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Artificial 
Intelligence



What is Artificial Intelligence?
•Machines that mimic "cognitive" functions that humans associate 

with the human mind,  such as "learning" and "problem solving”*.

https://en.wikipedia.org/wiki/Artificial_intelligence

https://en.wikipedia.org/wiki/Artificial_intelligence


Artificial Intelligence
• “Artificial Intelligence is no match for natural stupidity” 

Albert Einstein

• “A machine with strong A.I. is able to think and act just like a human. It is able to learn from experiences”

Albert Einstein

• “I think the development of full artificial intelligence could spell the end of the human race”

Stephen Hawking

• “The one who becomes the leader in this sphere will be the ruler of the world”

Vladimir Putin



Types of Artificial Intelligence

1. ANI has a narrow range of ability to perform specific tasks.

2. AGI can perform different tasks that humans can do.

3. ASI is more capable than a human, learning from past experience 

and from new data to do a variety of tasks.

ANI - Artificial Narrow Intelligence1

AGI - Artificial General Intelligence2

ASI - Artificial Super-Intelligence 3



Sub-Fields of Artificial Intelegence 

Cognitive Computing

Machine Learning

NLP and Computer 
Vision

Deep Learning Neural Network



Machine 
Learning



Supervised Learning   (Regression, Classification)1

Un-Supervised Learning (Association, Clustering)2

Reinforcement Learning (Robotics)3

Types of Machine Learning



Licensed under CC BY-SA-NC

Prococess Of Machine Learning

https://creativecommons.org/licenses/by-nc-sa/3.0/


Deep 
Learning



Neural Networks
• Neural Networks, with more layers  and modules
• It has a model which can take any input/output type and size

Licensed under CC BY-SA

https://creativecommons.org/licenses/by-sa/3.0/


Deep Learning



Machine Learning Vs Deep Learning

This Photo by Unknown Author is licensed under CC BY

https://foroingenieros.com/f/foroingenieros/plataforma-inteligencia-artificial-ml-dl-data/c012
https://creativecommons.org/licenses/by/3.0/


Demonstration



Demonstration Using Postgres
• Does an Integer Have Non-Leading Zeros?

• 31903 is true
• 82392 is false



Install PL/Perl
• CREATE EXTENSION IF NOT EXISTS plperl;

• All queries in this presentation can be downloaded from 
https://momjian.us/main/writings/ pgsql/AI.sql.

https://momjian.us/main/writings/pgsql/AI.sql
https://momjian.us/main/writings/pgsql/AI.sql


Generate Tensor
• CREATE OR REPLACE FUNCTION generate_tensor(value
INTEGER) RETURNS BOOLEAN[] AS $$ 
• my $value = shift;
• my @tensor = (
• # this many digits or more? 
• (map { length($value) >= $_ } 1..10),
• # divisible by zero? $value % 10 == 0, ); 
• # map to t/f 
• grep { $_ = ($_ ? ’t’ : �f’) } @tensor; return

encode_typed_literal(\@tensor, ’boolean[]’); $$ 
LANGUAGE plperl STRICT;



Create and Populate Input Layer
• CREATE TABLE training_set(value INTEGER,
training_output BOOLEAN, tensor BOOLEAN[]);

• WITH randint (value) AS ( SELECT (random() * (10 ^
(random() * 8 + 1)::integer))::integer

• FROM generate_series(1, 10000) ) INSERT INTO
training_set 

• SELECT value, value::text LIKE ’%0%’,
generate_tensor(value) FROM randint;



Input Layer
• SELECT * FROM training_set LIMIT 10;

Value.       | training_output
------------+-----------------
28762748 | f
44550313 | t
72 | f
4891026 | t
3413 | f
62 | f
86517976 | f
967 | f
636667644 | f
36419 | f

| tensor
+----------------------
| {t,t,t,t,t,t,t,t,f,f,f}
| {t,t,t,t,t,t,t,t,f,f,f}
| {t,t,f,f,f,f,f,f,f,f,f}
| {t,t,t,t,t,t,t,f,f,f,f}
| {t,t,t,t,f,f,f,f,f,f,f}
| {t,t,f,f,f,f,f,f,f,f,f}
| {t,t,t,t,t,t,t,t,f,f,f}
| {t,t,t,f,f,f,f,f,f,f,f}
| {t,t,t,t,t,t,t,t,t,f,f}
| {t,t,t,t,t,f,f,f,f,f,f}



