

Sharing your data with Spider

Max Mether max@mariadb.com @maxmether

© SkySQL Corporation Ab. Company Confidential.

20.08.2014

© SkySQL Corporation Ab. Company Confidential.

"A database shard is a horizontal partition of data in a database or search engine. Each individual partition is referred to as a shard or database shard"

- The resources of one machine is not enough!
- Read scaling can be achieved through masterslave replication
 - Replication however only scales reads; every server still has to write every single change
- In order to achieve write scalability something else is needed
 - Sharding partitions the data into different "shards"
 - Shards can be stored on different servers
- The sharding algorithm can have a huge impact on performance

Disadvantages with Sharding

- Disadvantages with Sharding include:
 - Increased complexity of SQL
 - Management complexity
 - Multiple points of failure
 - Failover more complex
 - Backups more complex
 - Operational complexity added

- •Large Datasets
 - I/O- and CPU-load is the bottleneck
 - Long execution times for queries
 - Effects creating indexes, statistics, maintenance of tables, ...
- •When replication is not a solution
- •When per instance partitioning does not help

- All writes go to MASTER
 Boads can be scaled on class
- Reads can be scaled on slaves

- Master/Slave-Replication
 - Scaling for reads with a large number of connects or queries
 - Useful for scenarios with a heavy read ratio
 - Not the solution when you have long execution times for single queries and large data sets
 - Write load cannot be scaled
 - Each server needs to contain all data

• RANGE and RANGE COLUMNS Partitioning

PARTITION BY RANGE (store_id) (PARTITION p0 VALUES LESS THAN (1000), PARTITION p1 VALUES LESS THAN (2000), PARTITION p2 VALUES LESS THAN (3000), PARTITION p3 VALUES LESS THAN MAXVALUE);

• LIST and LIST COLUMNS Partitioning

PARTITION BY LIST(store_id) (PARTITION pNorth VALUES IN (3,5,6,9,17), PARTITION PEast VALUES IN (1,2,10,11,19,20), PARTITION pWest VALUES IN (4,12,13,14,18)):

• HASH Partitioning

PARTITION BY HASH(store_id) PARTITIONS 4;

• KEY and LINEAR KEY Partitioning

- Partitioning allows
 - Reducing the data set for queries, when an effective partitioning rule can be defined
 - Separating archive data and active data
 - Distribute I/O-Load on multiple Disks
- •Resources of an instance need to be shared (CPU, RAM, Kernel-Process, ...)
- Locks are still per table

- •Sharding is database partitioning across multiple instances
- Implementation of sharding using
 - Application logic
 - Connectors
 - Proxies:

MySQL Proxy, MySQL Fabric, MariaDB MaxScale

• Spider storage engine

Where can you shard?

Where can you shard?

Spider Storage Engine

Storage Engine Architecture

- Developed by Kentoku Shiba
- Storage engine "partitions" tables across multiple database server instances
- Based on partitions with integrated sharding
- Virtual view on tables distributed across Instances
- Supports XA transactions
- Transactional storage engine
- Provides scale-out in combination with HA
 - Can also use other HA

- When a Spider table is created it creates a link to the remote table
- The linked table can have any engine
- The linked table can use partitioning
- The remote server is not spider aware
- You can have multiple Spider nodes for the same underlying tables

General Concept for Spider Engine

- Application with connection to Spider proxy node
- CREATE TABLE spider (...) ENGINE=SPIDER ...

•No data in Spider-Proxy

- CREATE TABLE spider (...) ENGINE=INNODB ...
 - •Data in backend

- Since Version 10.0.4 included in MariaDB
 - Spider 3.0
 - Spider 3.2.11 in MariaDB 10.0.14
- Spider with MySQL Server
 - <u>http://spiderformysql.com/download_spider.</u>
 <u>html</u>
 - INSTALL PLUGIN spider SONAME 'ha_spider.so';

Installation

mysql -uroot -p < /usr/share/mysql/install_spider.sql</pre>

• Spider will be shown as active Storage Engine

SELECT engine, support, transactions, xa FROM information_schema.engines;			
engine	support	transactions	+ xa
SPIDER CSV	YES YES	YES NO	YES NO

• Spider creates tables in the system schema (mysql)

```
MariaDB> show tables like 'spider%';
+-----+
| Tables_in_mysql (spider%) |
+----+
| spider_link_failed_log |
| spider_link_mon_servers |
| spider_tables |
| spider_tables |
| spider_xa |
| spider_xa_failed_log |
| spider_xa_member |
+----+
6 rows in set (0.00 sec)
```


• 93 Spider system variables will be added

MariaDB> show global variables like 'spider%';

• 4 Spider status values will be added

MariaDB> show global status like 'spider%';

- More Spider variables related to tables using CREATE TABLE
 - In MariaDB use COMMENT
 - In MySQL use CONNECTION

- Spider UDFs will be added
 - SPIDER_DIRECT_SQL
 - Execute SQL on backend server
 - SPIDER_BG_DIRECT_SQL
 - Execute background SQL statement on backend server
 - SPIDER_COPY_TABLES
 - SPIDER_FLUSH_TABLE_MON_CACHE
 - Reset Spider monitoring information

• Table definition on Spider proxy node

```
CREATE TABLE spiderfederation(id INT NOT NULL, code
VARCHAR(10), PRIMARY KEY(id))
ENGINE=SPIDER
COMMENT 'host "192.168.56.21", user "backend", password
"backend", port "3306"';
```

