
Testing your
PostgreSQL backups

(a practical guide)
Nick Meyer

Academia.edu
SCaLE 21x

David Wakely, CC BY-SA 2.5 <https://creativecommons.org/licenses/by-sa/2.5>, via Wikimedia Commons

“We just don’t build things like we used to”

Carole Raddato from Frankfurt, Germany, CC BY-SA 2.0
<https://creativecommons.org/licenses/by-sa/2.0>, via Wikimedia Commons

Survivorship bias

?
?

Academia.edu

● https://www.academia.edu/about
● Our goals

1. Ensure that every paper ever written is:
✓ on the internet
✓ available for free

2. Accelerate the world’s research

● Some stats
1. 47 million papers uploaded
2. 20 million paper recommendations per day

https://www.academia.edu/about

Academia.edu - postgres + engineering stats

● Data: ~100TB across ~15 “clusters”
○ Entirely on AWS
○ Some Aurora, some self-managed (EC2)

● HA setup + high read workloads
○ Tons of read-only replicas

● 50 (+/-) engineers

A bit about me (Nick Meyer)

● https://github.com/aristocrates
● Team lead of Platform Engineering
● Areas of focus

○ Developer experience
○ Interface: application and infra
○ Data layer
○ Postgres

https://github.com/aristocrates

Our old postgres backup solution

● Ruby script
● A great way to learn about backups…
● … but a bad idea otherwise

“A practical guide”

Backup testing

No time for this

“Experience is the best teacher”

😅

💡 The experience of others: “cost-effective teacher”

Roadmap

1. Why do we have backups: What could go wrong?
2. How to test backups
3. Measurable goals
4. Monitoring: how backups work
5. Monitoring: how to monitor

What could go wrong?

1/5

What could go wrong: Several nodes

● What if all nodes go down?
● Some nodes go down: all good?

postgres

postgrespostgres

us-east-1

us-west-2

What could go wrong: Several nodes

● What if all nodes go down?
● Some nodes go down: all good?
● DELETE FROM users;
● DROP TABLE users;

postgres

postgrespostgres

us-east-1

us-west-2

What could go wrong: Several nodes and backups

postgres

postgrespostgres

us-east-1

us-west-2

BackupsS3 bucket

What could go wrong: Several nodes and backups

postgres

postgrespostgres

us-east-1

us-west-2

S3 bucket

What now?

We do not care about
backups

We care about restores

What do we want with backups?

● Allow us to “restore” the data layer to how it was
○ Even if everything running postgres disappears
○ Restore what?

■ Everything that was ever written*
● *(or as much as possible)

■ The recent past (e.g. the past 30-60 days)

● Restores need to be fast enough to be useful
○ Need to replace that node within hours, not days

Schrödinger’s Backup:
“The condition of any backup is

unknown until a restore is
attempted.”

—Spotlight on IT series #212,
Spiceworks 2013

https://community.spiceworks.com/t/schrodinger-s-backup-when-good-documentation-goes-bad/225024

Backup failures that I have witnessed in prod

1. Backups just weren’t happening

🤖😴

Backup failures that I have witnessed in prod

1. Backups just weren’t happening
2. “Successful” backups in s3 that are just an empty file

👍✅ 🗑 👀‼

Backup failures that I have witnessed in prod

1. Backups just weren’t happening
2. “Successful” backups in s3 that are just an empty file
3. 😱 Looked good, but postgres never finished starting…

🤖❄

What is out of scope for today?

● Ransomware
● Data corruption
● Insider threats

Foundation: backups and restores

Thorough data
security posture

How do we test restores?

2/5

“Swiss Cheese” model

User:BenAveling, CC BY-SA 4.0 <https://creativecommons.org/licenses/by-sa/4.0>, via Wikimedia Commons

🚨Our strategy

Business need: lots of read capacity

1. Every time you need a new replica, use your backups

➢ When backups break:
✓ You will notice
✓ Fixing will be a priority

(new)
postgres

(new)
postgres

1

postgres
replication

restore

2

🚨Our strategy

Business need: prod-realistic data when testing

2. Bring up a copy of prod in a staging environment

➢ Confirm that you can restore from nothing

🚨Our strategy

1. Every time you need a new replica, use your backups
2. When you need to test, bring up a copy in staging

Everything else is an optimization*

*(optimizations are important too)

How often?

