
What’s our Vector, Victor?

March 7th, 2025

Shaun Thomas
Software Engineer, pgEdge

Taking the pain out of AI with pg_vectorize

2

Airplane!

3

● Distributed Postgres
● Active-Active clusters
● Cloud Services
● Platform Automation
● Ultra High Availability

www.pgedge.com

Who are pgEdge?

4

● Author
● Speaker
● Blogger
● Mentor
● Dev

shaun.thomas@
pgedge.com

Who am I?

What is AI?

5

Not This!

6

7

What AI Really is

The Lingua Franca

8

Large Language Model

9

LLM

Retrieval Augmented Generation

10

RAG

Word chunk

11

Token

• Reduce a word to
its base

• Include language
metadata

• Retain inter-token
relationships

• Treat as a monad

12

Root and Stem

• cat
• cataclysm
• catacomb
• catalog
• catalyst
• catapult
• catchup

• dog
• dogged
• doggone
• doggy
• doghouse
• dogma

Augmented Stemming Tokenize “cat” Tokenize “dog”

Big-ass array

13

Embedding

Big-ass array

14

Embedding

Vector to token coordinates

15

Embedding

16

Coordinates to Where?

Bits and Pieces

17

Your favorite database engine
https://www.postgresql.org

18

Postgres

Bestows vector abilities to Postgres
https://github.com/pgvector/pgvector

19

pgvector

• Vector similarity searches
• Multiple new vector types (single, half, binary, sparse)
• Vector distance operators (<->, <#>, <=>, <+>, <~>, <%>)
• New vector index types (HNSW, IVF-FLAT)

20

Added by pgvector

Makes Postgres an AI powerhouse
https://github.com/tembo-io/pg_vectorize

21

pg_vectorize

pg_vectorize is a combination of 3 extensions:

• pgvector (duh)
• pgmq - for queueing embedding jobs
• pg_cron - for those who’d rather wait

And its own functionality

22

Parts of pg_vectorize

What Does pg_vectorize Do?

23

24

Transform Individual Phrases

24

SELECT vectorize.encode(
 input => 'Is Postgres the best database engine?',
 model => 'sentence-transformers/all-MiniLM-L12-v2'
);

● Easily transform a prompt to search terms in compatible vectors
● Output is compatible with pgvector vector search

Create and Maintain Embeddings

25

SELECT vectorize.table(
 job_name => 'rt_article_embed',
 "table" => 'blog_article',
 primary_key => 'article_id',
 update_col => 'last_updated',
 columns => ARRAY['author', 'title', 'content'],
 transformer => 'sentence-transformers/all-MiniLM-L12-v2',
 schedule => 'realtime'
);

Embeddings are maintained by pg_cron job, or pgmq live updates

“Realtime” spawns embeddings via queue

This dramatically reduces write latency!

26

Important Latency Note!

Search Content Semantically

27

SELECT vectorize.search(
 job_name => 'rt_article_embed',
 query => 'Is Postgres the best database engine?',
 return_columns => ARRAY['author', 'title', 'content'],
 num_results => 5
);

Automatically uses the same transformer as existing embeddings

Interrogate an LLM

28

SELECT vectorize.generate(
 input => 'Is Postgres the best database?',
 model => 'ollama/llama3.1'
);

Good for quick one-off responses for various purposes

SELECT * FROM vectorize.search(
 job_name => 'rt_article_embed',
 query => 'Is Postgres the best database engine?',
 return_columns => ARRAY['author', 'title', 'content'],
 num_results => 5
);

Consider this like Full Text Search, but better

29

Natural Language Search

SELECT vectorize.init_rag(
 agent_name => 'rt_article_embed',
 table_name => 'blog_article',
 “column” => 'article',
 unique_record_id => 'article_id',
 transformer => 'sentence-transformers/all-MiniLM-L12-v2',
 schedule => 'realtime'
);

Realtime embeddings are queued to avoid write latency

30

Bootstrap a RAG Stack

SELECT vectorize.rag(
 agent_name => 'blog_chat',
 query => 'Is Postgres the best database?',
 chat_model => 'ollama/llama3.1'
) -> 'chat_response';

The result is a JSON object that includes context if we need it

31

Perform a RAG Request

Just supply your OpenAI token:

ALTER SYSTEM SET vectorize.openai_key TO '<your api key>';

32

Works with OpenAI

Search using Ollama or vLLM instead:

ALTER SYSTEM SET vectorize.openai_service_url
 TO 'https://api.myserver.com/v1';

Use a custom transformer service:

ALTER SYSTEM SET vectorize.embedding_service_url
 TO 'https://api.myserver.com/v1';

33

Or Roll Your Own

https://api.myserver.com/v1

How Does RAG Work?

