■ After each chunk of the copy phase
■ Apply binary log event for the already copied rows
■ Avoids long catch up phase on large tables

// VReplication

Aurora MySQL as source
// VReplication

● No binary logs on Aurora readers
○ Set up a replica Aurora cluster doing binary log replication from the main cluster
○ Use the primary of this cluster as "replica" tablet

● Server UUID (GTID) is the same for all nodes on the source cluster
○ Stream survives a Aurora failover

● When you don't have GTID (enabling requires an Aurora reboot) repoint vreplication to the primary cluster before
cutover

○ STOP REPLICA on replica cluster
○ SHOW BINARY LOG STATUS on replica cluster
○ ensure vreplication catches up (File/Position from the previous output)
○ SHOW REPLICA STATUS on replica-cluster

■ fetch Source_Log_File and Executed_Source_Log_Pos
○ stop vreplication workflow
○ UPDATE _vt.replication SET pos = '...', tablet_types = 'PRIMARY' WHERE id = …; on target cluster(s)
○ start vreplication workflow

Sharded MySQL / Vitess as source
// VReplication

● Shard by shard migration
○ Sharded source keyspace
○ Sharded target keyspace
○ Same shard definitions for both source and target
○ Requires vtgate flag --enable-partial-keyspace-migration
○ MoveTables stream per shard

■ Ability to copy in segments not to overload uplink
■ Ability to switch-reads and switch-writes individually

● No "big bang" migration
■ Fully reversible migrations

○ ShardRoutingRules
■ to be able to switch traffic on a per-shard basis

○ Executed this with cluster up to 256 shards (not the hard limit)
○ Some manual cleanup at the end

Multi-tenant migrations
// VReplication

● Multiple (identical) schema spread over 1 or more MySQL cluster(s)
○ Unique tenant identifier required in all tables (immutable)
○ Each source tenant is it's own external keyspace
○ Queries should include WHERE <field_tenant_id> = … in all SELECT/UPDATE/DELETE statements
○ Target schema

■ Add <field_tenant_id> to PRIMARY KEY (required for uniqueness)
■ Add <field_tenant_id> to secondary indexes (as first field to use for filtering)

○ HowTo
■ VSchema add multi_tenant_spec to the top-level JSON

 "multi_tenant_spec": {
 "tenant_id_column_name": "<field_tenant_id>",
 "tenant_id_column_type": "INT64"
 },

■ MoveTables specify --tenant_id <value> during Create
○ Merges 100s or 1000s of schema's into one (sharded) keyspace

Multi-tenant migrations (2)
// VReplication

● KeyspaceRoutingRules
○ Introduced for multi-tenant migrations
○ All keyspaces have the same tables
○ Works very similar to normal RoutingRules and ShardRoutingRules

● When sharding the Vitess cluster on <field_tenant_id>
○ option to specify --shards option to MoveTables Create

Online Schema Changes

ALTER TABLE issues

● Blocking

● Resource greedy

● Not auditable

● Not interruptible

// Online Schema Changes

ALTER TABLE Workarounds

● gh-ost, developed by GitHub

● pt-online-schema-change, part of Percona Toolkit

● External tools

● Requires a lot of operational knowledge of the environment

● Takes control out of the developer’s hands

// Online Schema Changes

Based on VReplication

mysql> SET @@ddl_strategy = 'online';
Query OK, 0 rows affected (0.00 sec)

mysql> ALTER TABLE table1 CHANGE id id bigint unsigned;
+--------------------------------------+
| uuid |
+--------------------------------------+
| 4d8246f2_9801_11ed_a6ae_c87f5403e983 |
+--------------------------------------+
1 row in set (0.02 sec)

● Grab a coffee!

// Online Schema Changes

Based on VReplication

mysql> SHOW vitess_migrations LIKE '4d8246f2_9801_11ed_a6ae_c87f5403e983'\G

*************************** 1. row ***************************
...
 migration_uuid: 4d8246f2_9801_11ed_a6ae_c87f5403e983
 added_timestamp: 2023-01-19 14:58:08
completed_timestamp: 2023-01-19 14:58:18
 migration_status: complete
migration_statement: alter table table1 change column id id bigint unsigned
 strategy: online
...
1 row in set (0.00 sec)

// Online Schema Changes

But there is more…

● Migrations become fully reversible

● Because the VReplication stream could easily be reversed, the old table
is kept up-to-date.

● Now a revert operation is as simple as
mysql> REVERT vitess_migration '4d8246f2_9801_11ed_a6ae_c87f5403e983';
+--------------------------------------+
| uuid |
+--------------------------------------+
| 20f5337f_9826_11ed_a6ae_c87f5403e983 |
+--------------------------------------+
1 row in set (0.04 sec)

// Online Schema Changes

Declarative migrations

● No need to write ALTER statements anymore, just resubmit the CREATE
TABLE statement and Vitess will figure out the difference and run the
migration…

mysql> SET @@ddl_strategy = 'online -declarative';
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE TABLE `table1` (
 -> `id` bigint unsigned NOT NULL,
 -> `data` varchar(512) DEFAULT NULL,
 -> PRIMARY KEY (`id`)
 ->) ENGINE=InnoDB;
+--------------------------------------+
| uuid |
+--------------------------------------+
| c423f39b_982c_11ed_a6ae_c87f5403e983 |
+--------------------------------------+
1 row in set (0.02 sec)

// Online Schema Changes

Conclusion

● Schema changes are being put back into the hands of the developers!

● Easy to run

● Easy to revert

● Due to the robustness of VReplication, it can even survive a primary
failover or other type of outage

// Online Schema Changes

Automatic failovers

Orchestrator

Orchestrator is open-source software commonly used as a MySQL
Topology management tool. It’s purpose is to observe MySQL replication
topologies and potentially fix these topologies when failures are observed.

Core functionalities:
● Discover
● Visualize
● Monitor
● Refactor

// Automatic failovers

VTOrc

● Vitess component based on Orchestrator

● Stateless, topology information is stored in the topology service

● Discovery is already taken care of by Vitess

● Refactoring will automatically update the topo

● Requirements

○ At least one replica

○ Optional: semi-sync replication

// Automatic failovers

Questions?

Thank you!

