# Smart 3D Printing Surveillance: Detecting Failures with Computer Vision and Machine Learning

Christine Li



# **Types of Printers**

FDM

Filament-based



SLA

Resin liquid hardened by UV light



## SLM

Powder-based



# Parts of a 3D Printer



#### Motion controllers

Moves on the XYZ axis



Print bed

Heated vs. non-heated platform



Extruder

Unloads the filament



Frame

Structure for stability



Connectivity

Power for the printer



Filament

Material used to print

# Why should you care?











- Temperature too high
  - Blocked nozzle
  - Stringing/oozing
- Poor filament quality
- Printing too fast

# **Previous Works**



Automated Process Monitoring in 3D Printing Using Supervised Machine Learning (Delli et al.)

Detects the quality of 3D printed parts (more specific)



"A study of failure detection and prediction for FDM 3D printers" (J. Cao et al.)

- Proposes real-time monitoring



# **My Solution**



Create an AI model

Design an app

Test for results





#### **3D Printing Samples**



# **91.3% correct**

3D printing: 78-0; 3D printing failed: 80-15-18



Status: 3D printing (INCORRECT)

Ende









### **Future Work**

- Explore innovative applications (e.g. crane games)
- More experiments
  - Training my model with more pictures
  - Running more trials with different types of backgrounds, colors, printers
  - Types of failures (e.g. power outage)
  - Improving aesthetic of the app

