
Storing JSON in
Relational
Database Best
Practices
Dave Stokes
@Stoker
David.Stokes@percona.com

©2023 Percona | Confidential | Internal use only

Description from schedule

Relational databases = strict data types and stored schema.

JSON = free form but no data rigor.

But what if you could reliably use JSON in your relational database to get performance, the
processing power of Structured Query Language (SQL), and retain the flexibility JSON is
known for?

 This talk will cover the best practices for using JSON in your relational database, how to
temporarily transform unstructured JSON data into structured data with JSON_TABLE() or
permanently with generated columns.

And how do you ensure that the JSON data has the proper format or is required before entry
to the database.

2

© 2023 Percona

Technology Evangelist at Percona
Long time open source advocate
Author

About me

3
@Stoker David.Stokes@Percona.com

© 2023 Percona

Differences - SQL versus NoSQL

4

©2023 Percona | Confidential | Internal use only

1. Normalized data - Database normalization is the
process of structuring a relational database in
accordance with a series of so-called normal
forms in order to reduce data redundancy and
improve data integrity.

2. Present the data to the user as relations with
logical connection between different tables.

3. Provide relational operators to manipulate the
data in tabular form.

4. Strict Data Types enforce ‘rigor’ on data.

5. Data decisions upfront.

Traditional
Relational
Databases

5

©2023 Percona | Confidential | Internal use only

NoSQL
JSON
Databases

1. Freeform & Flexible - data stored in key/value pairs.

2. No rigor on data.

3. Many different formats in same schema.

4. Data decisions on output.

6

©2023 Percona | Confidential | Internal use only

Quiz Time! (MySQL)

SQL >CREATE TABLE q1 (question1 INT, question2 CHAR(5));
SQL >insert into q1 values (1,'Southern California Linux Expo 20x');
ERROR: 1406: Data too long for column 'question2' at row 1
SQL > insert into q1 values ('1oo','SCaLE');
ERROR: 1265: Data truncated for column 'question1' at row 1

7

What is in table q1?

SQL > select * from q1;
Empty set (0.0009 sec)

©2023 Percona | Confidential | Internal use only

test=# create table q1 (question1 int, question2 char(5));
CREATE TABLE
test=# insert into q1 (question1, question2) values ('5','Southern
California Linux Expo');
ERROR: value too long for type character(5)
test=# insert into q1 (question1, question2) values ('5','SCaLE');
INSERT 0 1

Quiz 1 (PostgreSQL)

8

What is in table q1?

test=# select * from q1;
 question1 | question2
-----------+-----------
 5 | SCaLE
(1 row)

©2023 Percona | Confidential | Internal use only

~ 10 years
ago

NoSQL vendors
claimed JSON
solved many
problems with
Structured Query
Language (SQL)!

Then they
announced they
were going to
support relational
features like
transactions.

Somewhat
succeeded.9

Relational Databases
Added JSON support

So, What is JSON?

©2023 Percona | Confidential | Internal use only

JSON (JavaScript Object Notation, pronounced /ˈdʒeɪsən/;
also /ˈdʒeɪˌsɒn/) is an open standard file format and data
interchange format that uses human-readable text to store and
transmit data objects consisting of attribute–value pairs and
arrays (or other serializable values). It is a common data
format with diverse uses in electronic data interchange,
including that of web applications with servers.

JavaScript Object Notation -
https://en.wikipedia.org/wiki/JSON

11

https://en.wikipedia.org/wiki/Help:IPA/English
https://en.wikipedia.org/wiki/Help:IPA/English
https://en.wikipedia.org/wiki/Open_standard
https://en.wikipedia.org/wiki/File_format
https://en.wikipedia.org/wiki/Electronic_data_interchange
https://en.wikipedia.org/wiki/Electronic_data_interchange
https://en.wikipedia.org/wiki/Human-readable_medium
https://en.wikipedia.org/wiki/Attribute%E2%80%93value_pair
https://en.wikipedia.org/wiki/Array_data_type
https://en.wikipedia.org/wiki/Serialization
https://en.wikipedia.org/wiki/Electronic_data_interchange
https://en.wikipedia.org/wiki/Web_application
https://en.wikipedia.org/wiki/Server_(computing)

©2023 Percona | Confidential | Internal use only

{
 “id”: 12345,
 “name”: “A. Programmer”,
 “age”: 21,
 “languages”: [“PHP”,”GO”]
}

The difference between how Developers and
DBAs view data

12

CREATE TABLE staff (
id INTEGER AUTO_INCREMENT,

 name CHAR(100) NOT NULL,
 department INT UNSIGNED NOT NULL,
 languages CHAR(255))
;

Relational Model

©2023 Percona | Confidential | Internal use only

Dr. Edgar F.
Codd

14

©2023 Percona | Confidential | Internal use only

Structured Query Language

 Only Programming language from the 1970s still heavily used

 It introduced the concept of accessing many records with one single
command

 Data divvied up into logical groupings - customer, product, order, etc.