0 -> once

once -> yearly

yearly -> monthly

(etc)

AWS Aurora/RDS

● “One size does not fit all”
● We trust Amazon RDS to know what they’re doing*

○ *provided configuration is correct

What goals should we set?

3/5

RPO and RTO

● How much data loss?

➢ Recovery Point Objective (RPO)

● How long until we’re back?

➢ Recovery Time Objective (RTO)

Recovery Point Objective (RPO)
RPO: 4 hours of data
loss “acceptable”

Sunday Monday

02:0000:0022:0020:0018:00 06:0004:00 10:0008:00

Everything is ok… Still ok… The Future

Current timeLast backup

Recovery Point Objective (RPO)

Sunday

02:0000:0022:0020:0018:00 06:0004:00 10:0008:00

Everything was ok Data loss Outage Now ok (but lost some data)

DisasterLast backup

Monday

Recovery Point Objective (RPO)

Sunday

02:0000:0022:0020:0018:00 06:0004:00 10:0008:00

Everything was ok Data loss Outage Now ok (but lost some data)

DisasterLast backup

Monday

Recovery Time Objective (RTO)

Sunday

02:0000:0022:0020:0018:00 06:0004:00 10:0008:00

Everything was ok Data loss Outage Now ok (but lost some data)

Disaster

Recovery time

Last backup

Monday

Point-In-Time Recovery (PITR)

Monday

TodayBackup

SundaySaturdayFriday Tuesday

Backup

Which points in time can
we restore?

● For a 15 TB DB @ Academia:

Some of our specific numbers

Objective Target

Recovery Point Everything*

Recovery Time 6 hours**

Point-in-time 1 month

* Allowance for several seconds to several minutes
** Multiply by 3 in full disaster (restore from nothing)

How do backups work?

4/5

🚨WARNING: Do not roll your own backup system

● It is very tricky to do it all yourself
● We will not go in depth enough to replicate:

○ pgBackRest
○ Barman
○ wal-g
○ etc

💡 Goal: Know how to test and monitor restores

Physical vs Logical

$PGDATA
└── base

└── 16388
 └── 1247

0100100001101001…

pg_dump

SELECT … FROM users WHERE …
INSERT INTO users VALUES …

logical

physical Write-ahead log

Write-Ahead Log (WAL)

INSERT INTO users(id, name)
VALUES (1, “Nick”);

Write-Ahead Log (WAL)

shared memory
(shared_buffers)

To: client

OK, I committed
the transaction

1

WAL file2

3

Write-Ahead Log (WAL) -> “Checkpointing”

postgres
$PGDATA
└── base

Last
checkpoint

Current
time

WAL

Write-Ahead Log (WAL)

shared memory
(shared_buffers)

To: client

OK, I committed
the transaction

1

WAL file2

3

4 WAL file

archive_command

Recovery Point Objective (RPO) with the WAL

02:0000:0022:0020:0018:00 06:0004:00 10:0008:00

Everything was ok WAL records Outage Now ok (minimal/no data loss)

Disaster

Recovery time

Better recovery point

Last backup

Sunday Monday

WAL

Physical vs logical

● Backups are faster, more frequent
● WAL => better RPO, continuous PITR
● Restores are faster => better RTO

“Super physical”

logical

physical

“super
physical”

postgres

ZFS

LVM

EBS
snapshots

Filesystem /
block device
snapshots

Physical vs “super physical”

● “Super physical”: can use with e.g. MySql too
● Physical: Less fragile

○ CREATE TABLESPACE …
● Better postgres tooling for physical

Monitoring

5/5

Good monitoring

Loud when it needs to be

🚨: 📣🔊

Great monitoring

Quiet the rest of the time

✅: 🤫😴

How to notice when restores are failing?

● Alerts?
● Dashboards?

Slack bot

Slack bot

~10 minutes

Slack bot (a prod example)

~6 hours

Physical restore steps

(new)
postgres

(new)
postgres

(new)
postgres

postgres

3
$PGDATA
└── base

WAL21

Disk usage

New setup

Old nodes

Replication delay graph

● Look for the “catch up” slopes

The search for leading indicators

● Restores are what we care about
● Broken restores = lagging indicator of broken backups
● Are there any leading indicators to monitor?

pgbackrest info command: pipe to head

postgres@host $ pgbackrest info | head
stanza: news

status: ok
cipher: [value]

[...]

