
Panoptes: Network
Telemetry Ecosystem
Varun Varma, Sr. Principal Engineer
March 10, 2019

SCALE 17x

2

Collect, store, analyze &
visualize network
telemetry

3

10 second primer on
Network Telemetry

#

4

Network Telemetry
● Collection of metrics and state from network devices

● The dominant protocol to collect telemetry is SNMP (Simple Network Management Protocol)

○ Which is unencrypted transmission over UDP

○ First defined in 1993

● APIs, Agents and Streaming Telemetry are becoming mainstream

5

How is this problem
different?

#

6

Why not use ‘x’?

● High rate of change network

○ Static configuration is out of the question

● Primitives unique to network telemetry

○ E.g. rate conversion, enrichments

● Decoupling of collection, processing, and storage

● Python

7

Complexifiers
● We have to poll as pushing metrics from devices isn’t supported universally

○ Polling is expensive on devices

● Vendor/Platform/OS Diversity

● Scale

8

Meet Panoptes

#

9

Panoptes
● Greenfield Python based network

telemetry platform

● Built @Yahoo, now Verizon Media

● Provides real time telemetry collection

and analytics

● Implements discovery, enrichment,

polling, distribution bus and numerous

consumers

9

10

Architecture

#

11

 System Requirements
● Multiple methods to collect data

○ SNMP, APIs, CLI, Streaming

● Horizontal Scalability

○ No Single Point Of Failure

● Multiple, extensible, ways to consume data

● Survive Network Partitions

12

Platform

Celery Redis ZooKeeper Kafka

Tim
e S

eries D
B

Plugin Framework

Discovery Plugins Polling Plugins

Device Specific Plugins (SNMP, API)

C
M

D
B

C
onfiguration M

gm
t

Enrichment Plugins

13

Framework Requirements
● Configuration Parsing

● Logging Management

● Plugin Management

● Work Queue Management

● Message Bus

● Distributed Locking and Leader Election

● Persistence

● Caching

● Federation

14

Tech Stack
Framework Requirement Choice

Language Python

Configuration Parsing ConfigObj

Logging Logging Facility + rsyslog

Plugin Management yapsy

Work Queue Management Celery

Message Bus kafka-python + Kafka

Distributed Locking, Leader Election Kazoo + ZooKeeper

Persistence OpenTSDB, Django + MySQL

Caching redis-py + Redis

Federation Django + MySQL

15

Core Concepts

#

16

Plugins
● Python classes conforming to a well defined API

● Can collect/process and transform data from any source

○ SNMP

○ API

○ CLI

○ *

● Can be of three types:

○ Discovery

○ Enrichment

○ Metrics

17

Resources
● Abstract representations of what should be monitored

○ In the context of network telemetry, these would usually be the network devices to monitor

● ‘Discovered’ using discovery plugins

○ Usually would talk to a Configuration Management Database but could also be from topology
walks

● Have an id, endpoint and various metadata

○ For example, the vendor name or operating system version of a device would be it’s metadata

● Specified within Panoptes with a DSL

○ Example: “resource_class” = “network” AND “resource_subclass” = “switch” AND
“resource_type” = “cisco” AND “resource_metadata.os_version” LIKE “12.2%”

18

Metrics
● Numbers that can be measured and plotted

○ Example is the bytes in/bytes out counter of an interface

● Generally fast changing or have the potential to be

● Can be collected through various means:

○ SNMP

○ API

○ CLI

○ Streaming

19

Enrichments
● Are metadata in addition to metrics

○ For interfaces, we collect metrics like bytes in and bytes out and enrichments like interface
name and description

● Can be any data type

○ Unlike metrics which can only be numeric

● Can come from sources other than the device being monitored

○ The geo location of the device or the ASN number to name mapping

20

Enrichments Cont...
● Usually are more expensive to process than metrics

○ Might need complex transformations and therefore...

■ Are collected at a rate less than those for metrics

● We collect interface metrics every 60 seconds, but enrichments every 30 minute

■ Are cached

● Allows us to scale more by being efficient about data collection

21

Data Encoding & Distribution
● Panoptes is a distributed system

○ Discovery, enrichment and polling are all decoupled

● Kafka and/or Redis are used to pass data between all subsystems

○ This makes it so that you can extend or introspect any subsystem

● JSON is used to encode all data within Panoptes

○ It’s non-performant but developer/operator friendly

22

Workflow

Collect Data Message Bus

TSDB RDBMS

API

UI CLI

Graphing Alerting Grid

Analytics/
Reporting

Post Process

23

Scaling &
Operations

24

Scale: Orders of Magnitude

10M
Time Series

100K
Network Interfaces

10K
Network Devices

100
Network Sites

60
Seconds

25

Scaling Issues
● Panoptes was built to be horizontally scalable and free of single points of failure from day one

○ Performance or high-availability are not easy to bolt on afterwards

● We chose Python to be developer friendly but it wasn’t fast enough

○ High throughput actions are delegated to C extension modules

● Ditto for JSON serialization for all data

● We broke everything - Redis, ZooKeeper, Kafka

○ Redis allows ‘only’ 10,000 clients to be connected by default :)

26

Divide & Conquer: Federated API
● Due to availability concerns, each site has its own

MySQL cluster

○ Telemetry data must be available during a
network partition

○ Centralized telemetry store might not be
reachable in all cases

● Each API endpoint acts as a tribe node

○ If a tribe node doesn’t have the requested data, it
returns a pointer to the node that does through a
find API