 Originally designed to minimize data duplication
(disk drives were slow and expen$ive in 1970s/80s)

 particularly useful in handling structured data, i.e. data incorporating
relations among entities and variables

15

AVOID!

A Word About ORMs

©2023 Percona | Confidential | Internal use only

 Extra layer of complexity

 May require multiple database round-trips to manipulate a single app-tier object

 Do not take full advantage of the capabilities of the database engine

 Do not manage concurrency control very well

 Extremely poor at batch or bulk operations that must insert or modify many app-tier
objects. (think in rows not data sets)

 Application-tier ORM frameworks can introduce the possibility of divergent semantics
across modules and microservices unless all of them share exactly the same mapping
information.

Object Relational Mapper introduce significant
overheads:

17

AVOID!

©2023 Percona | Confidential | Internal use only

So why
didn’t JSON
Document
Databases
Replace
Relational
Systems?

18

©2023 Percona | Confidential | Internal use only

QUIZ 2 (PostgreSQL)

test=# create table q2 (foo JSONB);
CREATE TABLE
test=# insert into q2 values ('{ "A" : 1, "A": "a", "A": [1,2]}');
INSERT 0 1

19

test=# select * from q2;
 foo

 {"A": [1, 2]}
(1 row)

What actually makes it into the database?

©2023 Percona | Confidential | Internal use only

QUIZ 2 (MySQL)

SQL > create table q2 (foo JSON);
Query OK, 0 rows affected (0.0096 sec)
SQL > insert into q2 values ('{ "A" : 1, "A": "a", "A": [1,2]}');
Query OK, 1 row affected (0.0080 sec)

20

 SQL > select * from q2;
+---------------+
| foo |
+---------------+
| {"A": [1, 2]} |
+---------------+
1 row in set (0.0005 sec)

Does MySQL do something different?

©2023 Percona | Confidential | Internal use only

UTF8MB4!
Do not have to change
tables to add new field -
DDL operations can be
expensive with a RDMS
Documents not rows
Data too easily
duplicated, gets
outdated
Many-to-many
relationships are very
hard to manage
Nested Objects
May not meet systemic
data usage needs
Consistency-ish.

JSON is
free form

21

No rigor applied to data :
 email
 eMail
 e-mail
 electronicMail
 electonicMail

Easy to abandon old data

Agile style practices are
not optimized for
database operations

What is the biggest
priority - development
ease or using data?

Two Different Approaches to
JSON in a Relational Database

©2023 Percona | Confidential | Internal use only

MySQL added a JSON datatype with MySQL 5.7 - 2015

 Data stored in a binary blob
 Sorted by key
 ~1gb payload

Postgresql added JSON support in 9.2 - 2012

 1gb payload

Postgresql added JSONB in 9.4 - 2014

 This is not MongoDB’s BSON (16mb maximum document size)
 255mb payload

MySQL & PostgreSQL

23

©2023 Percona | Confidential | Internal use only 24

Confession:

You could store a JSON document in a
database BEFORE there was a JSON data

➔ Document was stored in a TEXT field

➔ To search you use REGEX

➔ Hard to extract just one or a few components of the string

➔ Expensive to read, process and rewrite the entire revised
string

©2023 Percona | Confidential | Internal use only

CREATE TABLE ato (id INT UNSIGNED AUTO_INCREMENT PRIMARY KEY, data JSON);

INSERT INTO ato (data) VALUES ('{"Name": "Dave", "Answer": 42}');

MySQL JSON Example

25

 SELECT id, data FROM ato\G
*************************** 1. row ***************************
 id: 1
data: {"Name": "Dave", "Answer": 42}
1 row in set (0.0012 sec)

