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Collect, store, analyze &
visualize network
telemetry
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10 second primer on


#

Network Telemetry

e Collection of metrics and state from network devices

e The dominant protocol to collect telemetry is SNMP (Simple Network Management Protocol)
o  Which is unencrypted transmission over UDP
o First defined in 1993

e APIs, Agents and Streaming Telemetry are becoming mainstream
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How is this problem


#

Why not use ‘x’?

High rate of change network
o  Static configuration is out of the question
e Primitives unique to network telemetry

o E.g. rate conversion, enrichments

Decoupling of collection, processing, and storage

e Python
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Complexifiers

e \We have to poll as pushing metrics from devices isn’t supported universally
o Polling is expensive on devices
e Vendor/Platform/OS Diversity

e Scale
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Meet


#

Panoptes

Greenfield Python based network
telemetry platform

Built @Yahoo, now Verizon Media
Provides real time telemetry collection
and analytics

Implements discovery, enrichment,
polling, distribution bus and numerous

consumers
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Architecture


#

System Requirements

e Multiple methods to collect data

o SNMP, APIs, CLI, Streaming

Horizontal Scalability

o No Single Point Of Failure

Multiple, extensible, ways to consume data

Survive Network Partitions
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Platform

Device Specific Plugins (SNMP, API)

Discovery Plugins Enrichment Plugins Polling Plugins

Plugin Framework

12 verizon‘/

—
3
)
Q)
o)
=
®
)
O
o

Jwb\ uoneinblyuon




Framework Requirements

e Configuration Parsing

e Logging Management

e Plugin Management

e Work Queue Management

e Message Bus

e Distributed Locking and Leader Election
e Persistence

e Caching

e Federation
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Tech Stack

14

Framework Requirement Choice
Language Python
Configuration Parsing ConfigObj

Logging Logging Facility + rsyslog
Plugin Management yapsy
Work Queue Management Celery

Message Bus

kafka-python + Kafka

Distributed Locking, Leader Election

Kazoo + ZooKeeper

Persistence OpenTSDB, Django + MySQL
Caching redis-py + Redis
Federation Django + MySQL
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Core


#

Plugins

Python classes conforming to a well defined API

e Can collect/process and transform data from any source

o SNMP
o API
o CLI

0 *

e Can be of three types:
o Discovery
o  Enrichment
o Metrics
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Resources

e Abstract representations of what should be monitored
o In the context of network telemetry, these would usually be the network devices to monitor
e ‘Discovered’ using discovery plugins

o Usually would talk to a Configuration Management Database but could also be from topology
walks

e Have an id, endpoint and various metadata
o For example, the vendor name or operating system version of a device would be it's metadata
e Specified within Panoptes with a DSL

o Example: “resource class” = “network” AND “resource_subclass” = “switch” AND
“resource_type” = “cisco” AND “resource_metadata.os_version” LIKE “12.2%”
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Metrics

e Numbers that can be measured and plotted
o Example is the bytes in/bytes out counter of an interface
e Generally fast changing or have the potential to be

e Can be collected through various means:

o SNMP
o API
o CLI

o Streaming
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Enrichments

e Are metadata in addition to metrics

o Forinterfaces, we collect metrics like bytes in and bytes out and enrichments like interface
name and description

e Can be any data type
o Unlike metrics which can only be numeric
e Can come from sources other than the device being monitored

o The geo location of the device or the ASN number to name mapping
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Enrichments Cont...

e Usually are more expensive to process than metrics
o Might need complex transformations and therefore...
m Are collected at a rate less than those for metrics
e We collect interface metrics every 60 seconds, but enrichments every 30 minute
m Are cached

e Allows us to scale more by being efficient about data collection
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Data Encoding & Distribution

e Panoptes is a distributed system

o Discovery, enrichment and polling are all decoupled
e Kafka and/or Redis are used to pass data between all subsystems

o This makes it so that you can extend or introspect any subsystem
e JSON is used to encode all data within Panoptes

o It's non-performant but developer/operator friendly

21
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Workflow

Collect Data Post Process Message Bus

Graphing Alerting

Analytics/ CLI
Reporting
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Scaling &