Table definition on backend nodes

CREATE TABLE spiderfederation(id INT NOT NULL, code VARCHAR(10), PRIMARY KEY(id)) ENGINE=INNODB;

Spider Example with Sharding

• Table definition on Spider proxy node

```
CREATE TABLE sharding(id INT NOT NULL, code VARCHAR(10),
PRIMARY KEY(id))
ENGINE=SPIDER COMMENT='user "backend", password
"backend", port "3306", table "sharding"'
PARTITION BY RANGE(id)
(
    PARTITION p1 VALUES LESS THAN (100000)
    COMMENT 'host "192.168.56.21"',
    PARTITION p2 VALUES LESS THAN (200000)
    COMMENT 'host "192.168.56.22"',
    PARTITION p3 VALUES LESS THAN MAXVALUE
    COMMENT 'host "192.168.56.23"'
```

);

Table definition on backend nodes

```
CREATE TABLE sharding(
id INT NOT NULL,
code VARCHAR(10),
PRIMARY KEY(id)
)ENGINE=INNODB;
```


• Insert on proxy

```
MariaDB> insert into sharding values (90002,"shard1"),
(100100,"shard2"),(200050,"shard3");
Query OK, 3 rows affected (0.04 sec)
Records: 3 Duplicates: 0 Warnings: 0
```

• Shard 1

Spider Example with Sharding

• Shard 2

MariaDB> select * from sharding;	
++	
id code	
++	
100100 shard2	
++	
1 rows in set (0.00 sec)	

• Shard 3

MariaDB> begin; Query OK, 0 rows affected (0.00 sec)

```
MariaDB> insert into sharding values (90003,"shard1");
Query OK, 1 row affected (0.01 sec)
```

```
MariaDB> insert into sharding values (100101,"shard2");
Query OK, 1 row affected (0.00 sec)
```

```
MariaDB> insert into sharding values (200051,"shard3");
ERROR 1429 (HY000): Unable to connect to foreign data source:
192.168.56.23
MariaDB> commit;
Query OK, 0 rows affected (0.01 sec)
```


- Replication from Spider proxy to slave
- Spider proxy binary log includes the Transactions
- No direct writes on backend tables

Application

Replicating from Backend

- Replication from backend with multi-source replication
- When federation setup and writes to backend are used

Clustering and High Availability

- Spider supports HA internally
 - Commit and rollback across all backends
 - Multiplexing to replicas using 2PC
 - Split-Brain-Resolution based on quorum
- You can also use other techniques for HA on the backend servers
 - Galera
 - Replication
 - DRBD

Clustering and High Availability Example

CREATE TABLE backend.sbtest

```
id int(10) unsigned NOT NULL AUTO_INCREMENT,
 k int(10) unsigned NOT NULL DEFAULT '0',
 c char(120) NOT NULL DEFAULT '',
 pad char(60) NOT NULL DEFAULT '',
 PRIMARY KEY (id),
 KEY k (k) )
 ENGINE=spider COMMENT='wrapper "mysql", table "sbtest"'
 PARTITION BY KEY (id) (
 PARTITION BY KEY (id) (
 PARTITION pt1 COMMENT = 'srv "backend1 backend2_rpl" mbk "2", mkd "2",
 msi "5054", link_status "0 0"',
 PARTITION pt2 COMMENT = 'srv "backend2 backend1_rpl" mbk "2", mkd "2",
 msi "5054", link_status "0 0" ') ;
```


Clustering and High Availability Example

CREATE SERVER mon

FOREIGN DATA WRAPPER mysql

OPTIONS (

HOST '192.168.0.201',

DATABASE 'backend',

USER 'skysql',

```
PASSWORD 'skyvodka',
```

PORT 5054

);

- Reading
 - Simple queries generally faster
 - Queries spanning all shards can be slower if conditions not pushed down
 - Joins and complex queries can be a lot slower
 - Performance optimizations available through spider functions and options
- Writing
 - INSERTS Generally faster as each node is independent
 - UPDATES depend on reads to get to rows so depends

Complete list on

https://mariadb. com/kb/en/mariadb/documentation/storageengines/spider/spider-feature-matrix/

- Performance
 - Index condition pushdown (MariaDB 10)
 - Engine condition pushdown for federated setup
 - Engine condition pushdown for shards setup (MariaDB 10)
 - Batched key access
 - Support for handler socket
 - Map reduced for ORDER BY LIMIT

- DDL statements will not be synchronized
- Efficiency of sharding depends on the partitioning rule
 - Sub-Partitions can be used for the backend nodes
- Query cache needs to be deactivated
- Log files per Instance
- Central syslog makes sense for Audit Plugin
- User privileges Authentication Plugin?
- Spider storage engine is BETA

•<u>https://mariadb.</u>

com/kb/en/mariadb/documentation/storageengines/spider/

- <u>https://mariadb.org</u>
- •<u>http://spiderformysql.com/</u>
- <u>http://bazaar.launchpad.</u>
 <u>net/~kentokushiba/spiderformysql/spider-2.0-</u>
 <u>doc/files/head:/en/</u>

Questions ?

Max Mether max@mariadb.com @maxmether

© SkySQL Corporation Ab. Company Confidential.

Thanks!

"MySQL is a registered trademark of Oracle and/or its affiliates. Other names may be trademarks of their respective owners SkySQL is not affiliated with MySQL."