

Introduction to Vitess
sharding framework for MySQL

Enterprise Customer Engineer, PlanetScale

@mcrauwel

Matthias Crauwels

• Living in Ghent, Belgium
• Bachelor Computer Science

• ~25 years Linux user / admin

• ~15 years PHP developer

• ~10 years MySQL DBA

• 1st year at PlanetScale

• Currently Enterprise Customer Engineer

• Father of Leander

Who am I?
// Introduction

About PlanetScale
PlanetScale is a MySQL-compatible serverless database that brings you
scale, performance, and reliability — without sacrificing developer
experience.

With PlanetScale, you get the power of horizontal sharding, non-blocking
schema changes, and many more powerful database features without the
pain of implementing them.

About PlanetScale
PlanetScale is powered by Vitess, the open-source database technology
that was invented at YouTube in 2010 to solve the scaling issues they faced
with their massive MySQL database.

Vitess went on to become open source as a CNCF project and continues to
scale massive companies like Slack, GitHub, and more.

Vitess serves millions of QPS in production

Agenda

● Architecture

● MySQL Compatibility

● VReplication

● Online Schema Changes

● Automatic failovers

// Introduction

Architecture

What is Vitess?

● Cloud Native Database

● Massively Scalable

● Highly Available

● MySQL Compatible

// Architecture

Concepts

● Keyspace

● Shard

● Topology server

// Architecture

Vitess Architecture
// Architecture

MySQL Compatibility

Vitess provides an illusion

● A single database (server)

● MySQL 5.7 or MySQL 8.0

● A single, dedicated connection

// MySQL Compatibility

Vitess needs to deal with

● Database frameworks

● ORMs

● Legacy code

● Third Party Applications

// MySQL Compatibility

VReplication

Use cases

● Migration

○ Import data into Vitess

● (Re)sharding

○ Move data around

● Materialisation

○ Improve query performance

○ Materialise unsharded data on each shard

// VReplication

Import workflow

● Create an “external” keyspace with a vttablet pointing to an existing
MySQL server.

● Create a Vitess keyspace

● Use the MoveTables command to create a VReplication Workflow to move
data into Vitess

● Confirm that all data was migrated (VDiff)

● Switch read traffic to go to Vitess

● Switch write traffic to go to Vitess

● Full support for rollback in case of issues

// VReplication

Online Schema Changes

ALTER TABLE issues

● Blocking

● Resource greedy

● Not auditable

● Not interruptible

// Online Schema Changes

ALTER TABLE Workarounds

● gh-ost, developed by GitHub

● pt-online-schema-change, part of Percona Toolkit

● External tools

● Requires a lot of operational knowledge of the environment

● Takes control out of the developer’s hands

// Online Schema Changes

Based on VReplication

mysql> SET @@ddl_strategy = 'online';
Query OK, 0 rows affected (0.00 sec)

mysql> ALTER TABLE table1 CHANGE id id bigint unsigned;
+--------------------------------------+
| uuid |
+--------------------------------------+
| 4d8246f2_9801_11ed_a6ae_c87f5403e983 |
+--------------------------------------+
1 row in set (0.02 sec)

● Grab a coffee!

// Online Schema Changes

Based on VReplication

mysql> SHOW vitess_migrations LIKE '4d8246f2_9801_11ed_a6ae_c87f5403e983'\G

*************************** 1. row ***************************
...
 migration_uuid: 4d8246f2_9801_11ed_a6ae_c87f5403e983
 added_timestamp: 2023-01-19 14:58:08
completed_timestamp: 2023-01-19 14:58:18
 migration_status: complete
migration_statement: alter table table1 change column id id bigint unsigned
 strategy: online
...
1 row in set (0.00 sec)

// Online Schema Changes

But there is more…

● Migrations become fully reversible

● Because the VReplication stream could easily be reversed, the old table
is kept up-to-date.

● Now a revert operation is as simple as
mysql> REVERT vitess_migration '4d8246f2_9801_11ed_a6ae_c87f5403e983';
+--------------------------------------+
| uuid |
+--------------------------------------+
| 20f5337f_9826_11ed_a6ae_c87f5403e983 |
+--------------------------------------+
1 row in set (0.04 sec)

// Online Schema Changes

Declarative migrations

● No need to write ALTER statements anymore, just resubmit the CREATE
TABLE statement and Vitess will figure out the difference and run the
migration…

mysql> SET @@ddl_strategy = 'online -declarative';
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE TABLE `table1` (
 -> `id` bigint unsigned NOT NULL,
 -> `data` varchar(512) DEFAULT NULL,
 -> PRIMARY KEY (`id`)
 ->) ENGINE=InnoDB;
+--------------------------------------+
| uuid |
+--------------------------------------+
| c423f39b_982c_11ed_a6ae_c87f5403e983 |
+--------------------------------------+
1 row in set (0.02 sec)

// Online Schema Changes

Conclusion

● Schema changes are being put back into the hands of the developers!

● Easy to run

● Easy to revert

● Due to the robustness of VReplication, it can even survive a primary
failover or other type of outage

// Online Schema Changes

Automatic failovers

Orchestrator

Orchestrator is open-source software commonly used as a MySQL
Topology management tool. It’s purpose is to observe MySQL replication
topologies and potentially fix these topologies when failures are observed.

Core functionalities:
● Discover
● Visualize
● Monitor
● Refactor

// Automatic failovers

VTOrc

● Vitess component based on Orchestrator

● Stateless, topology information is stored in the topology service

● Discovery is already taken care of by Vitess

● Refactoring will automatically update the topo

● Requirements

○ At least one replica

○ Optional: semi-sync replication

// Automatic failovers

Questions?

Matthias, Crauwels
Enterprise Customer Engineer, PlanetScale

@mcrauwel
Thank you!

