
Annanay Agarwal
Senior Software Engineer

I assume you’re here because you want to…

Build an Incident Response stack using
OpenTelemetry

March 16, 2024

Part 1: What is Incident Response Management?

Part 2: OpenTelemetry and its principles

Part 3: Query patterns and building the stack

Agenda

��

Part 1: What is
Incident

Response
Management?

How many of us have been on call?

Time

Happiness

Building features

Testing
Deploying

On-call

Building features

Testing

Deploying

On-call

Software Development Life Cycle?

Current generation internet-facing technology
platforms are complex and prone to brittle failure.
Without the continuous effort of engineers to keep
them running they would stop working -- many in

days, most in weeks, all within a year.

Stella report
https://snafucatchers.github.io

Nodes die
Processes leak memory
DNS resolution fails
Backward incompatible release
Disks out of space

Things go wrong all the time

Debug.. and coordinate!

Stress of incident response impacts the human
body and mind

Fine motor skills go out the window.
Field of vision narrows.
Short term memory is often shot.
Bias to make decisions faster and with
incomplete data.

Human Factors Study (1995)

https://www.researchgate.net/publication/210198492_Endsley_MR_Toward_a_Theory_of_Situation_Awareness_in_Dynamic_Systems_Human_Factors_Journal_371_32-64

When you’re a smaller company its easier to
coordinate

Everyone uses open floor plans these
days anyway.

Uber’s microservice architecture circa mid-2018 from Jaeger

Who owns this service?But companies grow

https://www.uber.com/blog/microservice-architecture/

https://fera.com.my/fire-drill-training-malaysia/

https://fera.com.my/fire-drill-training-malaysia/

https://sre.google/sre-book/managing-incidents/

As a company grows it needs an incident
response playbook

https://sre.google/sre-book/managing-incidents/

Roles

Tools

Tools

??

Part 2:
OpenTelemetry

and its
principles

Observability in IRM

CEO of Zomato tweets about New Year eve’s war room

https://twitter.com/deepigoyal/status/1741434365874233685

Core resources first

Where do I start?

CPU, Memory, Networks - k8s nodes, database services, etc
Basic services - what does everything else depend on?
CI/CD - when was the last deployment? What versions are out
there?

Lou Gold, CC BY-NC-SA 2.0 Deed

https://www.flickr.com/photos/visionshare/5768708711

Core resources first

Where do I start?

Did you know: the prometheus community has written
exporters for many commonly used software already
 https://prometheus.io/docs/instrumenting/exporters/

CPU, Memory, Networks - k8s nodes, database services, etc
Basic services - what does everything else depend on?
CI/CD - when was the last deployment? What versions are out
there?

https://prometheus.io/docs/instrumenting/exporters/

Services implementing business logic

Applications next

Core resources first

Where do I start?

CPU, Memory, Networks - k8s nodes, database services, etc
Basic services - what does everything else depend on?
CI/CD - when was the last deployment? What versions are out
there?

OpenTelemetry is a collection of APIs, SDKs, and tools. Use it to instrument, generate,
collect, and export telemetry data (metrics, logs, and traces) to help you analyze your
software’s performance and behavior.

OpenTelemetry is generally available across several languages and is suitable for use.

Instrumentation points

OpenTelemetry is a collection of APIs, SDKs, and tools. Use it to instrument, generate,
collect, and export telemetry data (metrics, logs, and traces) to help you analyze your
software’s performance and behavior.

OpenTelemetry is generally available across several languages and is suitable for use.

SDK

Instrumentation points

API

Instrumentation points

Ex: Collector (data pipeline)

OpenTelemetry is a collection of APIs, SDKs, and tools. Use it to instrument, generate,
collect, and export telemetry data (metrics, logs, and traces) to help you analyze your
software’s performance and behavior.

OpenTelemetry is generally available across several languages and is suitable for use.

https://opentelemetry.io/docs/

Collector (data pipeline)

https://opentelemetry.io/docs/

Instrumentation points

Ex: Collector (data pipeline)

OpenTelemetry is a collection of APIs, SDKs, and tools. Use it to instrument, generate,
collect, and export telemetry data (metrics, logs, and traces) to help you analyze your
software’s performance and behavior.

