Data Lifecycles at Massive Scale

Pasadena, January 2016
• Co-founder and CEO of Qubole
 ▪ Cloud Based Big Data as a Service
 ▪ Processes 250PB+ data every month

• Lead Data Infrastructure at Facebook
 ▪ Made Big Data Self-service in Facebook
 ▪ Nearly an Exabyte of data

• Co-creator of Apache Hive
 • Democratized Big Data through SQL
Evolution of Data

Interaction Data

- Streaming Data
- Sensor Data
- Interaction

Transaction Data

- Oracle
- Teradata

- Data Warehouse
- OLTP

Data Volume

Unstructured & Semi-Structured
Requirements from Modern Data Infrastructure

- **SQL for Analysts**
- **Machine Learning for Data Scientists**
- **Data Prep for ETL Users**
- **Streaming for Developers**

Multi-Persona support for Multiple Use-cases

Scalability on Commodity Hardware
Qubole – a reflection of Usage of a Modern Data Infrastructure

250PB+ Data Processed Every Month

Engine Usage on Qubole

- Hive
- Spark
- MapReduce
- Presto
- Hbase

A Modern Data Platform needs Multiple Engines

- Hive for Complex SQL
- Spark for Data Science and Streaming
- Presto for Interactive Simple SQL
- Map Reduce for Batch ETL
Why companies struggle with Self-Service Big Data:

- 6-18 month implementation time
- Only 27% of Big Data initiatives are classified as “Successful” in 2014
- Only 13% of organizations achieve full-scale production
- 57% of organizations cite skills gap as a major inhibitor
The Cloud Provides:

- On-demand Infrastructure
- Highly Scalable Object Stores
- Self Service Infrastructure
The Right Storage for Storing Big Data

- **Elastic Scalability**: petabyte scale without capacity constraints
- **High Concurrency**: throughput scales linearly
- **High Availability**: 99.99% availability
- **High Durability**: easily more durable than HDFS 3x replicas
- **Enterprise Grade** at a fraction of the cost
The Right Compute Paradigm to Fit Usage

- **On-Demand**: provision entire clusters in less than two minutes with no lead time for sourcing
- **Elastic**: cluster size should match workload; run with thousands of nodes when you need it, de-provision all nodes when idle
- **Flexible**: change compute infrastructure to fit workloads
- **Cost Efficiency**: Multiple SLA options to fit the right budget to the workloads
Big Data Meets Cloud – Power of Self Service SaaS

Benefits:
- Agile platform – 10 to 1000 nodes in minutes
- Flexible infrastructure – different types of nodes of different work loads
- Zero Operations
- Lower TCO

Cons:
- Lot of planning to get clusters up and running
- Inflexible and static infrastructure
- Need Hadoop operations experts
- Higher TCO

DIY
(Cloudera, Hortonworks etc.)

On-demand elastic clusters
Integrated big data software

Static clusters
Big data component confusion
Security is a no. 1 citizen: Cloud Built from Outside–In

- Multiple Encryption options
- Industry-standard authentication for every REST API request
- Virtual Private Cloud
- Auto-logging for auditability
- Industry Compliance
Successful Big Data Adoption at Scale with a Unified Big Data Platform Built for the Cloud

- Multi-User and SaaS architecture for Best Operational Efficiency
- Enterprise Grade Security, Governance and Reliability
- Auto-scaling and portability across Clouds
Thank You