
PostgreSQL And Artificial
Intelligence

Slides:
https://github.com/ibrarahmad/PostgreSQLTalks/tree/mai
n/Conferences/

Ibrar Ahmed
Principal Engineer @ Pecona LLC

Software Career
Software industries since 1998.

PostgreSQL Career
• Working on PostgreSQL Since 2006.

• EnterpriseDB (Senior Software Architect) 10 Years

• Percona (Principal Engineer) 2018 – Present

Open-source
• PostgreSQL

• Google Chrome

• Google Chromium Project.

PostgreSQL Books

• PostgreSQL Developer's Guide

• PostgreSQL 9.6 High Performance

Ibrar Ahmed
Principal Engineer Percona LLC.

Artificial Intelligence
What is artificial

intelligence?

PostgreSQL and AI
How to use AI in PostgreSQL

Demonstration

PostgreSQL And Artificial Intelegence

Demonstration Using Postgres

Artificial
Intelligence

What is Artificial Intelligence?
•Machines that mimic "cognitive" functions that humans associate

with the human mind, such as "learning" and "problem solving”*.

https://en.wikipedia.org/wiki/Artificial_intelligence

https://en.wikipedia.org/wiki/Artificial_intelligence

Artificial Intelligence
• “Artificial Intelligence is no match for natural stupidity”

Albert Einstein

• “A machine with strong A.I. is able to think and act just like a human. It is able to learn from experiences”

Albert Einstein

• “I think the development of full artificial intelligence could spell the end of the human race”

Stephen Hawking

• “The one who becomes the leader in this sphere will be the ruler of the world”

Vladimir Putin

Types of Artificial Intelligence

1. ANI has a narrow range of ability to perform specific tasks.

2. AGI can perform different tasks that humans can do.

3. ASI is more capable than a human, learning from past experience

and from new data to do a variety of tasks.

ANI - Artificial Narrow Intelligence1

AGI - Artificial General Intelligence2

ASI - Artificial Super-Intelligence 3

Sub-Fields of Artificial Intelegence

Cognitive Computing

Machine Learning

NLP and Computer
Vision

Deep Learning Neural Network

Machine
Learning

Supervised Learning (Regression, Classification)1

Un-Supervised Learning (Association, Clustering)2

Reinforcement Learning (Robotics)3

Types of Machine Learning

Licensed under CC BY-SA-NC

Prococess Of Machine Learning

https://creativecommons.org/licenses/by-nc-sa/3.0/

Deep
Learning

Neural Networks
• Neural Networks, with more layers and modules
• It has a model which can take any input/output type and size

Licensed under CC BY-SA

https://creativecommons.org/licenses/by-sa/3.0/

Deep Learning

Machine Learning Vs Deep Learning

This Photo by Unknown Author is licensed under CC BY

https://foroingenieros.com/f/foroingenieros/plataforma-inteligencia-artificial-ml-dl-data/c012
https://creativecommons.org/licenses/by/3.0/

Demonstration

Demonstration Using Postgres
• Does an Integer Have Non-Leading Zeros?

• 31903 is true
• 82392 is false

Install PL/Perl
• CREATE EXTENSION IF NOT EXISTS plperl;

• All queries in this presentation can be downloaded from
https://momjian.us/main/writings/ pgsql/AI.sql.

https://momjian.us/main/writings/pgsql/AI.sql
https://momjian.us/main/writings/pgsql/AI.sql

Generate Tensor
• CREATE OR REPLACE FUNCTION generate_tensor(value
INTEGER) RETURNS BOOLEAN[] AS $$
• my $value = shift;
• my @tensor = (
• # this many digits or more?
• (map { length($value) >= $_ } 1..10),
• # divisible by zero? $value % 10 == 0,);
• # map to t/f
• grep { $_ = ($_ ? ’t’ : �f’) } @tensor; return

encode_typed_literal(\@tensor, ’boolean[]’); $$
LANGUAGE plperl STRICT;

Create and Populate Input Layer
• CREATE TABLE training_set(value INTEGER,
training_output BOOLEAN, tensor BOOLEAN[]);

• WITH randint (value) AS (SELECT (random() * (10 ^
(random() * 8 + 1)::integer))::integer

• FROM generate_series(1, 10000)) INSERT INTO
training_set

• SELECT value, value::text LIKE ’%0%’,
generate_tensor(value) FROM randint;

Input Layer
• SELECT * FROM training_set LIMIT 10;

