Panoptes: Network
Telemetry Ecosystem

Varun Varma, Sr. Principal Engineer
March 10, 2019

verizon’

Collect, store, analyze &
visualize network
telemetry

verizon’

10 second primer on

#

Network Telemetry

e Collection of metrics and state from network devices

e The dominant protocol to collect telemetry is SNMP (Simple Network Management Protocol)
o Which is unencrypted transmission over UDP
o First defined in 1993

e APIs, Agents and Streaming Telemetry are becoming mainstream

A verizon’

How is this problem

#

Why not use ‘x’?

High rate of change network
o Static configuration is out of the question
e Primitives unique to network telemetry

o E.g. rate conversion, enrichments

Decoupling of collection, processing, and storage

e Python

6 verizon’

Complexifiers

e \We have to poll as pushing metrics from devices isn’t supported universally
o Polling is expensive on devices
e Vendor/Platform/OS Diversity

e Scale

, verizon’

Meet

#

Panoptes

Greenfield Python based network
telemetry platform

Built @Yahoo, now Verizon Media
Provides real time telemetry collection
and analytics

Implements discovery, enrichment,
polling, distribution bus and numerous

consumers

' OP(" ni
Men
T“..-T_hﬂ‘

S
RING

verizon’

Architecture

#

System Requirements

e Multiple methods to collect data

o SNMP, APIs, CLI, Streaming

Horizontal Scalability

o No Single Point Of Failure

Multiple, extensible, ways to consume data

Survive Network Partitions

verizon’

Platform

Device Specific Plugins (SNMP, API)

Discovery Plugins Enrichment Plugins Polling Plugins

Plugin Framework

12 verizon‘/

—
3
)
Q)
o)
=
®
)
O
o

Jwb\ uoneinblyuon

Framework Requirements

e Configuration Parsing

e Logging Management

e Plugin Management

e Work Queue Management

e Message Bus

e Distributed Locking and Leader Election
e Persistence

e Caching

e Federation

13

verizon’

Tech Stack

14

Framework Requirement Choice
Language Python
Configuration Parsing ConfigObj

Logging Logging Facility + rsyslog
Plugin Management yapsy
Work Queue Management Celery

Message Bus

kafka-python + Kafka

Distributed Locking, Leader Election

Kazoo + ZooKeeper

Persistence OpenTSDB, Django + MySQL
Caching redis-py + Redis
Federation Django + MySQL

verizon’

Core

#

Plugins

Python classes conforming to a well defined API

e Can collect/process and transform data from any source

o SNMP
o API
o CLI

0 *

e Can be of three types:
o Discovery
o Enrichment
o Metrics

16 verizon‘/

Resources

e Abstract representations of what should be monitored
o In the context of network telemetry, these would usually be the network devices to monitor
e ‘Discovered’ using discovery plugins

o Usually would talk to a Configuration Management Database but could also be from topology
walks

e Have an id, endpoint and various metadata
o For example, the vendor name or operating system version of a device would be it's metadata
e Specified within Panoptes with a DSL

o Example: “resource class” = “network” AND “resource_subclass” = “switch” AND
“resource_type” = “cisco” AND “resource_metadata.os_version” LIKE “12.2%”

17 verizon‘/

Metrics

e Numbers that can be measured and plotted
o Example is the bytes in/bytes out counter of an interface
e Generally fast changing or have the potential to be

e Can be collected through various means:

o SNMP
o API
o CLI

o Streaming

18

verizon’

Enrichments

e Are metadata in addition to metrics

o Forinterfaces, we collect metrics like bytes in and bytes out and enrichments like interface
name and description

e Can be any data type
o Unlike metrics which can only be numeric
e Can come from sources other than the device being monitored

o The geo location of the device or the ASN number to name mapping

19 verizon‘/

Enrichments Cont...

e Usually are more expensive to process than metrics
o Might need complex transformations and therefore...
m Are collected at a rate less than those for metrics
e We collect interface metrics every 60 seconds, but enrichments every 30 minute
m Are cached

e Allows us to scale more by being efficient about data collection

20 verizon‘/

Data Encoding & Distribution

e Panoptes is a distributed system

o Discovery, enrichment and polling are all decoupled
e Kafka and/or Redis are used to pass data between all subsystems

o This makes it so that you can extend or introspect any subsystem
e JSON is used to encode all data within Panoptes

o It's non-performant but developer/operator friendly

21

verizon’