��

pgbackrest info command: pipe to tail

postgres@host $ pgbackrest info | tail

[...]

 full backup: 20240309-181002F

 timestamp start/stop: 2024-03-09 18:10:02 /
2024-03-09 18:10:45

 wal start/stop: 00000002000003D1000000BB /
00000002000003D1000000BB

 database size: 2.9GB, database backup size: 2.9GB

 repo1: backup set size: 696.8MB, backup size: 696.8MB

Check S3: is anything there?

✅

WAL archiving stats: throughput, failures

WAL archiving stats: throughput, failures

WAL archiving stats: throughput, failures

Why is this non-zero?
archive-async is complicated…

Recap

6/5

Summary

● Every time you need a replica, use your backups
● Periodically test a cold-restore in QA/staging
● Visualize the restore process
● Make sure your monitoring pulls its weight

Acknowledgements

● Academia.edu
● My team
● Michael, Founder of pgMustard

Summary

● Every time you need a replica, use your backups
● Periodically test a cold-restore in QA/staging
● Visualize the restore process
● Make sure your monitoring pulls its weight

Questions?

https://github.com/aristocrates

https://github.com/aristocrates

Appendix

7/5

(There’s definitely no time for this, but if you’re
reading this after the conference, enjoy!)

Sidenote: streaming replication

● This talk assumes some familiarity with:
○ Streaming replication in postgres

■ “Binary compatibility”
■ Read-only replicas, HA replicas

○ The Write Ahead Log (WAL)
■ (at a high level)

● Some resources:
○ pgBackRest User Guide
○ Dude, where's my byte? | SCaLE 17x

■ (recording, youtube)

postgres

postgres

$PGDATA
└── base

└── 16388
 └── 1247

0100100001101001…

https://pgbackrest.org/user-guide.html#concept
https://www.socallinuxexpo.org/scale/17x/presentations/dude-wheres-my-byte
https://www.youtube.com/watch?v=ciUSdnWRSrk&t=19010s

“Replication heartbeats”

8/5

replication_heartbeats

● Sometimes the built in Datadog metric has issues
○ (Not always recognized until the first time a replica catches up)

● So we have a secondary system to fill in the gaps

replication_heartbeats

CREATE TABLE public.replication_heartbeats (

 created_at TIMESTAMP WITHOUT TIME ZONE PRIMARY KEY DEFAULT now()

);

● Cron job to insert the current time
● Metric: diff against replica system time
● Sloppiness aside…

○ time zones
○ NTP point of failure

● … it works pretty well in practice

replication_heartbeats

replication_heartbeats

Costs

9/5

Amazon EC2 + pgBackRest + Amazon S3

● We have different business divisions
○ Each with own data $ budgets

● Our tagging scheme:
○ postgres_cluster
○ business_area
○ function (e.g. paper_recommendations)
○ cost_owner (e.g. a team)

What costs money in a backup system? (AWS and similar)

● Storage

● Network (sometimes)

● Other

Where are the costs?

postgres

postgrespostgres

us-east-1

us-west-2

BackupsS3 bucket(s)

S3 replication

Where are the costs?

postgres

postgrespostgres

us-east-1

us-west-2

BackupsS3 bucket(s)

S3 replication

storage: $

storage: $

Where are the costs?

postgres

postgrespostgres

us-east-1

us-west-2

BackupsS3 bucket(s)

S3 replication

X AZ? $
$

X region? $

($)

storage: $

storage: $

Where are the costs?

postgres

postgrespostgres

us-east-1

us-west-2

BackupsS3 bucket(s)

S3 replication

X AZ? $
$

X region? $

($)

storage: $

storage: $ IA or glacier?
Reading = $

pgBackRest: info command

stanza: news

status: ok

cipher: [value]

db (current)

 wal archive min/max (15): 000000020000036F00000050/00000002000003C800000026

 full backup: 20240203-181003F

 timestamp start/stop: 2024-02-03 18:10:03 / 2024-02-03 18:10:48

 wal start/stop: 000000020000036F00000050 / 000000020000036F00000050

 database size: 2.9GB, database backup size: 2.9GB

 repo1: backup set size: 696.8MB, backup size: 696.8MB

S3: calculate storage used

S3: calculate storage used