©2023 Percona | Confidential | Internal use only

test=# CREATE TABLE ato (id SERIAL NOT NULL PRIMARY KEY, data JSON);
CREATE TABLE
test=# INSERT INTO ato (data) VALUES ('{ "Name": "Dave", "Answer": 42}');
INSERT 0 1
test=# SELECT id, data FROM ato;
 id | data
----+---------------------------------
 1 | { "Name": "Dave", "Answer": 42}
(1 row)

PostgreSQL JSON Example

26

©2023 Percona | Confidential | Internal use only

test=# CREATE TABLE atob (id SERIAL NOT NULL PRIMARY KEY, data JSONB);
CREATE TABLE
test=# INSERT INTO atob (data) VALUES ('{ "Name": "Dave", "Answer": 42}');
INSERT 0 1
test=# SELECT id, data FROM atob;
 id | data
----+--------------------------------
 1 | {"Name": "Dave", "Answer": 42}
(1 row)

PostgreSQL JSONB

27

©2023 Percona | Confidential | Internal use only

JSON data is stored as an exact copy of the JSON input
text
JSONB stores data in a decomposed binary form; that
is, not as an ASCII/UTF-8 string, but as binary code.
(kinda like what MYSQL does)

 more efficiency,
 significantly faster to process,
 supports indexing (which can be a significant

advantage, as we'll see later),

Why have
JSONB??

28

©2023 Percona | Confidential | Internal use only

SELECT data->>'$.Answer' FROM ato\G
*************************** 1. row ***************************
data->>'$.Answer': 42
1 row in set (0.0008 sec)

MySQL

29

©2023 Percona | Confidential | Internal use only

test=# SELECT data -> 'Answer' FROM ato;
 ?column?

 42
(1 row)

test=# SELECT data -> 'Answer' FROM atob;
 ?column?

 42

PG

30

©2023 Percona | Confidential | Internal use only

SELECT data->'$.Name' FROM ato;
+----------------+
| data->'$.Name' |
+----------------+
| "Dave" |
+----------------+
1 row in set (0.0010 sec)

SELECT data->>'$.Name' FROM ato;
+-----------------+
| data->>'$.Name' |
+-----------------+

| Dave | → strips the “‘s
+-----------------+
1 row in set (0.0010 sec)

MySQL

31

©2023 Percona | Confidential | Internal use only

test=# SELECT data -> 'Name' FROM ato;
 ?column?

 "Dave"
(1 row)

test=# SELECT data ->> 'Name' FROM ato;
 ?column?

 Dave
(1 row)

PG

32

Same thing for ‘B’

JSON Functions

©2023 Percona | Confidential | Internal use only

PostgreSQL

These functions make handling of JSON data
very easy and are very robust

34

Path expressions XPath
based

Lots of operators

Regex filters

Just different enough from
MySQL to make you RTFM

Path expressions XPath
based

Lots of operators

Just different enough from
PG to make your RTFM

MySQL

©2023 Percona | Confidential | Internal use only

MySQL’s JSON Functions

35

Name Description
-> Return value from JSON column after evaluating path; equivalent to JSON_EXTRACT().
->> Return value from JSON column after evaluating path and unquoting the result; equivalent to JSON_UNQUOTE(JSON_EXTRACT()).

JSON_ARRAY() Create JSON array
JSON_ARRAY_APPEND() Append data to JSON document
JSON_ARRAY_INSERT() Insert into JSON array
JSON_CONTAINS() Whether JSON document contains specific object at path
JSON_CONTAINS_PATH() Whether JSON document contains any data at path
JSON_DEPTH() Maximum depth of JSON document
JSON_EXTRACT() Return data from JSON document
JSON_INSERT() Insert data into JSON document
JSON_KEYS() Array of keys from JSON document
JSON_LENGTH() Number of elements in JSON document
JSON_MERGE() Merge JSON documents, preserving duplicate keys. Deprecated synonym for JSON_MERGE_PRESERVE()
JSON_MERGE_PATCH() Merge JSON documents, replacing values of duplicate keys
JSON_MERGE_PRESERVE() Merge JSON documents, preserving duplicate keys
JSON_OBJECT() Create JSON object
JSON_OVERLAPS() Compares two JSON documents, returns TRUE (1) if these have any key-value pairs or array elements in common, otherwise FALSE (0)