Workflow

Collect Data Post Process Message Bus

Graphing Alerting

Analytics/ CLI
Reporting

22 verizon‘/

Scaling &

Scale: Orders of Magnitude

24

10M

Time Series

100K

Network Interfaces

10K

Network Devices

100

Network Sites

60

Seconds

verizon’

Scaling Issues

Panoptes was built to be horizontally scalable and free of single points of failure from day one

25

(@)

Performance or high-availability are not easy to bolt on afterwards

We chose Python to be developer friendly but it wasn’t fast enough

(@)

High throughput actions are delegated to C extension modules

Ditto for JSON serialization for all data

We broke everything - Redis, ZooKeeper, Kafka

(@)

Redis allows ‘only’ 10,000 clients to be connected by default :)

verizon’

Divide & Conquer: Federated API

26

Due to availability concerns, each site has its own
MySQL cluster

o Telemetry data must be available during a
network partition

o Centralized telemetry store might not be
reachable in all cases

Each API endpoint acts as a tribe node

o If atribe node doesn’t have the requested data, it
returns a pointer to the node that does through a
find API

verizon’

Covered Systems

e Interface metrics for Arista, Cisco, Juniper, A10, Brocade

e System metrics for A10 (AX, TH), Arista EOS, Brocade TrafficWorks, Cisco 10S, Cisco I0S-XE,
Cisco NX-OS, Juniper (MX, SRX)

e Functional metrics for VIPs (A10 AX, TH, Brocade), A10 LSN, Juniper SRX

27 verizon‘/

Operational Experiences

Metrics across different platforms or versions of even the same OS from vendors aren’t consistent

28

o Normalizing these metrics was our single biggest time drain
SNMP has its faults but is still ubiquitous

o Especially in a multi-vendor, multi-platform, and multi-generational network
Performance of APls was much better than SNMP

Using Kafka proved to be the right choice, we already have 3 separate consumers

verizon’

Operational Experiences Cont...

e We don’t expose ‘raw’ data to external systems

o It's tempting to give access to external teams via Kafka, but that would lead to friction if we
want to change our internals

o Instead, we expose APIs which abstract away all our internals

e We push metrics to our in-house time series database and alerting service
o Custom dashboard service our user base is familiar with
o Economies of scale — no need to provision new hardware or software

e Custom Uls are useful and enabled by APls

29 verizon‘/

Performance

Throughput =
Speed X
Parallelism

31

verizon’

Throughput =
Speed x
Parallelism x
Productivity

“Optimize for your most

expensive resource”

- Nick Humrich: Yes, Python is Slow,
and | Don’t Care

verizon’

https://hackernoon.com/yes-python-is-slow-and-i-dont-care-13763980b5a1?gi=941e68a55591
https://hackernoon.com/yes-python-is-slow-and-i-dont-care-13763980b5a1?gi=941e68a55591

Scaling Vertically:

Profile it!

Our single slowest operation? JSON Schema Validation

35

verizon’

Begin with the basics

https://wiki.python.org/moin/PythonSpeed

https://wiki.python.org/moin/PythonSpeed/PerformanceTips

e List comprehensions
e Built-ins

e Local vs. global

36 verizon‘/

https://wiki.python.org/moin/PythonSpeed
https://wiki.python.org/moin/PythonSpeed/PerformanceTips

Tools

e cProfile

o Built-in since Python 2.5

o pstats lets you do slicing/dicing/reporting

o Use with a signal handler to profile daemon processes
e objgraph

o Hunt down memory leaks

o Draw graphs of object counts and relations

37 verizon‘/

cProfile

import cProfile
import re
cProfile.run(‘re.compile("foo|bar")", 'restats’)

197 function calls (192 primitive calls) in 0.002 seconds

Ordered by: standard name

ncalls tottime percall cumtime percall flename:lineno(function)

1
1
1
1
1
4
3/1

38

0.000
0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.000
0.000

0.001
0.001
0.001
0.000
0.000
0.000

0.001 <string>:1(<module>)

0.001 re.py:212(compile)

0.001 re.py:268(_compile)

0.000 sre_compile.py:172(_compile_charset)
0.000 sre_compile.py:201(_optimize_charset)
0.000 sre_compile.py:25(_identityfunction)