Generate Weights for Tensor (Cont…)
CREATE OR REPLACE FUNCTION generate_weight
(query TEXT, desired_output BOOLEAN)
RETURNS REAL[]
AS
$$ 

my $rv = spi_exec_query(shift);
my $status = $rv->{status};
my $nrows = $rv->{processed};
my $desired_output = shift;
my @success_neurons = ();
my @desired_neurons = ();
my $desired_input = 0;



Generate Weights for Tensor (Cont…)
foreach my $rn (0 .. $nrows - 1) {

my $row = $rv->{rows}[$rn];
my $tensor = $row->{(sort keys %$row)[0]}; my $training_output = $row-> {

(sort keys %$row)[1]};
# only process training rows that match our desired output
foreach my $neuron (0 .. $#$tensor) {

$success_neurons[$neuron] //= 0;
$desired_neurons[$neuron] //= 0;
# Neuron value matches desired output value; 
# does the value match the desired output?
if ($tensor->[$neuron] eq $desired_output) {

# Prediction success/failures that match our desired output.
$success_neurons[$neuron]++
if ($training_output eq $desired_output);

$desired_neurons[$neuron]++;
}

}
$desired_input++
if ($training_output eq $desired_output);

}



Generate Weights for Tensor
my @weight = ();

my $sum = 0;

# compute percentage of tests that matched requested outcome

foreach my $neuron (0 .. $#success_neurons) {

$weight[$neuron] = $desired_neurons[$neuron] != 0 ? $success_neurons[$neuron] /
$desired_neurons[$neuron] : 0;

$sum += $weight[$neuron];}

# balance weights so they total the observed probability;

# this prevents an overly-predictive output value from skewing 

# the results.

foreach my $neuron (0 .. $#weight) {

$weight[$neuron] = ($weight[$neuron] / $sum) *($desired_input / $nrows);

}

return encode_typed_literal(\@weight, ’real[]’);

$$ LANGUAGE plperl STRICT;



Create Tensor_Mask
-- Return weights where our neuron value matches the desired output
CREATE OR REPLACE FUNCTION tensor_mask(tensor BOOLEAN[], weight REAL[],
desired_output BOOLEAN)
RETURNS REAL[] AS $$ 

my $tensor = shift;
my $weight = shift;
my $desired_output = shift;
my @result = ();
elog(ERROR, ’tensor and weight lengths differ’)
if ($#$tensor != $#$weight);
foreach my $i (0 .. $#$tensor) {

push(@result, ($tensor->[$i] eq $desired_output) ? $weight->[$i] : 0);
}
return encode_typed_literal(\@result, ’real[]’);

$$ LANGUAGE plperl STRICT;



Create Sum_Weight
CREATE OR REPLACE FUNCTION sum_weight(weight REAL[])
RETURNS REAL AS $$ 

my $weight = shift;

my $sum = 0; # sum weights 

foreach my $i (0 .. $#$weight) { 

$sum += $weight->[$i]; 

} 

return encode_typed_literal($sum, ’real’);

$$ LANGUAGE plperl STRICT;



Create Soft_Max
--Normalize the values so the probabilities total one
CREATE OR REPLACE FUNCTION softmax(val1 REAL, val2 REAL)
RETURNS REAL[] AS $$ 

my $val1 = shift;

my $val2 = shift;

my $sum = $val1 + $val2;

# What percentage is each of the total? 

my @result = ( $val1 / $sum, $val2 / $sum, );

return encode_typed_literal(\@result, ’real[]’);

$$ LANGUAGE plperl STRICT;



Store Weights
CREATE TABLE tensor_weight_true 
AS SELECT generate_weight(’SELECT tensor AS x1,
training_output AS x2 FROM training_set’, true) AS
weight;

CREATE TABLE tensor_weight_false AS SELECT
generate_weight(’SELECT tensor AS x1, training_output 
AS x2 FROM training_set’, false) AS weight;



Stored Weights
SELECT * FROM tensor_weight_true;

weight

{0.020473005,0.021917565,0.024002228,0.026247077,0.0284
82921, \
0.030471962,0.032726202,0.034238704,0.036621932,0,0.064
1184}

SELECT * FROM tensor_weight_false;
weight

{0,0.0820682,0.07662672,0.074060954,0.07129263,0.068018
064, \
0.06497674,0.061864104,0.059269458,0.058057636,0.064465
51}



