
Scale Environments in Kubernetes 
with OpenTelemetry + Service Mesh

Anirudh Ramanathan
CTO, Signadot

Scale 21x
16 March 2024



/ whoami

● Co-founder & CTO of Signadot

– Founded in late 2019

– Building testing platform for microservices

– Backed by Y-Combinator & Redpoint Ventures

● Previously worked on Kubernetes at Google

– Worked on core controllers (StatefulSet, Deployment, etc)

– Worked on primitives for batch & data processing in k8s

– Committer on the Apache Spark project



/ agenda

● Introduction to Test Environments using OTel & Istio

● Concepts: baseline env, message queues, databases

● Implementation

● Practical considerations: how to roll this out & measure success in your organization



Introduction



/ challenges with testing microservices

● Complex Interdependencies

○ Talking to each other via APIs and with 3rd party dependencies

○ May be independently released

● Fast Feedback

○ Getting high quality feedback early in the development lifecycle

● Environment Consistency

○ Is the environment close to production? Easy to maintain?

○ Does it have realistic data & 3rd party interactions?

○ Observability & debugging



/ testing: fast feedback loops

local workstation StagingCI

Dev, QA, PM

Production

Customers/PartnersDevDev

fast & cheap slow & expensive

Persona(s):

SDLC Phase:

For testing to be effective, we need clear signal as early as possible.



Multiple pre-prod environments

• Easy to roll out with small footprint but hard to scale & maintain

• Infra costs become prohibitive (#microservices x #environments)

• Operational burden (e.g. observability, lifecycle management) grows rapidly

• Drift between different environments reduces confidence in feedback

• Time to set up increases, impacts dev productivity

• Not realistic data

/ testing: scaling environments is hard



/ testing with sandboxes

● Combines the test (or sandboxed) versions of 
microservices with shared pool of dependencies.

● Dependencies updated with the stable versions of 
code by a CD process.

● Each test sandbox requires only deploying “what 
changed”, unchanged dependencies satisfied from 
shared pool.

 



Concepts



/ request isolation: testing using sandboxes

baseline environment

every microservice 
continuously updated by 
CD process to stable 
versions



/ request isolation: testing using sandboxes

baseline environment

test (sandbox) svcA

svcA:main

svcA:aa5542…

request with 
routing context



/ request isolation: testing using sandboxes

baseline environment

test (sandbox) svcA

svcA:main

svcA:aa5542…

svcB:fe2e88…

test (sandbox) svcB

request with 
routing context

svcB:main



/ context propagation using OpenTelemetry

● No tracing backend needed. OTel Supports 
https://www.w3.org/TR/baggage/ out of the 
box

● Java / Javascript / Python / PHP / .NET 
support auto-instrumentation without code 
changes

● Other languages may need code changes
○ Pattern: Platform Teams create 

middleware / libraries that make this 
easier for product teams to adopt

https://opentelemetry.io/docs/languages/

https://www.w3.org/TR/baggage/
https://opentelemetry.io/docs/languages/


● Configure Routing using Service Mesh (e.g. Istio) layer 

and the baggage header

● Test from any service once context propagation in 

place, even the frontend using existing URL + Header

● L7 protocols: HTTP, gRPC typically supported out of 

the box

/ request routing using service mesh



/ sandboxing databases

• For E2E testing and Exploratory Testing (Previews)

– Users use high-quality data in staging

– Isolation in entity domain (test orgs, test users, etc)

• If additional isolation needed for automated tests / schema 
changes

– Not always infra level isolation: can be at the logical level 
(table, database, etc)

– Ephemeral databases with staging snapshots attached at 
runtime to sandboxed workloads via env vars

– Advanced: Put tenancy info into the database tables 
themselves at the row level



/ sandboxing message queue flows

• Teach consumers to consume messages with 
awareness of tenancy

• Producer injects routing context into message 
metadata via OTel

• Consumers are made aware of tenancy using env 
vars

– Different consumer group for baseline and 
sandboxed consumers

– Sandbox consumers reject baseline messages & 
vice versa https://thenewstack.io/testing-event-driven-ar

chitectures-with-opentelemetry/

https://thenewstack.io/testing-event-driven-architectures-with-opentelemetry/
https://thenewstack.io/testing-event-driven-architectures-with-opentelemetry/