JSON_PRETTY() Print a JSON document in human-readable format
JSON_QUOTE() Quote JSON document
JSON_REMOVE() Remove data from JSON document
JSON_REPLACE() Replace values in JSON document
JSON_SCHEMA_VALID() Validate JSON document against JSON schema; returns TRUE/1 if document validates against schema, or FALSE/0 if it does not
JSON_SCHEMA_VALIDATION_REPORT() Validate JSON document against JSON schema; returns report in JSON format on outcome on validation
including success or failure and reasons for failure
JSON_SEARCH() Path to value within JSON document
JSON_SET() Insert data into JSON document
JSON_STORAGE_FREE() Freed space within binary representation of JSON column value following partial update
JSON_STORAGE_SIZE() Space used for storage of binary representation of a JSON document
JSON_TABLE() Return data from a JSON expression as a relational table
JSON_TYPE() Type of JSON value
JSON_UNQUOTE() Unquote JSON value
JSON_VALID() Whether JSON value is valid
JSON_VALUE() Extract value from JSON document at location pointed to by path provided; return this value as VARCHAR(512) or specified type

8.0.21
MEMBER OF() Returns true (1) if first operand matches any element of JSON array passed as second operand, otherwise returns false (0) 8.0.17

MySQL supports two aggregate JSON functions JSON_ARRAYAGG() and JSON_OBJECTAGG()

PG Has More!!

©2023 Percona | Confidential | Internal use only

test=# select data -> 'Name'
from atob;
 ?column?

 "Dave"
(1 row)

test=# explain select data ->
'Name' from atob;
 QUERY PLAN

-
 Seq Scan on atob
(cost=0.00..25.88 rows=1270
width=32)
(1 row)

Indexing
JSONB

36

test=# CREATE INDEX
data_idx ON atob USING GIN
(data);
CREATE INDEX
test=# explain select data ->
'Name' from atob;
 QUERY PLAN

 Seq Scan on atob
(cost=0.00..1.01 rows=1
width=32)
(1 row)

©2023 Percona | Confidential | Internal use only

MySQL - Generated Column Extract Data to
be Indexed

ALTER TABLE ato ADD COLUMN h CHAR(25) GENERATED ALWAYS as (data->"$.Name");

CREATE INDEX h_index on ato(h);
Query OK, 0 rows affected (0.0324 sec)

Records: 0 Duplicates: 0 Warnings: 0
explain format=tree select data->>"$.Name" FROM ato WHERE h = 'Dave'\G
*************************** 1. row ***************************
EXPLAIN: -> Filter: (ato.h = 'Dave') (cost=0.35 rows=1)
 -> Index lookup on ato using h_index (h='Dave') (cost=0.35 rows=1)

1 row in set (0.0011 sec)

37

©2023 Percona | Confidential | Internal use only

CREATE INDEX idx_appmaps_name
ON appmaps USING BTREE

((data->'metadata'->>'name'));

Need to create an index on PG JSONB data??

38

©2023 Percona | Confidential | Internal use only

mysql> CREATE TABLE s (id INT UNSIGNED
AUTO_INCREMENT PRIMARY KEY,
 -> name CHAR(20) NOT NULL,
 -> j JSON,
 -> INDEX nbrs((CAST(j->'$.nbr' AS UNSIGNED
ARRAY)))
 ->);

mysql> SELECT * FROM s;
+----+-------+---------------------+
| id | name | j |
+----+-------+---------------------+
1	Moe	{"nbr": [1, 7, 45]}
2	Larry	{"nbr": [2, 7, 55]}
3	Curly	{"nbr": [5, 8, 45]}
4	Shemp	{"nbr": [3, 6, 51]}
+----+-------+---------------------+

Multi-Valued Indexes - Great for Arrays

39

Previously you were
limited to a 1:1
index:row limit!

©2023 Percona | Confidential | Internal use only

mysql> SELECT * FROM s WHERE 7 MEMBER OF (j->"$.nbr");
+----+-------+---------------------+
| id | name | j |
+----+-------+---------------------+
| 1 | Moe | {"nbr": [1, 7, 45]} |
| 2 | Larry | {"nbr": [2, 7, 55]} |
+----+-------+--------------------

MEMBER OF(), JSON_CONTAINS() & JSON_OVERLAP()

Using Multi-value Indexed Field

40

©2023 Percona | Confidential | Internal use only

 B-Tree - General
 GIN - Only works on top level JSON keys
 Hash - Equalities only
 GIN - Trigrams
 GIN - Array

PostgreSQL Has Many Types of Indexes

41

©2023 Percona | Confidential | Internal use only

mysql> select country_name, IndyYear from countryinfo,
json_table(doc,"$" columns (country_name char(20) path "$.Name",
 IndyYear int path "$.IndepYear")) as stuff
where IndyYear > 1992;
+----------------+----------+
| country_name | IndyYear |
+----------------+----------+
Czech Republic	1993
Eritrea	1993
Palau	1994
Slovakia	1993
+----------------+----------+
4 rows in set, 67 warnings (0.00 sec)

JSON Table - Unstructured data temporarily
structured

42

Now the JSON data
can be process with
SQL!

