®, PlanetScale

Introduction to Vitess
sharding framework for MySQL

Matthias Crauwels
Enterprise Customer Engineer, PlanetScale

@mcrauwel

// Introduction

Who am I?

Living in Ghent, Belgium §
Bachelor Computer Science
~25 years Linux user / admin
~15 years PHP developer

~10 years MySQL DBA

3rd year at PlanetScale
Enterprise Customer Engineer

Father of Leander

About PlanetScale

PlanetScale is the world’s most scalable and reliable OLTP database. Built on
Vitess, our cloud platform is trusted by some of the world’s largest brands. We
offer a range of deployment options including multi-tenant cloud, single-tenant,
or bring your own cloud account with PlanetScale Managed.

PlanetScale was founded in 2018 by the co-creators and maintainers of the

Vitess open source project. We are a globally-distributed company that values
high performance, accountability, and integrity.

About Vitess

PlanetScale is powered by Vitess, the open-source database technology
that was invented at YouTube in 2010 to solve the scaling issues they faced
with their massive MySQL database.

Vitess went on to become open source as a CNCF project and continues to
scale massive companies like Slack, GitHub, and more.

Vitess serves millions of QPS in production

e slack New Relic. [5) Square Flipkart
Hubsppt pedk @ Pinterest) shopify
dnozzle COoweave GitHub D25

quizofKings &stitchlabs ® PlanetScale

// Introduction

Agenda

e Architecture

e MySQL Compatibility

e VReplication

e Online Schema Changes

e Automatic failovers

Architecture

Gl

// Architecture

What is Vitess?

e Cloud Native Database
e Massively Scalable

e Highly Available

e MySQL Compatible

// Architecture
Concepts

e Keyspace
e Shard

e Topology server

// Architecture
Vitess Architecture

Keyspace

APP : VITESS

MySQL Compatibility

Gl

// MySQL Compatibility
Vitess provides an illusion

e A single database (server)
e MySQL 8.0 and above

e A single, dedicated connection

// MySQL Compatibility
Vitess needs to deal with

e Database frameworks
e ORMs
e Legacy code

e Third Party Applications

VReplication

Gl

// VVReplication
Use cases

e Migration
o Import data into Vitess
e (Re)sharding
o Move data around
e Materialisation
o Improve query performance

o Materialise unsharded data on each shard

// VVReplication
Import workflow

e Create an “external” keyspace with a vitablet pointing to an existing
MySQL server.

e Create a Vitess keyspace

e Use the MoveTables command to create a VVReplication Workflow to move
data into Vitess

e Confirm that all data was migrated (VDiff)
e Switch read traffic to go to Vitess
e Switch write traffic to go to Vitess

e Full support for rollback in case of issues

// VVReplication

Regular MySQL as source

e Binary logs are required
o When copying from a replica GTIDs and 1og replica updates are required
O Dbinary log format = ROW
O Dbinary log image = FULL

e 2 phases

O Copy phase

m Long running select - vreplication_copy_phase_duration (default 1h)

m Throttling
° History List Length - vreplication copy phase max innodb history list length
(default 1 million)
° Replication lag (source) - vreplication copy phase max mysgl replication lag
(default 12h)

O Catch Up phase
m After each chunk of the copy phase

m Apply binary log event for the already copied rows
lII m Avoids long catch up phase on large tables

// VVReplication
Aurora MySQL as source

e No binary logs on Aurora readers
o Set up a replica Aurora cluster doing binary log replication from the main cluster
o Use the primary of this cluster as "replica" tablet
e Server UUID (GTID) is the same for all nodes on the source cluster
o Stream survives a Aurora failover
e When you don't have GTID (enabling requires an Aurora reboot) repoint vreplication to the primary cluster before

cutover
o STOP REPLICAON replica cluster
o SHOW BINARY LOG STATUSON replica cluster
o ensure vreplication catches up (File/Position from the previous output)
o SHOW REPLICA STATUSoON replica-cluster
m fetch Source Log Fileand Executed Source Log Pos
stop vreplication workflow
UPDATE vt.replication SET pos = '...', tablet types = 'PRIMARY' WHERE id = ..@n target cluster(s)
start vreplication workflow

// VVReplication

Sharded MySQL / Vitess as source

e Shard by shard migration

O

o O O O

Sharded source keyspace
Sharded target keyspace
Same shard definitions for both source and target
Requires vtgate flag --enable-partial-keyspace-migration
MoveTables stream per shard

m Ability to copy in segments not to overload uplink

m Ability to switch-reads and switch-writes individually

e No "big bang" migration

m Fully reversible migrations
ShardRoutingRules

m to be able to switch traffic on a per-shard basis
Executed this with cluster up to 256 shards (not the hard limit)
Some manual cleanup at the end

