
Quentin Deslandes - Software Engineer

Scale21x, Pasadena

bpfilter: packet filtering with
BPF and nftables

00 ABOUT ME

Quentin Deslandes
• Software Engineer @ Meta, working from France

• Member of the Linux Userspace team: we aim to make significant contributions to upstream userspace
projects

• Working on bpfilter since September 2022

qde@naccy.de - github.com/qdeslandes

mailto:qde@naccy.de
https://github.com/qdeslandes

01 FILTERING PACKETS IN 1998

• Created by Rusty Russels in 1998

• 1998’s iptables is not 2024’s iptables

• It defines a structure we are familiar with:

﹘Tables to decide whether to NAT, filter, or mangle

﹘Chains to attach rules to the networking stack

﹘Rules to filter packets on specific criteria

About iptables

01 FILTERING PACKETS IN 1998

How does it work?
• What is the workflow?

﹘Read and validate command line arguments

﹘Uses getsockopt() to retrieve the whole ruleset from the kernel

﹘Modify the ruleset from userspace and send it back using setsockopt()

• The data is sent to / received from the kernel in a binary format (i.e. struct ipt_entry)

01 FILTERING PACKETS IN 1998

Let’s talk about the caveats

• 1998 was a long time ago, technology evolved (at lot) since then

• Packet filtering and firewall rules become more and more complex

• iptables’ architecture is not suited for modern network requirements

• If your firewall can’t keep up: you drop packets

• Can we improve the situation?

Alexei Starovoitov, probably

01 FILTERING PACKETS IN 1998

“Let there be eBPF”

1. Define a new UMH module

2. Plug the module to net/ipv4/ip_sockglue.c

3. Translate iptables rules to BPF programs

4. Enjoy!

02 INTRODUCING BPFILTER

Tutorial: speeding up
iptables

02 INTRODUCING BPFILTER

So far, so good
• Alexei Starovoitov, Dave Miller, and Daniel Borkmann created the first version of bpfilter.

• Dmitrii Banshchikov tried to implement the BPF bytecode generation

﹘Stopped at v2

• I tentatively submitted a v3

02 INTRODUCING BPFILTER

• The architecture was difficult to maintain

• bpfilter was tied to the kernel development process

• The project being under heavy development, it’s difficult to get timely review

Relocation to userspace

03 BPFILTER NOW

New bpfilter
• Complete refactor of the project

• Two main parts now:

﹘libbpfilter

﹘bpfilter daemon

03 BPFILTER NOW

• Packet filtering framework

• Replaces iptables

• Uses Netlink, not {get,set}sockopt()

nftables 101

03 BPFILTER NOW

• Lightweight library

• Aims to ease integration to bpfilter

• Data-independant

libbpfilter

03 BPFILTER NOW

• Listens on a Unix Domain Socket

• Perform the heavy lifting:

﹘ Translation of the client-specific format

﹘ Generation of the BPF programs

﹘Management of the BPF programs

The daemon

03 BPFILTER NOW

Translation
• Dedicated front-end for each client

• Convert client-specific data into an internal
format

• Allows for code reuse during bytecode
generation

03 BPFILTER NOW

Generation
• This is the compilation step

• Outputs 1 or more BPF programs

• Creates a prologue and an epilogue which are
specific to the BPF program type

• Rules are unrolled at BPF bytecode

03 BPFILTER NOW

• Use BPF subsystem to attach a program

• Up to 1 program per interface

• Program replacement is atomic: no down time

Loading

04 DEMO

05 PERFORMANCE

Benchmarks
• 2 servers connected through a

10G link.

• Using Linux’ pktgen to generate
packets at ~10Gbps.

• Increase the number of rules to
increase overhead.

• Last rule drop all UDP packets

P
ac

ke
ts

 p
ro

ce
ss

in
g

ra
te

 (G
bp

s)

0

2

4

6

8

1 rule 32 rules 256 rules

bpfilter iptables

06 LOOKING AHEAD

Current features and capabilities
• iptables and nftables are available (from a fork)

• Filter packets based on:

﹘Source/destination IP address and/or port

﹘L3 protocol

﹘Source network interface.

• Collecting statistics

• Support XDP, TC, BPF_NETFILTER programs

• Supports kfuncs, BPF helpers, BPF dynamic pointers, custom functions…

06 LOOKING AHEAD

Future work
• IPv6 (in progress)

• Sets support

• Partial rules re-generation

• Generic client

• CGroups support

Resources
• bpfilter repository: github.com/facebook/bpfilter

• nftables fork: github.com/qdeslandes/nftables/tree/bpfilter_support

• iptables fork: github.com/qdeslandes/iptables/tree/bpfilter

• Status report and project’s progress: naccy.de

• Email: qde@naccy.de

https://github.com/facebook/bpfilter
https://github.com/qdeslandes/nftables/tree/bpfilter_support
https://github.com/qdeslandes/iptables/tree/bpfilter
https://naccy.de
mailto:qde@naccy.de