Implementation



/ creating the test workload

● Build a new docker image for version of microservice you 

want to test

● After image is built, create a new Kubernetes Workload 

(Deployment, Argo Rollout, etc)

This whole process is often tied to CI/CD so that this happens 

automatically when a Pull Request is opened

Deploy Test Workload + 
Service into K8s

Build & push docker 
image



/ specifying the sandboxed workload

● It’s possible to just specify “what changed” with respect to 

the baseline workload

● Deploy test version into the same namespace: reuse the 

same secrets and configmaps used by the baseline 

workload

● Corresponding to the workload, we will also need a K8s 

service corresponding to it for setting up request routing



● Configure Istio VirtualServices to route based on baggage header value

● Pattern: prevent CD system from overwriting these changes

/ request routing using istio



Practical Considerations



/ best practices for adoption

● Start with rolling out sandboxes associated with pull 

requests for a few backend microservices: 

○ Preview Environments (use Chrome Extension to 

set header)

○ E2E automation testing critical functionality

● OTel coverage often has holes - so, expect gradual 

rollout

● Implement tenancy-based data isolation in 

microservices gradually

Code

Publish / Update PR

Create Sandbox

Build Image

Exploratory Tests
& Previews

API Tests
Integration 

Tests

Continue with regular 
workflow



/ measuring success

● DORA metrics can help

● Get qualitative feedback also using developer surveys & feedback sessions

● Measure # of microservice integration issues discovered on higher environments 

(staging / prod)



/ why use sandboxes for testing?

Sandbox 
Testing

Developers

Platform Team

QA

Product Managers

UX Engineers

Increase QA bandwidth to 
focus on high value testing 

scenarios

Preview features 
early

Preview UX earlyOffer a scalable testing 
platform to Engineering

Offer production 
debugging as well in the 

future

Get fast feedback in a 
realistic environment before 

merging code



/ similar solutions operationalized at scale

The performance of Uber’s 
services relies on our ability to 
quickly and stably launch new 
features on our platform…

When DoorDash moved from 
monolith to microservices, we 
needed a more scalable 
approach to production testing…

…how we scaled our 
development practices at Lyft 
in the face of an 
ever-increasing number of 
developers and services.…

https://www.uber.com/blog/simplifying-develop
er-testing-through-slate/

https://doordash.engineering/2022/03/03/movi
ng-e2e-testing-into-production-with-multi-tenan
cy-for-increased-speed-and-reliability/

https://eng.lyft.com/scaling-productivity-on-micros
ervices-at-lyft-part-3-extending-our-envoy-mesh-wi
th-staging-fdaafafca82f



/ closing thoughts

● “Local” Sandboxes

○ Same methodology, but workloads live on developer workstations 

● Testing Features spanning across microservices

○ Combine sandboxes together to test features (e.g. Backend + Frontend changes)

○ Faster feedback than using feature flags.

● Testing in production

○ Once there’s strong controls over data, you can enable testing with sandboxes in prod!

○ Sandboxes for developer testing in production being used at leading companies like Uber & 

Doordash!

○ Can be used for prod debugging as well



Quick Demo



Anirudh Ramanathan (anirudh@signadot.com)

@foxish (GitHub)

@foxish_ (twitter)
www.signadot.com

Q&A

mailto:anirudh@signadot.com


Multiple pre-prod environments

• Easy to roll out with small footprint but hard to scale

• Drift between different environments reduces 
confidence in feedback

• Less realistic data

• Infra costs & operational burden may become 
prohibitive (#microservices x #environments)

/ request tenancy v/s other approaches

Sandbox Environments

• More gradual rollout may be needed

• Very small additional cost & infra burden for 
each environment

• Very fast to spin up & developer-friendly

• Covers many forms of testing & stabilizes 
shared environment


