bpfilter: packet filtering with
BPF and nftables

Quentin Deslandes - Software Engineer

Scale21x, Pasadena 00 Met(]

00 ABOUT ME

Quentin Deslandes

» Software Engineer @ Meta, working from France

- Member of the Linux Userspace team: we aim to make significant contributions to upstream userspace
projects

» Working on bpfilter since September 2022

gde@naccy.de - github.com/qdeslandes

mailto:qde@naccy.de
https://github.com/qdeslandes

O1 FILTERING PACKETS IN 1998

About 1ptables

* Created by Rusty Russels in 1998

» 1998’s iptables is not 2024’s iptables

* |t defines a structure we are familiar with:
- Tables to decide whether to NAT, filter, or mangle
- Chains to attach rules to the networking stack

- Rules to filter packets on specific criteria

filter table

~

INPUT chailn

.

-

FORWARD chailn

\.

-

OUTPUT chailn

e If ICMP, DROP

e« If from 192.168.1.1, DROP

e If from 192.168.1.0/24 ACCEPT
 Else DROP

O1 FILTERING PACKETS IN 1998

Jérome Petazzoni
@jpetazzo

OH: "In any team you need a tank, a healer, a damage dealer, someone
with crowd control abilities, and another who knows iptables”

How does it work?

* What is the workflow?
- Read and validate command line arguments
- Uses getsockopt () to retrieve the whole ruleset from the kernel
- Modify the ruleset from userspace and send it back using setsockopt ()

» The datais sent to / received from the kernel in a binary format (i.e. struct 1ipt_entry)

O1 FILTERING PACKETS IN 1998

Let’s talk about the caveats

* 1998 was a long time ago, technology evolved (at lot) since then
* Packet filtering and firewall rules become more and more complex
- 1ptables’ architecture is not suited for modern network requirements

* If your firewall can’t keep up: you drop packets

« Can we improve the situation?

“Let there be eBPF”

Alexei Starovoitov, probably

02 INTRODUCING BPFILTER

Tutorial: speeding up
i p t a b -l' e S Jérome Petazzoni
‘ @jpetazzo

As it turns out, | should retire that tweet,

since now we also need someone who
knows eBPF, XDP, nftables ...

1. Define a new UMH module

2. Plug the module tonet/1pv4/1p_sockglue.c

3. Translate 1ptables rules to BPF programs

4. Enjoy!

02 INTRODUCING BPFILTER

So far, so good

« Alexei Starovoitov, Dave Miller, and Daniel Borkmann created the first version of bpfilter.
- Dmitrii Banshchikov tried to implement the BPF bytecode generation
- Stopped at v2

- | tentatively submitted av3

02 INTRODUCING BPFILTER

Relocation to userspace

» The architecture was difficult to maintain
* bpfilter was tied to the kernel development process

» The project being under heavy development, it’s difficult to get timely review

03 BPFILTER NOW

Userspace Kernel
N b _f : 'L _t Client Net subsystem
p INPUT OUTPUT
« Complete refactor of the project — S i
 Two main parts now: : :
P Unix Domain Socket NGRESS RS
- Libbpfilter \
- bpfilter daemon
V
NIC

03 BPFILTER NOW

nft add rule inet $TABLE $CHAIN tcp dport 22 drop
Userspace

nftables 101 - V

[meta load l4proto => reqg 1 |
[cmp eg reg 1 0x00000006]
» Packet filtering framework [payload load 2b @ transport header + 2 => reg 1]
. [cmp eqg reg 1 0x00001600]
* Replaces iptables [immediate reg O drop]

- Uses Netlink, not {get, set}sockopt()

V

Kernel nftables subsystem

03 BPFILTER NOW

nft add rule 1net $TABLE $CHAIN tcp dport 22 drop

ip $TABLE $CHAIN

[meta load l4proto => reg 1]

[cmp eqg reg 1 0x00000006]

| payload load 2b @ transport header + 2 => reqg 1]
[cmp eq reg 1 0x00001600]