0.000 0.000 0.000 0.000 sre_compile.py:33(_compile)

verizon’

objgraph

39

dict: ReviewAdminR edirector:
3 items <zope.app.publisher.browser.viewmeta.R ev
Oxaa2c8ac, d=3 0xble08ec, d=3

participations

hread.local.0xb7ccc7b8

dict: BrowserRequest:
1 items <zope.publisher.browser.BrowserRequest i
-0x48470644, d=1 Oxadb22ac, d=1

revious_interaction

<zope.app.securitypolicy.zopepolicy.Zope

ZopeSecurityPolicy:

Oxad18f4c, d=0

verizon’

Use C Extension Modules

cDecimal vs. Decimal (in Python < 3.3):
Pi, 64-bit, 10,000 iterations, 3.16GHz Core 2 Duo

Digits floats decimal cdecimal cdecimal-nt gmpy
9 0.12s 17.61s 0.27s 0.24s 0.52s
19 - 42.75s 0.58s 0.55s 0.52s
38 - - 1.32s 1.21s 1.07s
100 - - 4.52s 4.08s 3.57s

Source: http://www.bvytereef.ora/mpdecimal/benchmarks.html

40

verizon’

http://www.bytereef.org/mpdecimal/benchmarks.html

Cache Properties

https://qithub.com/pydanny/cached-property

41

verizon’

https://github.com/pydanny/cached-property

Scaling Horizontally:

Celery!

Scale across processes, CPUs, and hosts

http://www.celeryproject.org/
How Celery fixed Python's GIL problem

43

verizon’

http://www.celeryproject.org/
http://blog.domanski.me/how-celery-fixed-pythons-gil-problem/

Choose & test
dependent systems
that scale
horizontally

Compare system
performance with
all features

verizon’

TBD

cython, Async I/O, More C extension modules

46 verizon’

Future:

Proposed Design

Resource Streaming Telemetry
Cache Collector

Enrichment
Cache

Panoptes Framework

48

verizon’

APIls

Realtime - purpose specific Bulk/Historical - Generic

aggregateTags: [
"_aggregate",
"resource_endpoint”,
"resource_site",
"vip_type",
"real_port",
"vip_property"

"members_metrics": [

{

"load_balancer_model": "
"weight": 1,
"site"s "gil", .
dps:

1525809840: 100000
i e
metric: "${Panoptes.network-load-balancer-vip.real max_ connections}",
tags: {

vip_protocol: "tcp",

vip_ip_address_version:

vip_port: "9999"

real_dns_name:

vip_dns_nam

"load_balancer_make":
"vip_property": "
"max_connections": 100000,
"bytes_in_gauge": 802742,
"bytes_out_gauge": 0,

"load_balancer name": }

groupId__: "real dns_name: :|vip_dns_name: :|vip_ip_address_version:4|vip_port:9999 |vip_protocol:tcp"

"polling interval": 60,

"active_connections_gauge":

"vip_port": 443,
"status": 0,
"pool name": "
"packets_out_gauge": 0,
"timestamp": 1496772838,
"real_port": 443,

"vip type": "l3dsr",
"packets_in_gauge": 4221,
"cache age": 41,

"ip_address":
"name": "pus "
"connections_per_second gauge": 281,

"total_connections_counter": 746440138,

50 verizon

Custom Uls

verizon

And now:

10

What you get

e Docker container

e Discovery, enrichment and polling of the interfaces of the host you deploy on

InfluxDB as the TSDB

e Grafana as the dashboarding system

54 verizon‘/

Sample InfluxDB/Grafana Dashboard

verizon

G

+

88 Localhost -

Status

Inarface Poting Stuna

Success

Interface

Conlipured towed (eth0)

10.00 Gb

8
L

MTU o

1500

@ x o0

Poling riatace Stalus

°

Packet Brearsomn &

Tatal Prackats In/Oust Coust

55

Why?

e Docker container

e Discovery, enrichment and polling of the interfaces of the host you deploy on

InfluxDB as the TSDB

e Grafana as the dashboarding system

56 verizon‘/

Feedback & Contributions

e Tryitout!
e Find and fix bugs
e Tell your friends, family, and colleagues

e Can be used for more than just network telemetry

57

verizon’

Thank

Questions?

vvarun@verizonmedia.com

verizon’