34

35

Anatomy of a RAG App

Data Side

1. Gather content
2. Pass through a transformer
3. Store vector in database

36

How it Works

User Side

1. Asks a question
2. Pass through transformer
3. Match against stored vectors
4. Question + results sent to AI
5. Send answer to user

To build a RAG app, we need to:

1. Parse and load the content and metadata into Postgres
2. Generate the embeddings and save in Postgres
3. Transform user input into an embedding
4. Match results from user search vector
5. Build new prompt from results and user search
6. Send full instructions to model server
7. Return results to user

37

The Full Monty

Or if we’re using pg_vectorize:

1. Parse and load the content and metadata into Postgres
2. Call vectorize.init_rag(…)
3. Call vectorize.rag(…)

Which would you rather do?

38

From the Perspective of pg_vectorize

39

Better, Faster, Stronger

The AI model and transformer servers can be local

• Use anything API compatible with OpenAI or OLLaMa
• Now data never leaves your local network
• No latency to remote model servers
• No need to return source matches to the app layer

40

Edge Cases

Let’s Make a
RAG APP

41

CREATE TABLE blog_articles (
 article_id BIGINT PRIMARY KEY GENERATED ALWAYS AS IDENTITY,
 author TEXT,
 title TEXT,
 content TEXT,
 publish_date DATE,
 last_updated TIMESTAMPTZ NOT NULL DEFAULT now()
);

42

A Place for Blogs

CREATE TABLE blog_article_chunks (
 chunk_id BIGINT PRIMARY KEY GENERATED ALWAYS AS IDENTITY,
 article_id BIGINT NOT NULL REFERENCES blog_articles,
 chunk TEXT,
 last_updated TIMESTAMPTZ NOT NULL DEFAULT now()
);

● Embeddings are usually “fuzzy” (only 384 coordinates)
● We need chunks for sharper context

43

Chunky Style

SELECT vectorize.init_rag(
 agent_name => 'blog_chat',
 table_name => 'blog_article_chunks',
 "column" => 'chunk',
 unique_record_id => 'chunk_id',
 transformer => 'sentence-transformers/all-MiniLM-L12-v2',
 schedule => 'realtime'
);

Look familiar? Now we’re indexing chunks rather than full articles.

44

More than Meets the Eye

Here’s a closer look at a chunk splitter in Python:

from langchain_text_splitters import RecursiveCharacterTextSplitter

splitter = RecursiveCharacterTextSplitter(
 separators = ["\n\n", "\n", ' ', '.', '```'],
 chunk_size = 500,
 chunk_overlap = 20,
 length_function = len,
 is_separator_regex = False
)

def chunk_content(content):
 return splitter.split_text(content)

45

Slice and Dice

Let’s check our schema:

postgres=# \dt
 List of relations
 Schema | Name | Type | Owner
--------+---------------------+-------+----------
 public | blog_article_chunks | table | postgres
 public | blog_articles | table | postgres

46

Where are the Embeddings?

postgres=# set search_path to vectorize;
postgres=# \dt
 List of relations
 Schema | Name | Type | Owner
-----------+-----------------------+-------+----------
 vectorize | _embeddings_blog_chat | table | postgres
 vectorize | example_products | table | postgres
 vectorize | job | table | postgres
 vectorize | prompts | table | postgres

47

Where are the Embeddings?

postgres=# \d _embeddings_blog_chat
 Table "vectorize._embeddings_blog_chat"
 Column | Type | Collation | Nullable | Default
------------+--------------------------+-----------+----------+---------
 chunk_id | bigint | | not null |
 embeddings | public.vector(384) | | not null |
 updated_at | timestamp with time zone | | not null | now()

48

Another Brick in the Wall

On our blog_article_chunks table

Triggers:

 vectorize_insert_trigger_blog_chat AFTER INSERT ON
blog_article_chunks REFERENCING NEW TABLE AS new_table FOR EACH
STATEMENT EXECUTE FUNCTION vectorize.handle_update_blog_chat()

 vectorize_update_trigger_blog_chat AFTER UPDATE ON
blog_article_chunks REFERENCING NEW TABLE AS new_table FOR EACH
STATEMENT EXECUTE FUNCTION vectorize.handle_update_blog_chat()

49

Trigger me Timbers

This chunk calls a rust function:

PERFORM vectorize._handle_table_update(
 'blog_chat',
 record_id_array::TEXT[],
 inputs_array
);

50

What is handle_update_blog_chat ?