[immediate reg O drop]

libbpfilter

y
libbpfilter

- Lightweight library

- Aims to ease integrationto bpfilter
struct bf_request {

metadata: {...},
nft_bytecode:
ip $TABLE $CHAIN
[meta load l4proto => reqg 1]
[cmp eg reg 1 0x00000006]
| payload load 2b @ transport header + 2 => reg 1 |
[cmp eq reg 1 0x00001600]
[immediate reg O drop]

|

bpfilter daemon

* Data-independant

03 BPFILTER NOW

The daemon

Listens on a Unix Domain Socket

Perform the heavy lifting:

- Translation of the client-specific format
- Generation of the BPF programs

- Management of the BPF programs

struct bf_request {

}

v

bpfilter daemon

Translation

> Generation

i

Load1ing

BPF programs

v

Kernel

03 BPFILTER NOW

ip $TABLE $CHAIN

meta load l4proto => reg 1]

cmp eq reg 1 0x00000006]

payload load 2b @ transport header + 2 => reg 1]
cmp eq reg 1 0x00001600]

immediate reg 0 drop]

e T el

struct ipt_replace {
struct ipt_entry {

o
Translation i V
ipt nft
» Dedicated front-end for each client
» Convert client-specific data into an internal \ }

format

* Allows for code reuse during bytecode
generation

struct bf_codegen {
program_type:

hook:
rules: [
rule {

matchers: [...]
verdict: drop/accept

¥
]
}

03 BPFILTER NOW

struct bf_codegen {
program_type: BPF_PROG_TYPE_XDP
hook: ...
rules: [
rule {
matchers: [tcp dport 22]
verdict: drop
3
]
}

l

XDP prologue TC prologue

Generation e

Setup environment

v

Compile rules

* Thisis the compilation step I

Apply policy

v

* Outputs 1 or more BPF programs

+ Creates a prologue and an epilogue which are senerate functions
. - — T
specific to the BPF program type Y0P epilogue rc epilogue

* Rules are unrolled at BPF bytecode

struct bf_codegen {
program_type: BPF_PROG_TYPE_XDP
hook: ...
rules: [...],
programs: [
struct bf_program {},
]
}

03 BPFILTER NOW

struct bf_codegen {

program_type: BPF_PROG_TYPE_XDP
hook:

rules: [...],
programs: [

. struct bf_program {},
L oading .

Use BPF subsystem to attach a program

Up to 1 program per interface

v

Program replacement is atomic: no down time

Loading

To the kernel

04 DEMO

/|

ofilter/k

9
L

PR, o 1 A My e e B T
ransient --verbose --no-iptables

05 PERFORMANCE

RX throughput depending the number of rules

10000
7500
0
a
S
Q B
Benchmarks : 2
0
2 = 5000
n
3 &
» 2 servers connected through a S
N
10G link. ©
O 2500
» Using Linux’ pktgen to generate A
packets at ~10Gbps.
* Increase the number of rules to 0
increase overhead. 1 128 512 1024 2048 4096

Number of filtering rules
- Lastrule drop all UDP packets

- iptables (prerouting) — nftables (prerouting) bpfilter (XDP)

06 LOOKING AHEAD

Current features and capabilities

- 1ptables and nftables are available (from a fork)
 Filter packets based on:
- Source/destination |IP address and/or port
- L3 protocol
- Source network interface.
* Collecting statistics
» Support XDP, TC, BPF_NETFILTER programs

» Supports kfuncs, BPF helpers, BPF dynamic pointers, custom functions...

06 LOOKING AHEAD

Future work

» IPv6 (in progress)

« Sets support

- Partial rules re-generation
* Generic client

* CGroups support

Resources

» bpfilterrepository: github.com/facebook/bpfilter

- nftables fork: github.com/gdeslandes/nftables/tree/bpfilter support

- 1ptables fork: github.com/gdeslandes/iptables/tree/bpfilter

» Status report and project’s progress: naccy.de

- Email: gde@naccy.de

https://github.com/facebook/bpfilter
https://github.com/qdeslandes/nftables/tree/bpfilter_support
https://github.com/qdeslandes/iptables/tree/bpfilter
https://naccy.de
mailto:qde@naccy.de