// VVReplication
Multi-tenant migrations

e Multiple (identical) schema spread over 1 or more MySQL cluster(s)
o Unique tenant identifier required in all tables (immutable)
o Each source tenant is it's own external keyspace
o Queries should include WHERE <field tenant id> = ..inall SELECT/UPDATE/DELETE statements
o Target schema
m Add<field tenant id>to PRIMARY KEY (required for uniqueness)
m Add<field tenant id>to secondary indexes (as first field to use for filtering)

o Howlo
m VSchema add multi_tenant_spec to the top-level JSON
"multi tenant spec": {
"tenant id column name": "<fileld tenant id>",
"tenant id column type": "INT64"

I
m MoveTables specify --tenant id <value> during Create

o Merges 100s or 1000s of schema's into one (sharded) keyspace

// VVReplication
Multi-tenant migrations (2)

° KeyspaceRoutingRules

o Introduced for multi-tenant migrations

o All keyspaces have the same tables

o Works very similar to normal RoutingRules and ShardRoutingRules
e When sharding the Vitess cluster on <field tenant id>

o option to specify -—-shards option to MoveTables Create

Online Schema Changes

Gl

// Online Schema Changes

ALTER TABLE issues

e Blocking
e Resource greedy
e Not auditable

e Not interruptible

// Online Schema Changes

ALTER TABLE Workarounds

e gh-ost, developed by GitHub

e pt-online-schema-change, part of Percona Toolkit

e External tools

e Requires a lot of operational knowledge of the environment

e Takes control out of the developer’s hands

// Online Schema Changes
Based on VReplication

mysgl> SET @@ddl strategy = 'online';
Query OK, 0 rows affected (0.00 sec)

mysqgl> ALTER TABLE tablel CHANGE id id bigint unsigned;

Fom +
| uuid |
Fom +
| 4d8240f2 9801 lled aocae c87£5403e983 |
Fom +

e Grab a coffeel

// Online Schema Changes
Based on VReplication

mysgl> SHOW vitess migrations LIKE '4d8246f2 9801 lled a6ae c87£5403e983'\G

R e e i b i e i i i i i i i i i i i i i i i i i e i 1 row R b e b b i i i i i i i i i i i i i i i i i i i e

migration uuid: 4d8246f2 9801 lled abae c87f5403e983
added timestamp: 2023-01-19 14:58:08
completed timestamp: 2023-01-19 14:58:18
migration status: complete
migration statement: alter table tablel change column id id bigint unsigned
strategy: online

1 row in set (0.00 sec)

// Online Schema Changes

But there i1s more...

e Migrations become fully reversible

e Because the VReplication stream could easily be reversed, the old table
IS kept up-to-date.

e Now a revert operation is as simple as

mysgl> REVERT vitess migration '4d8246f2 9801 lled abae c87£f5403e983';

e -
| uuid |
e -
| 20£5337f 9826 1led abae c87£5403e983 |
e -

1 row in set (0.04 sec)

// Online Schema Changes
Declarative migrations

e No need to write ALTER statements anymore, just resubmit the CREATE

TABLE statement and Vitess will figure out the difference and run the
migration...

mysgl> SET @@ddl strategy = 'online -declarative';
Query OK, 0 rows affected (0.00 sec)

mysgl> CREATE TABLE ‘tablel’ (
-> "id’ bigint unsigned NOT NULL,
-> "data’ wvarchar (512) DEFAULT NULL,
-> PRIMARY KEY ('id")
—>) ENGINE=InnoDB;

e it +
| uuid |
e it +
| c423f39% 982c 1lled aobae c87£5403e983 |
T ettt e L T e +

1 row in set (0.02 sec)

// Online Schema Changes

Conclusion

e Schema changes are being put back into the hands of the developers!
e Easy to run
e Easy to revert

e Due to the robustness of VReplication, it can even survive a primary
failover or other type of outage

Automatic failovers

// Automatic failovers

Orchestrator

Orchestrator is open-source software commonly used as a MySQL
Topology management tool. It’s purpose is to observe MySQL replication
topologies and potentially fix these topologies when failures are observed.

Core functionalities: Q orresratorore- o v [© 0 o
e Discover
e \isualize
e Monitor
e Refactor

// Automatic failovers

VTOrc

e \itess component based on Orchestrator
e Stateless, topology information is stored in the topology service
e Discovery is already taken care of by Vitess

e Refactoring will automatically update the topo

e Requirements
o At least one replica

o Optional: semi-sync replication

Questions?

Thank you!

Gl