Value. | training_output
------------+-----------------
28762748 | f
44550313 | t
72 | f
4891026 | t
3413 | f
62 | f
86517976 | f
967 | f
636667644 | f
36419 | f

| tensor
+----------------------
| {t,t,t,t,t,t,t,t,f,f,f}
| {t,t,t,t,t,t,t,t,f,f,f}
| {t,t,f,f,f,f,f,f,f,f,f}
| {t,t,t,t,t,t,t,f,f,f,f}
| {t,t,t,t,f,f,f,f,f,f,f}
| {t,t,f,f,f,f,f,f,f,f,f}
| {t,t,t,t,t,t,t,t,f,f,f}
| {t,t,t,f,f,f,f,f,f,f,f}
| {t,t,t,t,t,t,t,t,t,f,f}
| {t,t,t,t,t,f,f,f,f,f,f}

Generate Weights for Tensor (Cont…)
CREATE OR REPLACE FUNCTION generate_weight
(query TEXT, desired_output BOOLEAN)
RETURNS REAL[]
AS
$$

my $rv = spi_exec_query(shift);
my $status = $rv->{status};
my $nrows = $rv->{processed};
my $desired_output = shift;
my @success_neurons = ();
my @desired_neurons = ();
my $desired_input = 0;

Generate Weights for Tensor (Cont…)
foreach my $rn (0 .. $nrows - 1) {

my $row = $rv->{rows}[$rn];
my $tensor = $row->{(sort keys %$row)[0]}; my $training_output = $row-> {

(sort keys %$row)[1]};
only process training rows that match our desired output
foreach my $neuron (0 .. $#$tensor) {

$success_neurons[$neuron] //= 0;
$desired_neurons[$neuron] //= 0;
Neuron value matches desired output value;
does the value match the desired output?
if ($tensor->[$neuron] eq $desired_output) {

Prediction success/failures that match our desired output.
$success_neurons[$neuron]++
if ($training_output eq $desired_output);

$desired_neurons[$neuron]++;
}

}
$desired_input++
if ($training_output eq $desired_output);

}

Generate Weights for Tensor
my @weight = ();

my $sum = 0;

compute percentage of tests that matched requested outcome

foreach my $neuron (0 .. $#success_neurons) {

$weight[$neuron] = $desired_neurons[$neuron] != 0 ? $success_neurons[$neuron] /
$desired_neurons[$neuron] : 0;

$sum += $weight[$neuron];}

balance weights so they total the observed probability;

this prevents an overly-predictive output value from skewing

the results.

foreach my $neuron (0 .. $#weight) {

$weight[$neuron] = ($weight[$neuron] / $sum) *($desired_input / $nrows);

}

return encode_typed_literal(\@weight, ’real[]’);

$$ LANGUAGE plperl STRICT;

Create Tensor_Mask
-- Return weights where our neuron value matches the desired output
CREATE OR REPLACE FUNCTION tensor_mask(tensor BOOLEAN[], weight REAL[],
desired_output BOOLEAN)
RETURNS REAL[] AS $$

my $tensor = shift;
my $weight = shift;
my $desired_output = shift;
my @result = ();
elog(ERROR, ’tensor and weight lengths differ’)
if ($#$tensor != $#$weight);
foreach my $i (0 .. $#$tensor) {

push(@result, ($tensor->[$i] eq $desired_output) ? $weight->[$i] : 0);
}
return encode_typed_literal(\@result, ’real[]’);

$$ LANGUAGE plperl STRICT;

Create Sum_Weight
CREATE OR REPLACE FUNCTION sum_weight(weight REAL[])
RETURNS REAL AS $$

my $weight = shift;

my $sum = 0; # sum weights

foreach my $i (0 .. $#$weight) {

$sum += $weight->[$i];

}

return encode_typed_literal($sum, ’real’);

$$ LANGUAGE plperl STRICT;

Create Soft_Max
--Normalize the values so the probabilities total one
CREATE OR REPLACE FUNCTION softmax(val1 REAL, val2 REAL)
RETURNS REAL[] AS $$

my $val1 = shift;

my $val2 = shift;

my $sum = $val1 + $val2;

What percentage is each of the total?

my @result = ($val1 / $sum, $val2 / $sum,);

return encode_typed_literal(\@result, ’real[]’);

$$ LANGUAGE plperl STRICT;

Store Weights
CREATE TABLE tensor_weight_true
AS SELECT generate_weight(’SELECT tensor AS x1,
training_output AS x2 FROM training_set’, true) AS
weight;

CREATE TABLE tensor_weight_false AS SELECT
generate_weight(’SELECT tensor AS x1, training_output
AS x2 FROM training_set’, false) AS weight;

Stored Weights
SELECT * FROM tensor_weight_true;

weight

{0.020473005,0.021917565,0.024002228,0.026247077,0.0284
82921, \
0.030471962,0.032726202,0.034238704,0.036621932,0,0.064
1184}