DC1

DC2

DC3

DC4

DC5

DC6

DC7

DC8

27

Covered Systems
● Interface metrics for Arista, Cisco, Juniper, A10, Brocade

● System metrics for A10 (AX, TH), Arista EOS, Brocade TrafficWorks, Cisco IOS, Cisco IOS-XE,
Cisco NX-OS, Juniper (MX, SRX)

● Functional metrics for VIPs (A10 AX, TH, Brocade), A10 LSN, Juniper SRX

28

Operational Experiences
● Metrics across different platforms or versions of even the same OS from vendors aren’t consistent

○ Normalizing these metrics was our single biggest time drain

● SNMP has its faults but is still ubiquitous

○ Especially in a multi-vendor, multi-platform, and multi-generational network

● Performance of APIs was much better than SNMP

● Using Kafka proved to be the right choice, we already have 3 separate consumers

29

Operational Experiences Cont...
● We don’t expose ‘raw’ data to external systems

○ It’s tempting to give access to external teams via Kafka, but that would lead to friction if we
want to change our internals

○ Instead, we expose APIs which abstract away all our internals

● We push metrics to our in-house time series database and alerting service

○ Custom dashboard service our user base is familiar with

○ Economies of scale – no need to provision new hardware or software

● Custom UIs are useful and enabled by APIs

30

Performance

31

Throughput =
Speed x
Parallelism

32

Throughput =
Speed x
Parallelism x
Productivity

33

“Optimize for your most
expensive resource”
- Nick Humrich: Yes, Python is Slow,
and I Don’t Care

https://hackernoon.com/yes-python-is-slow-and-i-dont-care-13763980b5a1?gi=941e68a55591
https://hackernoon.com/yes-python-is-slow-and-i-dont-care-13763980b5a1?gi=941e68a55591

34

Scaling Vertically:
aka Speed

35

Profile it!
Our single slowest operation? JSON Schema Validation

36

Begin with the basics
https://wiki.python.org/moin/PythonSpeed

https://wiki.python.org/moin/PythonSpeed/PerformanceTips

● List comprehensions

● Built-ins

● Local vs. global

https://wiki.python.org/moin/PythonSpeed
https://wiki.python.org/moin/PythonSpeed/PerformanceTips

37

Tools
● cProfile

○ Built-in since Python 2.5
○ pstats lets you do slicing/dicing/reporting
○ Use with a signal handler to profile daemon processes

● objgraph
○ Hunt down memory leaks
○ Draw graphs of object counts and relations

38

cProfile
import cProfile
import re
cProfile.run('re.compile("foo|bar")', 'restats')

197 function calls (192 primitive calls) in 0.002 seconds

Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno(function)
 1 0.000 0.000 0.001 0.001 <string>:1(<module>)
 1 0.000 0.000 0.001 0.001 re.py:212(compile)
 1 0.000 0.000 0.001 0.001 re.py:268(_compile)
 1 0.000 0.000 0.000 0.000 sre_compile.py:172(_compile_charset)
 1 0.000 0.000 0.000 0.000 sre_compile.py:201(_optimize_charset)
 4 0.000 0.000 0.000 0.000 sre_compile.py:25(_identityfunction)
 3/1 0.000 0.000 0.000 0.000 sre_compile.py:33(_compile)

39

objgraph

40

Use C Extension Modules

Digits floats decimal cdecimal cdecimal-nt gmpy

9 0.12s 17.61s 0.27s 0.24s 0.52s

19 - 42.75s 0.58s 0.55s 0.52s

38 - - 1.32s 1.21s 1.07s

100 - - 4.52s 4.08s 3.57s

cDecimal vs. Decimal (in Python < 3.3):
Pi, 64-bit, 10,000 iterations, 3.16GHz Core 2 Duo

Source: http://www.bytereef.org/mpdecimal/benchmarks.html

http://www.bytereef.org/mpdecimal/benchmarks.html

41

Cache Properties
https://github.com/pydanny/cached-property

https://github.com/pydanny/cached-property

42

Scaling Horizontally:
aka Parallelism

43

Celery!
Scale across processes, CPUs, and hosts

http://www.celeryproject.org/
How Celery fixed Python's GIL problem

http://www.celeryproject.org/
http://blog.domanski.me/how-celery-fixed-pythons-gil-problem/

44

Choose & test
dependent systems
that scale
horizontally

45

Compare system
performance with

all features

46

TBD
cython, Async I/O, More C extension modules

47

Future: Streaming
Telemetry

48

Proposed Design

Celery Redis ZooKeeper Kafka

Panoptes Framework

Resource
Cache

Streaming Telemetry
Collector

Enrichment
Cache

Device 1 Device 2 Device 3 Device n

49

Pretty Pictures

50

APIs
Realtime - purpose specific Bulk/Historical - Generic

51

Custom UIs

52

And now: a special
offer just for you...

53

getpanoptes.io

54

What you get
● Docker container

● Discovery, enrichment and polling of the interfaces of the host you deploy on

● InfluxDB as the TSDB

● Grafana as the dashboarding system

55

Sample InfluxDB/Grafana Dashboard

56

Why?
● Docker container

● Discovery, enrichment and polling of the interfaces of the host you deploy on

● InfluxDB as the TSDB

● Grafana as the dashboarding system

57

Feedback & Contributions
● Try it out!

● Find and fix bugs

● Tell your friends, family, and colleagues

● Can be used for more than just network telemetry

58

Thank you

59

Questions?
vvarun@verizonmedia.com