-[RECORD 1]-------+--
Schema | vectorize
Name | _handle_table_update
Result data type | void
Argument data types | job_name text, record_ids text[], inputs text[]
Type | func
Volatility | volatile
Parallel | unsafe
Owner | postgres
Security | invoker
Access privileges |
Language | c
Source code | _handle_table_update_wrapper
Description |

51

Starting to get Rusty

We see this fateful line:

let query = "select pgmq.send($1, $2::jsonb);";

52

Please Form an Orderly Queue

Oh… you know… stuff

-[RECORD 1]-------------------------------------
msg_id | 44
read_ct | 1
enqueued_at | 2025-02-28 20:49:34.212479+00
archived_at | 2025-02-28 20:49:42.824572+00
vt | 2025-02-28 20:52:42.761824+00
message | {... huge JSON blob ...}

53

What’s in the Queue?

[-0.02595623,0.04631714,-0.053539883,0.011895365,0.0758225,-0.04304593,-0.006637965,-0.08208234,-0.04918979,-0.020363959,-0.038359903,0.01744871,-0.057595164,0.034
587763,-0.020651337,0.002429941,0.0018788559,-0.018510725,-0.09920806,0.12411486,-0.09942987,0.038612444,0.057046242,-0.015014563,0.03681107,0.029042058,-0.0561162
35,-0.007918157,0.06834828,-0.027709357,-0.012434633,-0.0062096403,-0.015024162,-0.0882817,-0.010005957,0.0217961,0.020747224,0.00043326707,0.029898426,0.063303724
,-0.023971524,-0.035034273,0.12894247,0.03956573,0.04099617,-0.036992185,0.039790176,-0.038303692,0.03762054,-0.016138878,-0.026407361,0.010406044,0.031098412,-0.0
59915572,0.0296487,0.018585488,-0.0127668455,0.0698031,-0.023116358,-0.03830573,0.058555316,0.053015016,0.009442912,0.065988995,-0.025956836,0.0072427755,-0.035602
763,0.049767125,0.027460659,0.011989594,1.022185e-05,-0.04103233,-0.017008793,-0.026518255,-0.057895917,0.02913324,-0.007884655,-0.036250923,0.018677657,-0.0518168
77,0.036574055,-0.018310225,0.10684758,0.015361703,-0.0068149795,-0.002467204,0.045794293,-0.03188524,-0.014328101,-0.04377825,-0.02258047,-0.05837506,0.008181678,
-0.07910704,0.03463214,-0.020189477,-0.092740774,-0.0002254515,-0.00661493,0.1312322,0.02023139,0.016226936,0.050397724,0.0049572135,0.009400744,-0.045763697,-0.07
1638376,-0.014594109,-0.018446293,0.028820504,0.0023369463,0.053181294,0.058653817,-0.06454964,0.049355283,0.07178324,0.027783332,-0.067031115,-0.06841928,0.015850
065,-0.002914686,0.009294329,-0.078147724,-0.01781891,-0.07263269,0.017262291,-0.0061519933,0.014498569,0.07934687,-0.011039961,-0.014350844,0.009714252,0.07571004
,-0.059741423,-0.061780307,-0.07044488,0.0017138183,-0.03665142,0.06618329,-0.056741964,0.024425812,0.043776017,-0.05947509,0.02473815,-0.033279914,0.06721659,0.01
2232149,0.0015699323,0.007885537,0.00707865,0.013194744,-0.068191566,-0.12272909,0.06650073,-0.02412729,0.04940419,0.08976135,0.016346294,-0.042974483,0.0075128144
,0.13506782,0.013340274,0.013941901,-0.0135494545,0.019012375,-0.045056634,-0.024806282,-0.025400957,0.009210025,-0.085539885,-0.0014276546,-0.047662564,0.02840303
4,-0.031291023,0.00994239,0.013966853,0.029291267,-0.06537566,-0.0023040709,-0.022339806,0.05957562,0.0032288802,-0.026567612,0.054026626,0.07418133,-0.11601187,0.
14578743,0.06701949,0.089334145,0.013379732,0.039292034,-0.029553873,0.020182345,-0.027620139,0.033731233,0.029958928,0.021263465,0.0116131,0.024114138,0.036053922
,0.010862184,-0.11032744,0.029497253,0.03680072,0.015323135,-0.02569687,0.020646175,-0.00309678,0.075037666,-0.012467476,-0.012603479,0.05536957,0.06923356,0.04137
6483,-0.05493469,0.07284344,-0.0024210871,0.024228476,-0.054416776,0.09758099,0.015991757,-0.026029492,0.005204354,2.1359543e-32,0.02700274,-0.06537937,-0.05798246
7,-0.058108676,0.024990669,0.008049355,0.016007772,-0.019222062,0.055540632,0.014360761,0.02189043,-0.039927147,-0.06621141,-0.007778538,-0.032505617,-0.015146801,
0.030141199,0.047050603,-0.0278275,0.04865551,0.07719417,-0.048471287,-0.069588214,-0.050331596,0.041957315,0.12916774,0.10859817,0.009190485,-0.05403324,-0.085586
93,0.04856777,0.010237227,-0.09778996,0.032434497,-0.05686069,0.11311847,0.0040654135,-0.055423062,0.044098742,-0.08351652,-0.0066194735,0.0051483805,-0.013018369,
0.09141706,-0.011138346,0.03484014,-0.09798947,0.009890583,0.052184697,-0.016177202,-0.12128752,-0.05317396,-0.038664415,0.053813018,0.025762321,-0.010391627,-0.02
7447335,-0.09687913,-0.040417686,0.05761224,-0.0049005016,-0.03860952,-0.10431886,0.09482661,0.08394817,-0.05782826,-0.023384307,-0.033743203,0.01319146,0.02000948
4,-0.06339285,0.008339009,-0.10972377,-0.09203553,0.02314593,-0.026981864,-0.0098597845,-0.00695105,-0.04888554,-0.054383095,-0.0033409367,-0.016765589,-0.02066507
2,0.03518574,-0.0975508,0.03954543,-0.027971495,0.022485066,-0.03068828,0.044939965,0.014050996,-0.02814454,-0.056048892,-0.027148627,-0.022608032,7.592085e-32,0.0
24655852,-0.03308234,-0.119617596,-0.020011967,0.08908686,-0.10233242,0.041305285,-0.019912839,0.008432649,0.08246976,-0.007695544,-0.013220983,0.04306117,-0.06137
5756,0.10317889,-0.0032164725,-0.06101632,-0.054768626,0.06190977,0.020685453,0.091767095,-0.030094603,-0.010625265,0.011956352,-0.001202916,0.081404224,0.00017668
601,0.053858735,0.11105762,0.03965099,0.055190314,-0.0008298795,-0.03585047,0.02358887,-0.07300523,-0.09976991,0.04071222,-0.017766878,0.083444,-0.014780061,0.1179
988,-0.047808193,0.027711963,0.010073332,0.06527614,-0.081142455,-0.04021762,0.07025154,0.06898177,-0.022367012,-0.06016291,0.020527564,-0.0048388843,-0.015055914,
0.06347836,-0.028675102,-0.04353604,0.0039767306,0.0139750345,-0.10406179,0.03652024,0.05376024,-0.07579619,0.003702582]