SELECT * FROM tensor_weight_false;
weight

{0,0.0820682,0.07662672,0.074060954,0.07129263,0.068018
064, \
0.06497674,0.061864104,0.059269458,0.058057636,0.064465
51}

Test 100
WITH test_set (checkval) AS
(SELECT 100)

SELECT softmax(
sum_weight(

tensor_mask(
generate_tensor(checkval),

tensor_weight_true.weight,
true)),
sum_weight(

tensor_mask(
generate_tensor(checkval),
tensor_weight_false.weight,false))

)
FROM test_set, tensor_weight_true, tensor_weight_false;
softmax

{0.22193865,0.77806133}

Test 101
WITH test_set (checkval) AS (

SELECT 101
)
SELECT softmax(

sum_weight(
tensor_mask(

generate_tensor(checkval),
tensor_weight_true.weight, true)),

sum_weight(
tensor_mask(

generate_tensor(checkval),
tensor_weight_false.weight, false))

)
FROM test_set, tensor_weight_true, tensor_weight_false; softmax

{0.11283657,0.88716346}

Test 487234987
WITH test_set (checkval) AS (

SELECT 487234987
)
SELECT softmax(

sum_weight(
tensor_mask(

generate_tensor(checkval),
tensor_weight_true.weight, true)),

sum_weight(
tensor_mask(

generate_tensor(checkval),
tensor_weight_false.weight, false))

)
FROM test_set, tensor_weight_true, tensor_weight_false; softmax

{0.68860435,0.31139567}

Test One Thousand Values
WITH test_set (checkval) AS (

SELECT (random() * (10 ^ (random() * 8 +
1)::integer))::integer
FROM generate_series(1, 1000)

),

Second Table Expression
ai (checkval, output_layer) AS (SELECT
checkval, softmax(

sum_weight(tensor_mask(generate_t
ensor(checkval),tensor_weight_true.wei

ght,true)),
sum_weight(tensor_mask(generate_tensor

(checkval), tensor_weight_false.weight,
false))) FROM test_set,
tensor_weight_true, tensor_weight_false),

Third Table Expression
analysis (checkval, cmp_bool, output_layer,
accuracy) AS (

SELECT checkval, checkval::text LIKE ’%0%’,
output_layer,

CASE checkval::text LIKE ’%0%’
-- higher/lower than random chance WHEN
true THEN output_layer[1] - 0.5 ELSE
output_layer[2] - 0.5
END

FROM ai
)

Final Table Expression
SELECT * FROM analysis UNION ALL SELECT
NULL, NULL, NULL, AVG(accuracy) FROM
analysis UNION ALL SELECT NULL, NULL,
NULL, SUM(CASE WHEN accuracy > 0 THEN 1
END)::REAL/COUNT(*) FROM analysis;

Checkval | cmp_bool
----------+-----------

| output_layer
+-------------------------------

Accuracy
+--------------------------

6 | f | {0.029198222,0.9708018} | 0.47080177068710327

61859931 | f | {0.5459184,0.4540816} | -0.045918405055999756

53138008 | t | {0.5459184,0.4540816} | 0.045918405055999756

727 | f | {0.11283657,0.88716346} | 0.3871634602546692

33397006 | t | {0.5459184,0.4540816} | 0.045918405055999756

38380069 | t | {0.5459184,0.4540816} | 0.045918405055999756

8915576 | f | {0.4306789,0.5693211} | 0.06932109594345093

446 | f | {0.11283657,0.88716346} | 0.3871634602546692

(null) | (null) | (null) | 0.15426481181383134

(null) | (null) | (null) | 0.722

Why to Use
Database
in AI?

Why Use Database?
• Machine learning requires a lot of data
• Most of your data is in your database
• Why not do machine learning where your data is, in a database?

Advantages of doing Machine Learning in a Database?

• Use the previous activity as training data
• Have seamless access to all your current data
• Take immediate action on AI results, e.g., commit transaction only if

likely non-fraudulent
• AI can benefit from database transactions, concurrency, backup
• Other benefits include complex data types, full-text search, GIS,

indexing
• Postgres can do GPU-based computations inside the database.

(https://momjian.us/ main/blogs/pgblog/2020.html#June_29_2020)

https://momjian.us/main/blogs/pgblog/2020.html

General Artificial Intelligence Uses by Databases?
• User applications

• Performance adjustments
• Optimizer plans
• Index creation/destruction
• Database settings
• Resource usage

• Alerting
• Malicious activity
• Resource exhaustion

Questions