Scale: Orders of Magnitude
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Scaling Issues

Panoptes was built to be horizontally scalable and free of single points of failure from day one
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Performance or high-availability are not easy to bolt on afterwards

We chose Python to be developer friendly but it wasn’t fast enough

(@)

High throughput actions are delegated to C extension modules

Ditto for JSON serialization for all data

We broke everything - Redis, ZooKeeper, Kafka

(@)

Redis allows ‘only’ 10,000 clients to be connected by default :)
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Divide & Conquer: Federated API
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Due to availability concerns, each site has its own
MySQL cluster

o Telemetry data must be available during a
network partition

o Centralized telemetry store might not be
reachable in all cases

Each API endpoint acts as a tribe node

o If atribe node doesn’t have the requested data, it
returns a pointer to the node that does through a
find API
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Covered Systems

e Interface metrics for Arista, Cisco, Juniper, A10, Brocade

e System metrics for A10 (AX, TH), Arista EOS, Brocade TrafficWorks, Cisco 10S, Cisco I0S-XE,
Cisco NX-OS, Juniper (MX, SRX)

e Functional metrics for VIPs (A10 AX, TH, Brocade), A10 LSN, Juniper SRX
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Operational Experiences

Metrics across different platforms or versions of even the same OS from vendors aren’t consistent
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o Normalizing these metrics was our single biggest time drain
SNMP has its faults but is still ubiquitous

o Especially in a multi-vendor, multi-platform, and multi-generational network
Performance of APls was much better than SNMP

Using Kafka proved to be the right choice, we already have 3 separate consumers
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Operational Experiences Cont...

e We don’t expose ‘raw’ data to external systems

o It's tempting to give access to external teams via Kafka, but that would lead to friction if we
want to change our internals

o Instead, we expose APIs which abstract away all our internals

e We push metrics to our in-house time series database and alerting service
o Custom dashboard service our user base is familiar with
o Economies of scale — no need to provision new hardware or software

e Custom Uls are useful and enabled by APls
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Performance



Throughput =
Speed X
Parallelism
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Throughput =
Speed x
Parallelism x
Productivity




“Optimize for your most

expensive resource”

- Nick Humrich: Yes, Python is Slow,
and | Don’t Care
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https://hackernoon.com/yes-python-is-slow-and-i-dont-care-13763980b5a1?gi=941e68a55591
https://hackernoon.com/yes-python-is-slow-and-i-dont-care-13763980b5a1?gi=941e68a55591

Scaling Vertically:



Profile it!

Our single slowest operation? JSON Schema Validation

35
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Begin with the basics

https://wiki.python.org/moin/PythonSpeed

https://wiki.python.org/moin/PythonSpeed/PerformanceTips

e List comprehensions
e Built-ins

e Local vs. global
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https://wiki.python.org/moin/PythonSpeed
https://wiki.python.org/moin/PythonSpeed/PerformanceTips

Tools

e cProfile

o Built-in since Python 2.5

o pstats lets you do slicing/dicing/reporting

o Use with a signal handler to profile daemon processes
e objgraph

o  Hunt down memory leaks

o Draw graphs of object counts and relations

37 verizon‘/



cProfile

import cProfile
import re
cProfile.run(‘re.compile("foo|bar")", 'restats’)

197 function calls (192 primitive calls) in 0.002 seconds

Ordered by: standard name

ncalls tottime percall cumtime percall flename:lineno(function)

1
1
1
1
1
4
3/1
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0.000
0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.000
0.000

0.001
0.001
0.001
0.000
0.000
0.000

0.001 <string>:1(<module>)

0.001 re.py:212(compile)

0.001 re.py:268(_compile)