Did not make it into PostgreSQL 15!!

©2023 Percona | Confidential | Internal use only

mysql> SELECT name,
 Info->>"$.Population",
 Pop FROM city2,
 JSON_TABLE(Info,"$" COLUMNS
 (Pop INT PATH "$.Population"
 DEFAULT '999'
 ON ERROR DEFAULT
 '987' ON EMPTY))
 AS x1;
+-------+-----------------------+------+
| name | Info->>"$.Population" | Pop |
+-------+-----------------------+------+
alpha	100	100
beta	fish	999
delta	15	15
gamma	NULL	987
+-------+-----------------------+------+
4 rows in set, 1 warning (0.00 sec)

JSON Table - Handle missing data

43

Add Rigor To Your JSON Data

©2023 Percona | Confidential | Internal use only

JSON-Schem
a.org’s work
shown in
MySQL - Use
a template to
define
properties
of a Key &
their Values

The document properties
are checked against this
template and rejected if
they do not pass muster!

set @s='{"type": "object",
 "properties": {
 "myage": {
 "type" : "number",
 "minimum": 28,
 "maximum": 99
 }
 }
}';

45

And here is our test
document where we use
a value for 'myage' what
is between the minimum
and the maximum.

set @d='{ "myage": 33}';

©2023 Percona | Confidential | Internal use only

Test

Now we use JSON_SCHEMA_VALID() to test if the test
document passes the validation test, with 1 or true as a
pass and 0 or false as a fail.

select JSON_SCHEMA_VALID(@s,@d);
+--------------------------+
| JSON_SCHEMA_VALID(@s,@d) |
+--------------------------+
| 1 |
+--------------------------+
1 row in set (0.00 sec)

46

Duality?

©2023 Percona | Confidential | Internal use only

JSON Relational Duality

Create views with GraphQL on relational data that return JSON formatted data

lock-free or optimistic concurrency control architecture that enables developers to manage
their data consistently across stateless operations (get/put)

Oracle 23c

48

Recommendations
(from the PostgreSQL manual)

©2023 Percona | Confidential | Internal use only

Representing data as JSON can be considerably more flexible than the traditional relational data
model, which is compelling in environments where requirements are fluid.

It is quite possible for both approaches to co-exist and complement each other within the same
application.

However, even for applications where maximal flexibility is desired, it is still recommended that
JSON documents have a somewhat fixed structure.

The structure is typically unenforced (though enforcing some business rules declaratively is
possible), but having a predictable structure makes it easier to write queries that usefully
summarize a set of “documents” (datums) in a table.

50

©2023 Percona | Confidential | Internal use only

JSON data is subject to the same concurrency-control considerations as any other data type
when stored in a table.

Although storing large documents is practicable, keep in mind that any update acquires a
row-level lock on the whole row.

Consider limiting JSON documents to a manageable size in order to decrease lock contention
among updating transactions.

Ideally, JSON documents should each represent an atomic datum that business rules dictate
cannot reasonably be further subdivided into smaller datums that could be modified
independently.

51

Wrap up!

©2023 Percona | Confidential | Internal use only

For speed use relational columns.
PLAN your schemas by how you want to use the data.
Use JSON_TABLE() to temporarily make unstructured
data structured for use with SQL.
Use generated columns to materialize JSON data into
structured columns.
Do not use JSON as a ‘junk drawer’ or an excuse for
your lack of planning.
DO NOT overly embed data in your JSON document -
the more complex the path the higher the probability
of an oops! Complication is not your friend down the
road.

53

Use JSON in
your
relational
tables!

©2023 Percona | Confidential | Internal use only

How to JSON
in
PostgreSQL®

https://ftisiot.net/postgresqljson/main/

54

Thank You!
David.Stokes@Percona.com
@Stoker
Speakerdeck.com/StokerPercona/slides