54

What Does an Embedding Look Like?

55

Remember This?

SELECT vectorize.rag(
 agent_name => 'blog_chat',
 query => 'Is Postgres the best database?',
 chat_model => 'ollama/llama3.1'
) -> 'chat_response';

"Four times since 2017, it has won the DB-Engines \"DBMS of the Year\"
award."

56

A Pleasing Result

SELECT vectorize.generate(
 input => 'Is Postgres the best database?',
 model => 'ollama/llama3.1'
);

Postgres (also known as PostgreSQL) is an excellent database engine,
but whether it’s the “best” depends on your specific needs.

57

What Happens Without RAG?

Advanced
Techniques

58

SELECT
 (jsonb_array_elements(chat_results->'context'))->'content' as chunk
FROM
 vectorize.rag(
 agent_name => 'blog_chat',
 query => 'How do window functions work?',
 chat_model => 'ollama/llama3.1'
) -> 'chat_response';

59

How Do Window Functions Work?

"The more advanced use cases for window functions are a topic for
another day. Consider this a very high-level introduction to how they
work and their inherent limitations instead of a comprehensive guide.
There's a lot of material here that deserves closer inspection, so
there's no need to rush. Either way, don't let window functions
confuse you more than necessary. Like any independent agent, you just
need to know what they're doing behind the scenes."

"with window functions." <- I need to work on my chunker!

60

Is This Really The Best Augmentation?

You are a front-end to a retrieval augmented generation search. Rewrite this
user prompt into an appropriate series of semantic search terms to match
against a corpus of reference documents related to PostgreSQL which has
been indexed with a simple transformer assuming low token context
granularity and small extract chunks less than 1024 tokens. Do not try to
answer the question yourself, produce only the appropriate search revision,
and do not add introductory text.

Prompt: How do window functions work?

61

What Does the User Really Want?

postgres window function definition
window function syntax postgres
row over partition by clause
rows between unbounded preceding and current row
window ordering postgres
window frame specification

62

Perhaps a Better Prompt?

"Again, we can learn a few different things from these results. First
is that the window results are restricted to the partition we
declared. We set the partition to limit sums, ranks, and other window
functions to the domain of the location. Postgres will apply window
aggregates specifically to each location as it appears in the query
output."

"Separate windows, separate effects. Of course, we may not actually
want that to happen. If we end up using the same window over and
over again, it doesn't make sense to declare it for each column.
Thankfully Postgres has a shorthand for that:"

63

How Do Window Functions Work?

If you can write queries

You can build AI apps with Postgres

64

Conclusion!

Questions?

65

