
To accrue additional technical
debt, turn to page 52!

A choose-​your-​own-​adventure system
design case study.

Éamon Ryan and Amber Salome - March 7th 2025

Amber Salome
Senior Field Engineer
Grafana Labs

Éamon Ryan
Senior Principal Field Engineer
Grafana Labs

Decision Point 1

Dreaming of
greener fields

.

One day you learn that there is time, and will, to
completely revamp the system… so what do you do?

Taking on the new project

Patch the old one until it is eventually up to par

Leave as is and hope things continue to work

A) Take on this big new project?

B) Patch the old one until it is eventually up to par?

C) Leave as is and hope things continue to work?

Cheaper upfront
Without maintenance things
fall apart fast

Decision Point 2

Compute Provider
Necessary

AWS

Congrats! You have a cloud provider...let's
see what we can do with it....

Contract?
Volume based pricing for best deal?

GCP

Azure

A) AWS

B) GCP

C) Azure

D) Bare Metal

Bare Metal

Slower rollout
Less control over regionality

Grafana doesn't own
datacenters

Decision Point 3

We need IaC!

Terraform/OpenTofu

A) Terraform/Open Tofu

Crossplane

B) Crossplane

A) Cloud Formation

B) Terraform/Open Tofu

C) Crossplane

AWS

GCP, Azure

Cloud Formation

AWS specific

Get started with the
resource definitions!

Works with Grafana resources (provider available)

Makes everything a K8s resource, like an operator

Decision Point 6

We’re here, how do
we run?

Kubernetes

Helm/Manifests available
Standardized technology for
containerization

VMs + Ansible

A) Kubernetes

Classic deployment method
Able to utilize Ansible and
implement configs as code

B) VMs + Ansible

C) Serverless

Serverless

Not a persistent env (required for consistent
observability data)

We don't have built out serverless functions
already

Have legacy things that we need to connect to
that don't have that mode

Running serverless all the time $$$

Some hiccups appear....
No CloudFormation template for Grafana
Cloud resources

Decision Point 5

Now Automate the
Terraform

GitHub Actions/GitLab CI/CD

Extra overhead - A lot of
manual work to build out the
actions and maintain them

Atlantis

A) GitHub Actions/GitLab CI/CD

B) TF Controller

Already in use by other teams at
Grafana

Integrates nicely with Git solutions

Most mature of the options (2017)

C) Atlantis

Extension of FluxCD
Free drift detection (runs in
continuous loop)

TF Controller

Decision Point 7

Lock and key

Secrets Management

Vault

Kubernetes Secrets

A) Vault

B) Bitnami Sealed Secrets

Can implement with a manifest
Base64 encoded

C) Kubernetes Secrets

K8s centric - CRDs + operator
Creates k8s resources for each secret
Each sealed secret is encrypted in code
and can be stored in git - track changes

Technically still a k8s secret

Bitnami Sealed Secrets

Decision Point 8

But what about the
apps?

Open source, GitOps, K8s focused projects

FluxCD

Mature and well used
Sync objects from git to K8s
No native UI

Already in use across Grafana

ArgoCD

A) FluxCD

Mature and well used
Sync objects from git to K8s
Has a native UI

Not used already at Grafana,
higher learning curve

B) ArgoCD

Decision Point 11

And my Telemetry?

Prometheus

Key tool utilized by many
customers
Customers may want to
see OTel implementation

Both
A) Prometheus

B) OTel Great way to show
implementation of two
important telemetry tools
Supports more demo scenarios

Grafana Alloy -
Metrics/Logs/Traces

C) Why not both?

OTel

Decision Point 10

Automate my
visuals -

Dashboards/
Datasources!

Provision stuff into Grafana

Grafana Operator

Can be fluxed
Runs in a loop to keep things in sync
CRDs for GrafanaDashboard, GrafanaDatasource, etc...

A) Grafana Operator

B) Terraform

Already using Terraform so this fits with
current pattern
Works with Atlantis
Datasources don't have as granular
permissions as dashboards for folders (in dev)

Terraform

Decision Point 9

Lil bit of HA

Regional(dev/prod/sbx) deployments

Teams are divided in AMER, EMEA, and
APAC - so prod demo environments are
deployed respectively
Dev and Sandbox

A) Regional (sandbox/dev/prod) deployments

B) One deployment to rule them all

What we had in the old environment
More people relying on system = higher
criticality

Cost savings
Easy to manage
Latency for other farther away regions
Single point of failure

One deployment to rule them all

Decision Point 4

Storing the configs

Really a matter of what your
company might support

A) GitHub

B) GitLab

Really a matter of what your
company might support

GitLab

Problem:
Dashboard sprawl
Broken copies of things
Broken data sources
Single-​region availability
No process/review for adding
assets and more.

Goal: To revamp the entire kit into a
fully automated, controlled, robust,
resilient system. Serve as the gold
standard reference point for all demos

Cheaper upfront
How long can we sustain this?