OpenTelemetry is generally available across several languages and is suitable for use.

signals

https://peter.bourgon.org/blog/2017/02/21/metrics-tracing-and-logging.html

Signals

https://peter.bourgon.org/blog/2017/02/21/metrics-tracing-and-logging.html

Continuous profiling helps finding and
debugging painful performance issues
down to the function and line of code.

There can be more signals…

Defines a common set of attributes
which provide meaning to data when
collecting, producing and consuming it.

db.connection_string
db.instance.id
k8s.cluster.name
k8s.namespace.name
….

Semantic conventions

https://opentelemetry.io/docs/specs/semconv/

service.name

service_name

svc

svc_name

https://opentelemetry.io/docs/specs/semconv/

Part 3: Query
patterns and
building the

stack.

Choosing storage

So far we’ve seen instrumentation and the data
pipeline. That’s where OTel specifications and
implementations end.

BYO-Storage.

Let’s see some examples from PromQL, LogQL
and TraceQL.

Query Patterns - Metrics

rate(
 tempo_request_duration_seconds_count{
 job="query-frontend",
 route=~"tempo_api_.*"
 }[1m]
)

Aggregate based on different labels

sum by (cluster, namespace) (
 rate(
 tempo_request_duration_seconds_count{
 job="query-frontend",
 route=~"tempo_api_.*"
 }[1m]
)
)

Query Patterns - Metrics

Query Patterns - Metrics

Percentiles

histogram_quantile(
 0.95,
 sum(
 rate(
 tempo_request_duration_seconds_bucket{
 job="query-frontend",
 route=~"tempo_api_.*"
 }[1m])
)
)

Search for keyword - spot errors

{cluster=”ops-us-east-0”, namespace=”loki-ops”} |= “error”

Query Patterns - Logs

Rate of increase in keyword over time - helps spot trends

count_over_time(
 {cluster="ops-us-east-0", namespace="loki-ops"}
 |= "error processing request"[1m]
)

Query Patterns - Logs

Extensible schema - don’t force early lock in

{cluster="ops-us-east-0", namespace="tempo-ops"}
 | logfmt
 | client_ip="192.168.0.10"

Query Patterns - Logs

Search for specific labels and latency

{ cluster=”ops-us-east-0” && namespace=”tempo-ops” && duration > 2s}

Query Patterns - Traces

Search based on structure of trace

 { span.http.route = "/api/failing" } >> { status = error }

Query Patterns - Traces

Arbitrary metrics from traces.

{ cluster = "foo" && namespace = "bar" && status = error }
 | rate() by (span.customerID)

Query Patterns - Traces

Arbitrary metrics from traces.

{ cluster = "foo" && namespace = "bar" && status = error }
 | rate() by (span.customerID)

{ cluster = "foo" && namespace = "bar" && status = error &&
span.customerID = "7283895" }
 | rate() by (span.http.api)

{ cluster = "foo" && namespace = "bar" && status = error &&
span.customerID = "7283895" && span.http.api = "/helloworld"}
 | rate() by (span.http.method)

Traces - Query Patterns

Build on top of these query patterns!

Purpose built tools &
automation.

1. Alert on the right data

Ex: Alert for user impact and not on
restarting pods. Identify SLOs!

Alert for Symptoms, not causes

Drive adoption!

2. App specific debugging workflows

Build debugging workflows with
knowledge of what the app does.

Is it a frontend app? Use Real User
Monitoring.

Is it a backend app? Use RED
metrics.

3. Automate change detection (logs)

https://jiemingzhu.github.io/pub/pjhe_icws2017.pdf

https://jiemingzhu.github.io/pub/pjhe_icws2017.pdf

3. Automate change detection (traces ex.)

3. Automate change detection (metrics)

https://github.com/datastax-labs/hunter

https://github.com/datastax-labs/hunter

4. Forecasting

https://github.com/facebook/prophet
https://grafana.com/docs/grafana-cloud/alerting-and-irm/machine-learning/

https://github.com/facebook/prophet
https://grafana.com/docs/grafana-cloud/alerting-and-irm/machine-learning/

If you found any of these useful, we are continuously improving our
open source software. Come talk to us at our booth or in our
community calls!

Thank you! Questions?

@mrannanay

