
Active-Active Replication

Dave Cramer
March 2019

Presented to: Scale 17x



Dave Cramer
• Senior Data Architect @ Crunchy Data
• Major Contributor to PostgreSQL
• Working with PostgreSQL since 1999
• Maintainer of the PostgreSQL JDBC Driver
• Helping out with PL/R, some other small projects
• Real interest in where things like reactive Java 

and PostgreSQL are going

2



Crunchy Data
Leading provider of trusted open source 

PostgreSQL technology, support and training.

3

Powering Innovation With The World’s Most 
Advanced Open Source Database 



Active-Active replication
• What is it?
• Why do we need/want it?
• Symmetric-ds
• Different use cases
• What it doesn’t do
• The good and the bad ?

4



What is active-active ?
• Read/Write operations on more than one 

database instance
• Updates are propagated to all instances
• Single source of truth
• Sounds simple, right ?
• What happens if there are conflicts ?

5



Why do we want it
• Local performance
• Data close to the application

6



High Availability
• Two (or more) identically configured instances. 
• Both accept writes
• Near zero downtime when failing over. No change 

to configuration of the new primary

7



Symmetric-ds
• Open source project by jumpmind.com
• https://www.symmetricds.org/
• https://github.com/JumpMind/symmetric-ds
• Replication toolkit

8

https://www.symmetricds.org/
https://github.com/JumpMind/symmetric-ds


Symmetric-ds
• Written in Java
• Uses JDBC for database access
• Web app
• Asynchronous
• Unfortunately uses triggers and a log table 
• Need to manage bloat in Postgres

9



Symmetric-ds
• Java and JDBC
• This allows the software to run on multiple 

platforms
• Enables multiple database vendors (relatively) 

easily

10



Symmetric-ds
• Asynchronous
• Synchronous replication over significant 

distances would slow the primary down
• Does introduce the possibility of data loss 

11



Symmetric-ds
• Scales to thousands of databases
• Very configurable
• Can configure which tables, columns or even rows
• Can configured to push or pull data

12



Beyond Replication
• Zero(near) downtime upgrade of PostgreSQL
• Migration to PostgreSQL
• Cloud provider lock in

13



Upgrade on disk format
• Upgrading major versions of PostgreSQL can be 

painful
• Even pg_upgrade requires *some* downtime
• Change to heap checksums is not currently 

possible with pg_upgrade
• Admittedly this can be done with logical

replication

14



Migration to PostgreSQL
• Migration from other database vendors to 

PostgreSQL
• Uses JDBC so works with a number of vendors
• Oracle, MSSQL, MariaDB, DB2 to mention a few

15



Cloud provider lock in
• Most do not allow binary replication
• Difficult to get ports other than 80 or 443

exposed
• Because Symmetric-ds is a web app it is

relatively simple to replicate from one cloud to
another

16



More than active-active
• Can be configured as single or bi-directional
• Can choose which tables to sync
• Has filters and transforms
• Can have one table(s) going up and another 

down

17



Central office with stores
• Each store has a local database for performance
• Each store can sell the item for a different price
• For instance when they want to have a sale

• The resulting sale would be replicated to the 
head office in order to aggregate corporate sales

• When new items become available central office
can push new items to the stores

18



Features 
• How to deal with some of the details of 

replication
• Conflict resolution
• Transformations
• Filters
• Monitoring

19



Conflict Detection
• Various conflict resolution schemes
• Primary Key – will not allow a row to be inserted 
• Changed Data – primary key plus only data 

changed
• Old data – All the existing row data will be used

20



Conflict Detection
• Timestamp – If the Primary key plus the 

timestamp column are equal
• Version column – If the Primary key plus the 

version are equal

21



Conflict Resolution
• Manual
• Fix the data and mark it resolved

• Ignore
• Ignore the batch or the row depending on config

• Newer wins
• Either the source or destination with the latest

change, based on either a timestamp or version 
column

22



Transformations
• Data moving from the source to the destination 

can be transformed as it moves
• This can be done when it is read from the source
• Or when written to the destination

23



Transformations
• The simplest and default is just to copy the data 

to the destination column
• Possible to change columns
• Id -> account_id for instance

• Possible to remove NULL’s
• NULL timestamp to now()

24



Transformations
• A column can be omitted 
• Set a column to a constant value
• Set to a system variable 
• Date, timestamp, node_id (source or target), null, 

• Previous value before updating
• Auditing of changes ?

25



Transformations
• Additive transform. target = target + multiplier 

(source_new - source_old)
• Substring – expression is 0,5 which is passed to 

the java substring function
• Left – copies left most characters
• Bleft – copies left most bytes
• Many more

26



Transformations
• Bean Shell 
• Executes the script in the expression
• Has access to column name, current value, old 

value, channel id, source node, target node and 
can execute SQL.

27



Filters
• Applied when loading the data
• Can be used to determine if the new data will be

replicated
• For instance do not replicate new prices that are

less than the old price

28



Monitoring
• Machine resources: CPU, Memory, disk space
• Replication status
• Batch Error
• Batch Unsent – data ready to be sent
• Data unrouted – data ready to be batched

• Nodes offline
29



Monitoring
• Log file – Can be used with log aggregators 
• Send emails when an error occurs

30



Panacea … not
• Does not replicate sequences
• This creates a problem if the sequence exists on 

both primaries
• So what happens: insert on one instance 

increments the sequence on that instance, 
subsequent insert on replica will fail with primary 
key failure (data will be inserted without using 
sequence

31



Panacea … not
• Solution to this is to increment sequences by 2 or 

more
• If you have 3 primaries you would have to have 

increment each by 3 and so on

32



Panacea … not
• Does not replicate DDL
• API allows for moving DDL over as well as data
• It is possible to lose data as this is asynchronous

33



In Summary The Good
• Java, runs anywhere
• Cross database
• Web app, easy egress and ingress
• Cloud migration, avoid lock in
• REST API

34



The Bad
• It uses triggers and they (symmetric-ds) don’t 

deal with bloat well. This is specific to 
PostgreSQL

• It’s,a bit complicated to setup
• Jumpmind has a paid (pro) version with a GUI
• The REST API is not complete enough to build 

a GUI
• GPL

35



How To

• https://info.crunchydata.com/blog/a-guide-to-
building-an-active-active-postgresql-cluster

36



37

THANK YOU!

Dave Cramer
dave.cramer@crunchydata.ca


