
Sched Ext
The extensible sched_class

Dan Schatzberg
Research Scientist

Agenda

01 Background and motivation

02 Building schedulers with sched_ext

03 Example schedulers

04 Current status and future plans

05 Questions?

01 Background and motivation

What is a CPU scheduler?

01 Background and motivation

CPU schedulers multiplex threads onto core(s)

- Manages the finite resource of CPU between all of
the execution contexts on the system

- Decide who gets to run next, where they run, and for
how long

- Does context switching

01 Background and motivation

What about multiple cores?

01 Background and motivation

No problem, just move tasks between cores
when one becomes available

01 Background and motivation

Except that caches exist, there’s a latency
penalty for migrations, etc…

01 Background and motivation

Things get very complicated very quickly
- Very challenging technical problem

- Fairness: Everyone should get some CPU time
- Optimization: Make optimal use of system resources, minimize critical sections
- Low overhead: Should run for as short as possible
- Generalizable: Should work on every architecture, for every workload, etc.

01 Background and motivation

CFS: The Completely Fair Scheduler

01 Background and motivation

CFS is a “fair, weighted, virtual time scheduler”

- Threads given proportional share of CPU, according
to their weight and load
- In example on right, all threads have equal

weight
- Conceptually quite simple and elegant

- Also has drawbacks, more on this later

01 Background and motivation

CFS is a “fair, weighted, virtual time scheduler”

- Threads given proportional share of CPU, according
to their weight and load
- In example on right, all threads have equal

weight
- Conceptually quite simple and elegant

- Also has drawbacks, more on this later

Conceptual

01 Background and motivation

CFS is a “fair, weighted, virtual time scheduler”

- Threads given proportional share of CPU, according
to their weight and load
- In example on right, all threads have equal

weight
- Conceptually quite simple and elegant

- Also has drawbacks, more on this later

Actual

01 Background and motivation

CFS has been in the kernel since 2007
01 Background and motivation

CFS was built in a simpler time

- Much smaller CPUs
- Topologies much more

homogeneous
- Cores spaced further apart,

migration cost typically high
- Power consumption and die area

wasn’t as important

Intel Xeon MP 71xx die

01 Background and motivation

CFS was built in a simpler time

- Much smaller CPUs
- Topologies much more

homogeneous
- Cores spaced further apart,

migration cost typically high
- Power consumption and die area

wasn’t as important

Intel Xeon MP 71xx die

Just two cores

Just one L3 cache

01 Background and motivation

New reality: complex hardware topologies,
and heterogeneity
- CCD’s (Core Complex Dies) aggregate groups of CCX’s (Core Complexes)

- A CCX is a cluster of cores that share an L3 cache
- Can have multiple CCXs per NUMA node
- Can have multiple CCXs per CCD

01 Background and motivation

Architectures much more complicated now
- Heterogeneity is becoming the

norm
- Non-uniform memory accesses

between sockets
- Non-uniform memory accesses

between CCDs
- Non-uniform memory accesses

between CCXs
- Non-uniform memory accesses

between CCXs in the same CCD

AMD Zen 2 Rome AMD Zen 3 Milan

01 Background and motivation

Architectures much more complicated now

- Heterogeneity is becoming the norm
- Non-uniform memory accesses between sockets
- Non-uniform memory accesses between CCDs
- Non-uniform memory accesses between CCXs
- Non-uniform memory accesses between CCXs in the

same CCD

AMD Zen 2 Rome4 cores per “CCX”
8 cores per “CCD”

2 L3 caches per CCD!

8 cores per “CCX”
8 cores per “CCD”

1 L3 cache per CCD!

AMD Zen 3 Milan

01 Background and motivation

CFS is great, but has some drawbacks
- Experimentation is difficult: need to recompile + reboot + rewarm caches
- Generalizable scheduler

- Often leaves some performance on the table for some workloads / architectures
- Impossible to make everyone happy all of the time

- Difficult to get new features upstreamed
- Can’t regress the scheduler
- High bar for contributions (understandably)
- Results in lots of out of tree schedulers, vendor hooks, etc

01 Background and motivation

Result: usually lots of heuristics in the
scheduler
- Scheduler did something I didn’t like, tweak the behavior to accommodate

- Err on the side of keeping a task local to promote cache locality
- Be more likely to schedule someone who was previously your hypertwin

- Don’t apply well to every workload or architecture
- Often result in non-intuitive behavior

