
Building an on-premise,
multitenant serverless platform

Murugappan Chetty
Principal Engineer, Optum

Scale 18x

March 6th, 2020

About Me

Murugappan Chetty
Serverless, Kubernetes, ISTIO, Opensource
contributor, Federated monitoring

itsmurugappan

itsmurugappan

Agenda
• Intro
• Platform Details
• Platform Management
• Use Cases
• Challenges
• Demo
• Q & A

Confidential property of Optum. Do not distribute or reproduce without express permission from Optum.

Why Serverless ?

Write Code Run App=

Wellness coaching

Quick care finder

Optum bank

Head and Tail Winds

Major on-premise workload

Compelling use cases

Mature container ecosystem

Cost effectiveness

Comparison with
public offerings

Platform Details

Serverless Platform Principles
Ø Scale to 0, Request based compute

Ø Container/kubernetes based

Ø Support all programming languages (Java, Go, Python, Shell ..)

Ø Low barrier of entry

Ø Observability

Ø Live and Learn!

üFocus on business logic; Write
functions (GO, python, PHP,
node.js, ruby, java , .net etc.,)

üDefine function config and deploy
functions

üInvoke the function URL ex: Code
to URL

üForget servers!

ü Provision serverless platform and
provides the URL to deploy code

ü Fully managed compute –
provisioning, patching, scaling,
monitoring, logging are provided
by Ops team

ü Abstraction of servers away from
the developer ex: K8s, istio

Operators Developers

{</>}

Personas

Confidential property of Optum. Do not distribute or reproduce without express permission from Optum.

EVENTING
• Knative Eventing
• Cloud Events

OBSERVABILITY
• Prometheus
• Kiali
• Kubernetes logs
• Jaeger/Zipkin

SERVING
• Knative serving
• Function/Service lifecycle

MULTITENANCY
• Kubernetes Namespaces
• RBAC

BUILD
• Build Packs
• Openfaas CLI
• Jib / Ko / Fabric8
• Tekton

SECURITY
• ISTIO Policy
• ISTIO RBAC
• TLS
• Keycloak

USER AGILITY
• Inhouse
• API & Swagger

• Provision namespaces
• Function management
• Apply security policies

• Comprehensive guides
• KN cli

RESILIENCY
• Chaos Engineering
• Selfhealing automation
• Cross data center load balancing

Platform Capabilities

Platform Components

Kubernetes
What does it take to deploy a service today ?

• Need to write 2 manifests - deployment & service

• No per-request load balancing

• No traffic splitting

• Auto scaling limitations

• No concurrency control

Knative
• Opensource – 400+ contributors, 60+ companies (Google, VMWare, IBM, Redhat, SAP, Pivotal …)

• Serving, Eventing

• Multitenant

• Main Components – Activator, Autoscaler, Controller, Webhook and Queue proxy sidecar

• Istio/Gloo for networking

• Only activator in the request path for initial calls

Knative – Serving Resources

Configuration

Current desired configuration

Revision

Immutable object. Point in time for
code and snapshots

Route

Maps traffic to revisions

ISTIO

Confidential property of Optum. Do not distribute or reproduce without express permission from Optum.

ISTIO
Ingress gateway

with SDS

Keycloak Cert-Manager

Knative Service
pods

https://<svcname.nsnanme.domain>

Get Token

Envoy Proxy
Authn & Authz

DNS

F5

K8s-secret

Serverless
Platform

API’s

Tenant space Management

Function management

Authz/Authn

Function tester

1. Abstracts k8s, istio and knative api’s
2. Opinionated
3. Unified developer experience
4. Self service - eliminates the need for kubectl

and other cli’s
5. Enforces standards

1. Resource restriction
2. Run as non root user
3. Function Versioning

6. CICD and Automation

Service Deployment made easy

Prometheus

Istio - cp kubernetes Knative - cp Knative – user
metrics

Thanos Object
Storage

Grafana

1 1 2 3

Metrics

Logs - EFK

Scrape user-container logs

Platform Management

Operator: Cluster Health and Capacity
Planning

Proactive measurement
Know the platform health
deteriorating before it is really
happening.

Reactive monitoring
Accurate and actionable alerts in
time.

Self-healing

Capacity Planning
Identify key resources

measure the utilization and
performance

Collect Platform capacity
consumption rate

Map and predict using
dashboards and alerts

As an Operator, I want to know the resource consumption of the cluster to make fact based
decision about capacity planning.

Operator: Cluster Monitoring and Self healing

Proactive measurement

Periodic job to validate
the platform

Extendable Probe
utility tool

Predictive analysis

Reactive monitoring

Prometheus alerts

Grafana dashboards

Self-healing

Auto reboot of nodes
when not ready

Auto release filesystem
space pressure

As an operator, I want to ensure the platform is highly available, reliable, and serviceable

Developers: Users of this platform

Function Usage Metrics

Statistics about how
many time my
functions are invoked.

CPU and Memory
usage

Health Check Statistics

Failure count

Successful count

Customer Involvement

Key customer needs
to be involved in the
design and use of the
process.

As a developer, I want to see my function metrics, and health check statistics.

User Agility

User Agility – Build & Deploy
• Build Packs
• Tekton pipelines
• Ko/Jib/Fabric8
• Openfaas CLI
• Inhouse Serverless Platform API’s
• Kn cli

User Agility - Observe
• Grafana User Dashboards
• Logs – Kibana, Kail

Use Cases

Infrastructure Automation

File Processing – ESB Vs Serverless

Self Healing

IOT

ML UseCase - Benchmark
{ "transactions": 51,
"availability": 100.00,
"elapsed_time": 299.17,
"successful_transactions": 51,
"failed_transactions": 0,
"longest_transaction": 134.38,
"shortest_transaction": 77.02

}

{ "transactions": 383,
"availability": 100.00,
"elapsed_time": 412.81,

"response_time": 25.49,
"successful_transactions": 383,
"failed_transactions": 0,
"longest_transaction": 114.94,
"shortest_transaction": 4.41

}

Other Use Cases
Use Cases

Infrastructure Team API’s – Server info, network config etc

ETL Jobs

Voicemail processing

Serving ML models

Challenges

Challenges

Challenges Solution

DB Connections - No connection pooling Dedicated microservice for handling DB
connections. GraphQL engine for data
persistence and retrieval

Default resource allocation for pods Enforce users to set resources.

Cold starts Mitigate cold starts

Long running functions longer timeouts, microservices

Java functions Graal VM’s

Using Java on Serverless Platform

Poor Start Up & High Memory Ahead-Of-Time (AOT) & Native Image

Quarkus: Kubernetes Native Java framework tailored for GraalVM and HotSpot, crafted from best-of-breed Java libraries and standards.

Developed by RedHat with the goal to make Java a leading platform in Kubernetes & Serverless

Designed to have “Supersonic” start up times and low memory footprint

Quarkus uses a single reactive engine for both imperative & reactive code

Final Thoughts

Timeout is configurable (can go as long as u want)

HPA doesn’t scale to 0

Cluster Local option

Stateful workloads and PVC’s

Back up

Eventing

kubeflow

Confidential property of Optum. Do not distribute or reproduce without express permission from Optum.

Questions

& Answers

Thank you!