Technical debt

Rate of mess accelerates
more users
more features

Accounts too permissive

Time!
Cost!
Design!
"Dedicated" engineers

One day, someone deletes the whole thing by accident

Or even just part of it 😬
No full backup environment
Only some config was saved as code
All the manually created stuff is gone

Progress:
1. Project direction
2. ...

Progress:
1. Project direction
2. Cloud Provider

Cloud provider agnostic
Works with Grafana Cloud
resources

So what do you do?
Add Terraform elements
for Grafana Cloud

Now there are two
infrastructure automation
tools

Uhoh....Company makes requirement to
deploy to multiple clouds

Re-​evaluate automation tool

Progress:
1. Project direction
2. Cloud Provider
3. IaC Tool

GitHub

Progress:
1. Project direction
2. Cloud Provider
3. IaC Tool
4. Code Repository

Progress:
1. Project direction
2. Cloud Provider
3. IaC Tool
4. Code Repository
5. Infra Automation

Progress:
1. Project direction
2. Cloud Provider
3. IaC Tool
4. Code Repository
5. Infra Automation
6. App Platform

Progress:
1. Project direction
2. Cloud Provider
3. IaC Tool
4. Code Repository
5. Infra Automation
6. App Platform
7. Secrets

Progress:
1. Project direction
2. Cloud Provider
3. IaC Tool
4. Code Repository
5. Infra Automation
6. App Platform
7. Secrets
8. App Automation
9. HA
10. Dashboard Automation

Progress:
1. Project direction
2. Cloud Provider
3. IaC Tool
4. Code Repository
5. Infra Automation
6. App Platform
7. Secrets
8. App Automation

Progress:
1. Project direction
2. Cloud Provider
3. IaC Tool
4. Code Repository
5. Infra Automation
6. App Platform
7. Secrets
8. App Automation
9. HA

A lot of the software can be run on VMs
BUT

Our company is very cloud native
Many of the tools are designed to
be deployed on K8s - helm charts,
K8s O11Y
OOTB resiliency and scalability

Kubernetes Secrets

Internal arguments arise
about whether this is actually
secure???
Company mandates another
layer of abstraction

Flux

Do we want to flux locally or remotely?

FluxCD components are deployed to
each distinct K8s cluster
Each cluster syncs self
Each cluster is more resilient

Some duplicated config, but is
automatable

Locally

FluxCD components are deployed to one
(admin cluster) which syncs itself and the
other clusters
Less duplicated config

Single point of failure

Remotely

B) Locally

A) Remotely

The one prod env goes down
before a critical customer
demo...which takes us back where
we started

Additional envs become essential
for business continuity

One day an outage occurs....

Key tool that is utilized by many
customers, becoming the
defacto standard
Customers may want to see
Prometheus metrics/
implementation

Crossplane

No expertise on team

Rest of team never learns it, so only a few engineers
know how to maintain env

Struggle with timely fixes for issues

Much less mature (not at 1.0)
Weaveworks no longer exists
Maintainers changed - 2 people
Concerns on future of
development and running in
prod

TF Controller

Vault

BUSL is not open source
Uncertain future
More complex set up
Requires storage backend
Doesn't fit in GitOps workflow

C) Hacky Bash script

Previously done for the old demo kit
Difficult to maintain and automate

Hacky Bash script

Grafana Operator

Additional tool not worth
adding when Terraform is
present and can do this already

So what is this about?

Large scope demo system
5 years old...

Congrats! You have a cloud provider...let's
see what we can do with it....

Contract?
Volume based pricing for best deal?

Congrats! You have a cloud provider...let's
see what we can do with it....

Contract?
Volume based pricing for best deal?

Open Source
Self hosted
Fewer features

Forgejo

C) Forgejo

Company is already using
enterprise tool

One less thing to do not having
to self host

Forgejo

Progress:
1. Project direction [New Demo Kit]
2. Cloud Provider [AWS]
3. IaC Tool [Terraform]
4. Code Repository [GitHub]
5. Infra Automation [Atlantis]
6. Compute Platform [K8s]
7. Secrets [Sealed Secrets]
8. App Automation [FluxCD]
9. HA [Multi-​Region]
10. Dashboard Automation [Terraform]
11. Telemetry [Prom/OTel]

Goal: To revamp the entire kit into a fully automated, controlled, robust, resilient system.
Serve as the gold standard reference point for all demos

Did we
make it??

So what's
next?

Renovate bot - automatic version bumps
Promoting user generated content from
dev to prod
Multi-​cloud provider infra?
Delete the old environment

Already have deployed more copies to
groups in company with different use
cases!

@eamon@grafana.social

eamonrryan

ambersalome

Q&A

grafana.com/oss/
Come to the booth! #421

Thank you!

.
. .

.
.

. . .
.

.

Powerful secrets management tool
Mature project
Multiple implementation methods
Supports a lot of backends, cloud
and otherwise