Test 100
WITH test_set (checkval) AS
( SELECT 100 )

SELECT softmax(
sum_weight(

tensor_mask(
generate_tensor(checkval),

tensor_weight_true.weight,
true)),
sum_weight(

tensor_mask(
generate_tensor(checkval),
tensor_weight_false.weight,false))

)
FROM test_set, tensor_weight_true, tensor_weight_false;
softmax

{0.22193865,0.77806133}



Test 101
WITH test_set (checkval) AS  (

SELECT 101
)
SELECT softmax(

sum_weight(
tensor_mask(

generate_tensor(checkval),
tensor_weight_true.weight, true)),

sum_weight(
tensor_mask(

generate_tensor(checkval),  
tensor_weight_false.weight,  false))

)
FROM test_set, tensor_weight_true, tensor_weight_false;  softmax

{0.11283657,0.88716346}



Test 487234987
WITH test_set (checkval) AS  (

SELECT 487234987
)
SELECT softmax(

sum_weight(
tensor_mask(

generate_tensor(checkval),
tensor_weight_true.weight, true)),

sum_weight(
tensor_mask(

generate_tensor(checkval),  
tensor_weight_false.weight,  false))

)
FROM test_set, tensor_weight_true, tensor_weight_false;  softmax

{0.68860435,0.31139567}



Test One Thousand Values
WITH test_set (checkval) AS  (

SELECT (random() * (10 ^ (random() * 8 +
1)::integer))::integer
FROM generate_series(1, 1000)

),



Second Table Expression
ai (checkval, output_layer) AS ( SELECT 
checkval, softmax(

sum_weight(tensor_mask(generate_t
ensor(checkval),tensor_weight_true.wei

ght,true)),
sum_weight(tensor_mask(generate_tensor

(checkval), tensor_weight_false.weight,
false)) ) FROM test_set,
tensor_weight_true, tensor_weight_false ),



Third Table Expression
analysis (checkval, cmp_bool, output_layer, 
accuracy) AS  (

SELECT checkval, checkval::text LIKE ’%0%’,
output_layer,

CASE checkval::text LIKE ’%0%’
-- higher/lower than random chance  WHEN 
true THEN output_layer[1] - 0.5  ELSE 
output_layer[2] - 0.5
END

FROM ai
)



Final Table Expression
SELECT * FROM analysis UNION ALL SELECT 
NULL, NULL, NULL, AVG(accuracy) FROM
analysis UNION ALL SELECT NULL, NULL,
NULL, SUM(CASE WHEN accuracy > 0 THEN 1
END)::REAL/COUNT(*) FROM analysis;

Checkval  | cmp_bool
----------+-----------

| output_layer
+-------------------------------

Accuracy
+--------------------------

6 | f | {0.029198222,0.9708018} | 0.47080177068710327

61859931 | f | {0.5459184,0.4540816} | -0.045918405055999756

53138008 | t | {0.5459184,0.4540816} | 0.045918405055999756

727 | f | {0.11283657,0.88716346} | 0.3871634602546692

33397006 | t | {0.5459184,0.4540816} | 0.045918405055999756

38380069 | t | {0.5459184,0.4540816} | 0.045918405055999756

8915576 | f | {0.4306789,0.5693211} | 0.06932109594345093

446 | f | {0.11283657,0.88716346} | 0.3871634602546692

(null) | (null) | (null) | 0.15426481181383134

(null) | (null) | (null) | 0.722



Why to Use 
Database 
in AI?



Why Use Database?
• Machine learning requires a lot of data
• Most of your data is in your database
• Why not do machine learning where your data is, in a database?



Advantages of doing Machine Learning in a Database?

• Use the previous activity as training data
• Have seamless access to all your current data
• Take immediate action on AI results, e.g., commit transaction only if 

likely  non-fraudulent
• AI can benefit from database transactions, concurrency, backup
• Other benefits include complex data types, full-text search, GIS, 

indexing
• Postgres can do GPU-based computations inside the database.

(https://momjian.us/  main/blogs/pgblog/2020.html#June_29_2020)

https://momjian.us/main/blogs/pgblog/2020.html


General Artificial Intelligence Uses by Databases?
• User applications 

• Performance adjustments
• Optimizer plans
• Index creation/destruction
• Database settings
• Resource usage

• Alerting
• Malicious activity
• Resource exhaustion



Questions