- Setting sched_migration_cost_ns knob to 0 may still not migrate a task to use an idle core
- SHARED_RUNQ patchset is meant to help address this:

https://lore.kernel.org/all/20230809221218.163894-1-void@manifault.com/

01 Background and motivation

https://lore.kernel.org/all/20230809221218.163894-1-void@manifault.com/

Quick aside on BPF

01 Background and motivation

01 Background and motivation

BPF: The safe way to run kernel code

- Kernel feature that allows custom code to run safely in
the kernel

- Started in the early days as a way to do custom packet
filtering, now a much, much larger and richer
ecosystem

- Write C code, compile it to BPF bytecode, userspace
can load it into the kernel

- Far too much to cover here. Conceptually, just think
“safe JIT in the kernel”

Introducing: sched_ext

01 Background and motivation

sched_ext enables scheduling policies to be
implemented in BPF programs
1. Write a scheduler policy in BPF
2. Compile it
3. Load it onto the system, letting BPF and core sched_ext infrastructure do all of the heavy lifting to enable it

- New sched_class, at a lower priority than CFS
- No ABI stability restrictions – purely a kernel <-> kernel interface
- GPLv2 only

01 Background and motivation

01 Background and motivation

- No reboot needed – just recompile BPF prog and reload
- Simple and intuitive API for scheduling policies

- Does not require knowledge of core scheduler internals
- Safe, cannot crash the host

- Protection afforded by BPF verifier
- Watchdog disables sched_ext scheduler if a runnable task

isn’t scheduled within some timeout
- New sysrq key for disabling sched_ext scheduler through

console

Rapid experimentation

01 Background and motivation

- CFS is a general purpose scheduler. Works OK for most
applications, not optimal for many

- Optimizes some major Meta services (more on this later)
- HHVM optimized by 2.5-3+% RPS
- Looking like a 3.6 - 10+% improvement for ads ranking

- Google has seen strong results on search, VM scheduling with
ghOSt

Bespoke scheduling policies

01 Background and motivation

- Offload complicated logic such as load balancing to user
space

- Use of floating point numbers
- Use standard debugging tools
- BPF makes it easy to share data between the kernel and

user space

Moving complexity into user space
User space

01 Background and motivation

- No need to maintain out of tree scheduler patches
- Meta and many other companies need to do this

currently
- Share BPF schedulers instead

Sharing Scheduling Logic

What is sched_ext not?

01 Background and motivation

sched_ext is not meant to replace CFS
- Virtual runtime is an elegant fairness algorithm for a general purpose scheduler
- The kernel will likely always need a general purpose scheduler
- Features discovered with and experimented on with sched_ext can be upstreamed to CFS. One of the main

motivators
- SHARED_RUNQ patchset is is a direct result of sched_ext experimentation:

https://lore.kernel.org/all/20230809221218.163894-1-void@manifault.com/

01 Background and motivation

https://lore.kernel.org/all/20230809221218.163894-1-void@manifault.com/

sched_ext is not meant to replace upstream
development
- A sched_ext scheduler must be GPLv2 to be loaded by the verifier

- Will fail to load at runtime otherwise
- Several schedulers included in the upstream patch set (mentioned later in the presentation)
- So much out of tree scheduler code already. The hope is that this will improve things.

01 Background and motivation

sched_ext is not meant to impose UAPIs
restrictions on the kernel
- struct_ops, the main BPF feature backing sched_ext, does not have UAPI guarantees

- Strict kernel <-> kernel interface
- User space programs can talk to BPF programs over maps, but this is nothing new for BPF

- The core scheduler API can change, and could break out of tree schedulers
- Not expected to happen with regularity, but it is allowed according to advertised UAPI policy for

sched_ext and struct_ops BPF programs

DISCLAIMER: This is a somewhat subjective topic. We do our best to be explicit and both state and document
our UAPI guarantees, but at the end of the day, it is up to Linus to interpret this.

01 Background and motivation

02 Building schedulers with sched_ext

Implementing scheduling policies
- BPF program must implement a set of callbacks

- Task wakeup
- Task enqueue/dequeue
- Task state change (runnable, running, stopping, quiescent)
- CPU needs task(s) (balance)
- Cgroup integration
- …

- Also provides fields which globally configure scheduler
- Max # of tasks that can be dispatched
- Timeout threshold in ms (can’t exceed 30s)
- Name of scheduler

02 Building schedulers with sched_ext

/* Return CPU that task should be migrated to on wakeup path. */
s32 (*select_cpu)(struct task_struct *p, s32 prev_cpu, u64 wake_flags);

/* Enqueue runnable task in the BPF scheduler. May dispatch directly to CPU. */
void (*enqueue)(struct task_struct *p, u64 enq_flags);

/* Called when the CPU has no tasks to run */
void (*dispatch)(s32 cpu, struct task_struct *prev);
...