0.000 sre_compile.py:172(_compile_charset)
0.000 sre_compile.py:201(_optimize_charset)
0.000 sre_compile.py:25(_identityfunction)

0.000 0.000 0.000 0.000 sre_compile.py:33(_compile)
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objgraph
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dict: ReviewAdminR edirector:
3 items <zope.app.publisher.browser.viewmeta.R ev
Oxaa2c8ac, d=3 0xble08ec, d=3

participations

hread.local.0xb7ccc7b8

dict: BrowserRequest:
1 items <zope.publisher.browser.BrowserRequest i
-0x48470644, d=1 Oxadb22ac, d=1

revious_interaction

<zope.app.securitypolicy.zopepolicy.Zope

ZopeSecurityPolicy:

Oxad18f4c, d=0
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Use C Extension Modules

cDecimal vs. Decimal (in Python < 3.3):
Pi, 64-bit, 10,000 iterations, 3.16GHz Core 2 Duo

Digits floats decimal cdecimal cdecimal-nt gmpy
9 0.12s 17.61s 0.27s 0.24s 0.52s
19 - 42.75s 0.58s 0.55s 0.52s
38 - - 1.32s 1.21s 1.07s
100 - - 4.52s 4.08s 3.57s

Source: http://www.bvytereef.ora/mpdecimal/benchmarks.html
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Cache Properties

https://qithub.com/pydanny/cached-property
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Scaling Horizontally:



Celery!

Scale across processes, CPUs, and hosts

http://www.celeryproject.org/
How Celery fixed Python's GIL problem

43
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http://www.celeryproject.org/
http://blog.domanski.me/how-celery-fixed-pythons-gil-problem/

Choose & test
dependent systems
that scale
horizontally



Compare system
performance with
all features
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TBD

cython, Async I/O, More C extension modules
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Future:



Proposed Design

Resource Streaming Telemetry
Cache Collector

Enrichment
Cache

Panoptes Framework
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APIls

Realtime - purpose specific Bulk/Historical - Generic

aggregateTags: [
"_aggregate",
"resource_endpoint”,
"resource_site",
"vip_type",
"real_port",
"vip_property"

"members_metrics": [

{

"load_balancer_model": "
"weight": 1,
"site"s "gil", .
dps:

1525809840: 100000
i e
metric: "${Panoptes.network-load-balancer-vip.real max_ connections}",
tags: {

vip_protocol: "tcp",

vip_ip_address_version:

vip_port: "9999"

real_dns_name:

vip_dns_nam

"load_balancer_make":
"vip_property": "
"max_connections": 100000,
"bytes_in_gauge": 802742,
"bytes_out_gauge": 0,

"load_balancer name": }

groupId__: "real dns_name: :|vip_dns_name: :|vip_ip_address_version:4|vip_port:9999 |vip_protocol:tcp"

"polling interval": 60,

"active_connections_gauge":

"vip_port": 443,
"status": 0,
"pool name": "
"packets_out_gauge": 0,
"timestamp": 1496772838,
"real_port": 443,

"vip type": "l3dsr",
"packets_in_gauge": 4221,
"cache age": 41,

"ip_address":
"name": "pus "
"connections_per_second gauge": 281,

"total_connections_counter": 746440138,
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Custom Uls
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And now:
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What you get

e Docker container

e Discovery, enrichment and polling of the interfaces of the host you deploy on

InfluxDB as the TSDB

e Grafana as the dashboarding system
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Sample InfluxDB/Grafana Dashboard
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Why?

e Docker container

e Discovery, enrichment and polling of the interfaces of the host you deploy on

InfluxDB as the TSDB

e Grafana as the dashboarding system
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Feedback & Contributions

e Tryitout!
e Find and fix bugs
e Tell your friends, family, and colleagues

e Can be used for more than just network telemetry

57

verizon’



Thank



Questions?

vvarun@verizonmedia.com

verizon’



