# Building an on-premise, multitenant serverless platform

#### Murugappan Chetty Principal Engineer, Optum

Scale 18x

March 6th, 2020



#### About Me



#### **Murugappan Chetty**

Serverless, Kubernetes, ISTIO, Opensource contributor, Federated monitoring





itsmurugappan



## Agenda

- Intro
- Platform Details
- Platform Management
- Use Cases
- Challenges
- Demo
- Q&A





### Why Serverless ?





### **Head and Tail Winds**



# **Platform Details**



### **Serverless Platform Principles**

- Scale to 0, Request based compute
- Container/kubernetes based
- Support all programming languages (Java, Go, Python, Shell ..)
- Low barrier of entry
- > Observability
- Live and Learn!





#### Personas





- Provision serverless platform and provides the URL to deploy code
  Fully managed compute – provisioning, patching, scaling, monitoring, logging are provided by Ops team
- Abstraction of servers away from the developer ex: K8s, istio

- ✓ Focus on business logic; Write functions (GO, python, PHP,
- node.js, ruby, java , .net etc.,) ✓ Define function config and deploy
  - functions
- ✓ Invoke the function URL ex: Code to URL
- ✓ Forget servers!



## **Platform Capabilities**

#### **MULTITENANCY**

- Kubernetes Namespaces
- RBAC

#### SECURITY

- ISTIO Policy
- ISTIO RBAC
- TLS
- Keycloak

#### **OBSERVABILITY**

- Prometheus
- Kiali
- Kubernetes logs
- Jaeger/Zipkin

#### RESILIENCY

- Chaos Engineering
- Selfhealing automation
- Cross data center load balancing



#### SERVING

- Knative serving
- Function/Service lifecycle

#### BUILD

- Build Packs
- Openfaas CLI
- Jib / Ko / Fabric8
- Tekton

#### **EVENTING**

- Knative Eventing
- Cloud Events

#### **USER AGILITY**

- Inhouse
- API & Swagger
  - Provision namespaces
  - Function management
  - Apply security policies
- Comprehensive guides
- KN cli



#### **Platform Components**





#### **Kubernetes**

#### What does it take to deploy a service today ?

- Need to write 2 manifests deployment & service
- No per-request load balancing
- No traffic splitting
- Auto scaling limitations
- No concurrency control



### **Knative**

- Opensource 400+ contributors, 60+ companies (Google, VMWare, IBM, Redhat, SAP, Pivotal ...)
- Serving, Eventing
- Multitenant
- Main Components Activator, Autoscaler, Controller, Webhook and Queue proxy sidecar
- Istio/Gloo for networking
- Only activator in the request path for initial calls





#### Configuration

Current desired configuration

#### Revision

Immutable object. Point in time for code and snapshots

#### Route

Maps traffic to revisions

|        | Services  | )-     |
|--------|-----------|--------|
|        | Revisions |        |
| Routes |           | Config |



### ISTIO





### Service Deployment made easy



#### **Metrics**



#### Logs - EFK





# **Platform Management**



### Operator: Cluster Health and Capacity Planning

As an Operator, I want to know the resource consumption of the cluster to make fact based decision about capacity planning.

| Proactive measure                                          | ement                                   |                                             |  |
|------------------------------------------------------------|-----------------------------------------|---------------------------------------------|--|
| Know the platform health deteriorating before it is really | Reactive monitorin                      |                                             |  |
| happening.                                                 | Accurate and actionable alerts in time. | Capacity Planning                           |  |
|                                                            |                                         | Identify key resources                      |  |
|                                                            | Self-healing                            | measure the utilization and performance     |  |
|                                                            |                                         | Collect Platform capacity consumption rate  |  |
|                                                            |                                         | Map and predict using dashboards and alerts |  |



### **Operator: Cluster Monitoring and Self healing**

As an operator, I want to ensure the platform is highly available, reliable, and serviceable

| Proactive measure                              | ement              |                                        |  |
|------------------------------------------------|--------------------|----------------------------------------|--|
| Periodic job to validate                       | Reactive monitorin | g                                      |  |
| the platform                                   | Prometheus alerts  | Self-healing                           |  |
| Extendable <u>Probe</u><br><u>utility tool</u> | Grafana dashboards | Auto reboot of nodes when not ready    |  |
| Predictive analysis                            |                    | Auto release filesystem space pressure |  |
|                                                |                    |                                        |  |



### **Developers: Users of this platform**

As a developer, I want to see my function metrics, and health check statistics.

| ment               |
|--------------------|
| eds<br>he<br>f the |
| t                  |



# User Agility



## **User Agility – Build & Deploy**

- Build Packs
- Tekton pipelines
- Ko/Jib/Fabric8
- Openfaas CLI
- Inhouse Serverless Platform API's
- Kn cli

#### Serverless Platform <sup>102</sup> <sup>049</sup>

MIT

This GUI is intended to provide api's for provisioning and manage Serverless functions. For any questions, please refer to the URLs included in each section.

| Servers                                                   | Authorize                | â      |
|-----------------------------------------------------------|--------------------------|--------|
| Namespace Management Manage K8s namespaces                | Documentation: Namespace | >      |
| Function Management Deploy and Manage Serverless Function | Documentation: Function  | >      |
| Security Secure your function                             | Documentation: Secure    | $\sim$ |
| Canary Route function versions                            | Documentation: Canary    | >      |
|                                                           |                          |        |



## **User Agility - Observe**

- Grafana User Dashboards
- Logs Kibana, Kail





# Use Cases



#### **Infrastructure Automation**





#### File Processing – ESB Vs Serverless





## **Self Healing**





## ΙΟΤ





#### ML UseCase - Benchmark



#### **Other Use Cases**

| Use Cases                                                   |  |
|-------------------------------------------------------------|--|
| Infrastructure Team API's – Server info, network config etc |  |
| ETL Jobs                                                    |  |
| Voicemail processing                                        |  |
| Serving ML models                                           |  |



# Challenges



| Challenges                             | Solution                                                                                              |
|----------------------------------------|-------------------------------------------------------------------------------------------------------|
| DB Connections - No connection pooling | Dedicated microservice for handling DB connections. GraphQL engine for data persistence and retrieval |
| Default resource allocation for pods   | Enforce users to set resources.                                                                       |
| Cold starts                            | Mitigate cold starts                                                                                  |
| Long running functions                 | longer timeouts, microservices                                                                        |
| Java functions                         | Graal VM's                                                                                            |



#### **Using Java on Serverless Platform**



- Quarkus: Kubernetes Native Java framework tailored for GraalVM and HotSpot, crafted from best-of-breed Java libraries and standards.
- A Developed by RedHat with the goal to make Java a leading platform in Kubernetes & Serverless
- A Designed to have "Supersonic" start up times and low memory footprint
- Quarkus uses a single <u>reactive engine</u> for both imperative & reactive code



#### **Final Thoughts**

Timeout is configurable (can go as long as u want)

HPA doesn't scale to 0

**Cluster Local option** 

Stateful workloads and PVC's

Back up

Eventing

kubeflow



# Questions

# & Answers



Confidential property of Optum. Do not distribute or reproduce without express permission from Optum.

# Thank you!