/* Maximum time that task may be runnable before being run. Cannot exceed 30s. */
u32 timeout_ms;

/* BPF scheduler’s name. Must be a valid name or the program will not load. */
char name[SCX_OPS_NAME_LEN];

From
https://github.com/sched-ext/sched_ext/blob/sched_ext/include/linux/sched/ext.h

02 Building schedulers with sched_ext

https://github.com/sched-ext/sched_ext/blob/sched_ext/include/linux/sched/ext.h

Dispatch Queues (DSQs) are the basic
building block of scheduler policies

- Every core has a special “local” DSQ called SCX_DSQ_LOCAL
- Otherwise, can create as many or as few as needed

- Gives schedulers flexibility
- Per-domain (NUMA node, CCX, etc) DSQ?
- Global DSQ?
- Per-cgroup DSQ?

- The data structure / abstraction layer for managing tasks between main kernel <-> BPF scheduler (more on
next slide).

02 Building schedulers with sched_ext

Local DSQs are per-CPU – the “runqueue”
that the core kernel actually chooses from

Local DSQs are per-CPU – the “runqueue”
that the core kernel actually chooses from

Local DSQs are per-CPU – the “runqueue”
that the core kernel actually chooses from

- FIFO or priority
queue of tasks.
“dispatched” (i.e.
enqueued) from BPF

- What’s actually
pulled from when a
task is scheduled in

- Scheduler “dispatches” tasks to
global DSQ at enqueue time

- Not where tasks are pulled from
when being scheduled in

- Task must be in local DSQ to be
chosen to run

Example 0: Global FIFO – enqueuing

Example 0: Global FIFO – enqueuing

void BPF_STRUCT_OPS(mysched_enqueue, struct task_struct *p, u64 enq_flags)
{

scx_bpf_dispatch(p, /* queue id = */ 0, SCX_SLICE_DFL, enq_flags);
}

s32 BPF_STRUCT_OPS_SLEEPABLE(mysched_init)
{

scx_bpf_create_dsq(/* queue id = */ 0, -1);
}

- Cores “consume” tasks from
the global DSQ when going
idle (i.e. no tasks left in the
core’s local DSQ)

Example 0: Global FIFO – consuming

- Cores “consume” tasks from
the global DSQ when going
idle (i.e. no tasks left in the
core’s local DSQ)

- And enqueue them on their
local DSQ to be scheduled

Example 0: Global FIFO – consuming

Example 0: Global FIFO – consuming

void BPF_STRUCT_OPS(mysched_dispatch, s32 cpu, struct task_struct *prev)
{

scx_bpf_consume(/* queue id = */ 0);
}

Global FIFO works surprisingly well on single
socket / CCX machines

- Work conserving
- Very, very simple

- https://github.com/sched-ext/scx/blob/main/scheds/c/scx_simple.bpf.c
- 155 lines of code

02 Building schedulers with sched_ext

https://github.com/sched-ext/scx/blob/main/scheds/c/scx_simple.bpf.c

const volatile bool switch_partial; /* Can be set by user space before loading the program. */

s32 BPF_STRUCT_OPS(simple_init)
{
 if (!switch_partial) /* If set, tasks will individually be configured to use the SCHED_EXT class. */
 scx_bpf_switch_all(); /* Switch all CFS tasks to use sched_ext. */
 return 0;
}

void BPF_STRUCT_OPS(simple_enqueue, struct task_struct *p, u64 enq_flags)
{
 if (enq_flags & SCX_ENQ_LOCAL) /* SCX_ENQ_LOCAL could be set if e.g. the current CPU has no other tasks to run. */
 scx_bpf_dispatch(p, SCX_DSQ_LOCAL, enq_flags); /* Dispatch task to the head of the current CPU’s local FIFO. */
 else
 scx_bpf_dispatch(p, SCX_DSQ_GLOBAL, enq_flags); /* Dispatch task to the global FIFO, it will be consumed

 * automatically by ext. */
}

void BPF_STRUCT_OPS(simple_exit, struct scx_exit_info *ei)
{
 bpf_printk(“Exited”); /* Can do more complicated things here like setting flags in user space, etc. */
}

SEC(".struct_ops")
struct sched_ext_ops simple_ops = {
 .enqueue = (void *)simple_enqueue,
 .init = (void *)simple_init,
 .exit = (void *)simple_exit,
 .name = "simple",
};

Not pictured: selecting a core in
ops.select_cpu() callback

- Default implementation if not defined is to pick an idle core using the following priority order:
- Waking core, if it would otherwise go idle
- When SMT is enabled, a wholly idle core with no hypertwin running
- Any idle CPU in the system

- If core is idle, an IPI is automatically sent to wake it up

- Whichever CPU is specified here is where the ops.enqueue() callback is eventually invoked

02 Building schedulers with sched_ext

- Exact same idea as global FIFO, but
on a per-CCX granularity

- A core “dispatches” tasks to the DSQ
for its CCX / L3 cache

- And “consumes” from it when going
to idle

Example 1: Per-CCX FIFO – enqueuing

- Cores pull from their CCX’s DSQ

- Better L3 cache locality

- Unlike global FIFO, not work conserving

- What if one CCX’s DSQ runs out, but the other has
work? Many possibilities
- Always steal only if your CCX’s DSQ is empty
- Only steal if the other DSQ has X tasks

enqueued
- Only steal if user space marked the task as

special and always steal-able?
- …
- Correct answer is: run experiments with

sched_ext to see what works.

Example 1: Per-CCX FIFO – consuming

03 Example schedulers

Meta-developed Schedulers
Rusty: https://github.com/sched-ext/sched_ext/tree/sched_ext/tools/sched_ext/scx_rusty

Simple: https://github.com/sched-ext/sched_ext/blob/sched_ext/tools/sched_ext/scx_simple.bpf.c

Flatcg: https://github.com/sched-ext/sched_ext/blob/sched_ext/tools/sched_ext/scx_flatcg.bpf.c

Layered: https://github.com/sched-ext/scx/blob/main/scheds/rust/scx_layered/src/bpf/main.bpf.c

03 Example schedulers

https://github.com/sched-ext/sched_ext/tree/sched_ext/tools/sched_ext/scx_rusty
https://github.com/sched-ext/sched_ext/blob/sched_ext/tools/sched_ext/scx_simple.bpf.c
https://github.com/sched-ext/sched_ext/blob/sched_ext/tools/sched_ext/scx_flatcg.bpf.c
https://github.com/sched-ext/scx/blob/main/scheds/rust/scx_layered/src/bpf/main.bpf.c

scx_rustland by Andrea Righi
https://github.com/sched-ext/scx/tree/main/scheds/rust/scx_rustland

Prioritizes interactive workloads over CPU-intensive workloads

03 Example schedulers

https://github.com/sched-ext/scx/tree/main/scheds/rust/scx_rustland

scx_rusty

- Multi-domain BPF / user
space hybrid scheduler
- BPF portion is simple.

Hot paths do round
robin on each domain

- User space portion
written in rust. Contains
more complex and
substantial logic of load
balancing, etc.

- Suitable for production
workloads. Has parity with
CFS on multi-domain
(NUMA, CCX, etc) hosts for
HHVM

03 Example schedulers

- Example scheduler showed
earlier

- A simple weighted vtime /
global FIFO

- About 200 lines total,
including user space code,
stats collection, etc.

- May not always be suitable
for production
- Only performant on

single-socket, uniform
L3 cache architectures

scx_simple scx_flatcg

- Flattened cgroup hierarchy
scheduler

- Implements performant,
hierarchical weight-based
cgroup CPU control by
flattening cgroup hierarchy

- Vulnerable to cgroup
thundering herd
inaccuracies
- If many low-pri cgroups

wake at the same time,
they may get excess of
CPU

Next: example schedulers
- Not meant to be used in production environments (yet)
- Used to illustrate various sched_ext features

- Can be forked to create your own, or improved upon and made production worthy

Qmap: https://github.com/sched-ext/sched_ext/blob/sched_ext/tools/sched_ext/scx_qmap.bpf.c

Central:

Pair:

Userland:

03 Example schedulers

https://github.com/sched-ext/sched_ext/blob/sched_ext/tools/sched_ext/scx_qmap.bpf.c

scx_qmap

- Simple five-level FIFO
queue scheduler

- Slightly more complex than
scx_simple, still very
simple

- Has no practical use, just
useful for demonstrating
features in a simple way

- About 500 lines total,
including comments, user
space, stats collection, etc

03 Example schedulers

- A “central” scheduler
making (almost) all
scheduling decisions from a
single CPU, on a tickless
system

- Possibly useful for
workloads that could
benefit from fewer timer
interrupts or less scheduling
overhead
- VMs / cloud

environment
- Not usable for production in

its current form
- Not NUMA aware,

resched IPIs sent every
20ms

scx_central scx_pair

- Demo scheduler that only
schedules tasks in the same
cgroup on a sibling CPU pair

- Doesn’t have any priority
handling inside or across
cgroups. Would need to be
added to be practically
useful

- Example of what could have
been a stop-gap solution for
L1TF before core scheduling
was merged

- Simple vtime scheduler that
makes all scheduling
decisions in user space

- Not production ready —
uses an ordered list for
vtime, not NUMA aware

scx_userland

Minimum system requirements
- Kernel compiled from repo (https://github.com/sched-ext/sched_ext)
- .config options enabled:

- CONFIG_SCHED_CLASS_EXT=y
- CONFIG_DEBUG_INFO_BTF=y
- CONFIG_BPF=y
- CONFIG_BPF_SYSCALL=y
- CONFIG_BPF_JIT=y
- …and any dependencies

- clang >= 16.0.0
- gcc support hopefully coming soon, but it doesn’t yet fully support BPF in general

- pahole >= 1.24
- rustup nightly (if you want to compile the scx_rusty scheduler)
- See https://github.com/sched-ext/sched_ext/blob/sched_ext/tools/sched_ext/README for more information

03 Example schedulers

https://github.com/sched-ext/sched_ext
https://github.com/sched-ext/sched_ext/blob/sched_ext/tools/sched_ext/README

04 Current status and future plans

Upstream first philosophy
- Developers need to first merge bug fixes or features upstream before using it internally.
- General workflow is typically:

1. Debug issue and/or write patches, send upstream
2. Iterate with upstream community until patches are merged
3. Backport to Meta kernel(s)

- Allows us to follow latest upstream kernel closely (rolling out 6.4 to production now)

04 Current status and future plans

Top priority for sched_ext is upstreaming it
- Still iterating with members of the upstream community and incorporating feedback

- We are committed to getting sched_ext upstreamed as long as it takes
- Latest v5 patch set (https://lore.kernel.org/all/20231111024835.2164816-1-tj@kernel.org/T/#u):

- New example schedulers (scx_flatcg, overhauled rusty)
- Google committed to building ghOSt on top of sched_ext [0]
- Manipulating and querying cpumasks directly from BPF (struct bpf_cpumask *)
- Adding rbtree / priority queue semantics to DSQs
- ops.set_weight() callback added to allow schedulers to lazily track weight changes
- Using new BPF iterator feature instead of bpf_loop()
- Lots of bug fixes

[0]: https://lore.kernel.org/all/CABk29Nt_iCv=2nbDUqFHnszMmDYNC7xEm1nNQXibnPKUxhsN_g@mail.gmail.com/

04 Current status and future plans

https://lore.kernel.org/all/20231111024835.2164816-1-tj@kernel.org/T/#u
https://lore.kernel.org/all/CABk29Nt_iCv=2nbDUqFHnszMmDYNC7xEm1nNQXibnPKUxhsN_g@mail.gmail.com/

New features
- Not much planned at the moment in terms of more sched_ext features. Mostly BPF (described below)

- Would prefer to see what people need before adding more complexity
- Currently rolling out to production at Meta

- More example / upstreamed schedulers
- Power-aware
- Latency nice
- Soft-affinity

- Adding new BPF features
- “Polymorphic” kfuncs — allowing BPF progs to call the same kfunc symbol, but have it be resolved to different

implementation depending on context
- Nested struct_ops

- Enable different policies to be used on different partitions of a host
- Calling into kfuncs with struct bpf_spin_lock held
- Using assertions to simplify logic to appease verifier

04 Current status and future plans

Links
- Main repo: https://github.com/sched-ext/sched_ext
- Latest upstream patch set (v5): https://lore.kernel.org/all/20231111024835.2164816-1-tj@kernel.org/T/#u
- Example schedulers: https://github.com/sched-ext/scx/tree/main
- sched_ext documentation:

https://github.com/sched-ext/sched_ext/blob/sched_ext/Documentation/scheduler/sched-ext.rst

04 Current status and future plans

https://github.com/sched-ext/sched_ext
https://lore.kernel.org/all/20231111024835.2164816-1-tj@kernel.org/T/#u
https://github.com/sched-ext/scx/tree/main
https://github.com/sched-ext/sched_ext/blob/sched_ext/Documentation/scheduler/sched-ext.rst

Appendix – useful supplementary info

Appendix

