
2© The Pythian Group Inc., 2020

SCaLE 18x, Pasadena, CA, USA
March 6, 2020

Matthias Crauwels

Implementing MySQL
Database-as-a-Service
using Open Source tools

3© The Pythian Group Inc., 2020

Who am I?

4© The Pythian Group Inc., 2020

4

Matthias Crauwels
● Living in Ghent, Belgium
● Bachelor Computer Science
● ~20 years Linux user / admin
● ~10 years PHP developer
● ~8 years MySQL DBA
● 3rd year at Pythian
● Currently Lead Database Consultant
● Father of Leander

5© The Pythian Group Inc., 2020 5

Helping businesses
use data to compete
and win

6© The Pythian Group Inc., 2020

AGENDA

6

 Introduction and history
 DBaaS: frontend
 DBaaS: backend
 Communication

7© The Pythian Group Inc., 2020

Let's get started!

8© The Pythian Group Inc., 2020© The Pythian Group Inc., 2020 8

You start a new application, in many cases on a LAMP stack

● Linux
● Apache
● MySQL
● PHP

Everything on a single server!

History

9© The Pythian Group Inc., 2020© The Pythian Group Inc., 2020 9

Your application grows… What do you do?

You buy a bigger server!

History

10© The Pythian Group Inc., 2020© The Pythian Group Inc., 2020 10

You application grows even more. Yay!

You buy more servers and split your infrastructure.

History

Database

Web server File server

11© The Pythian Group Inc., 2020© The Pythian Group Inc., 2020 11

Your application grows even more!

● You scale up the components
● Web servers are easy, just add more and load balance
● File servers are easy, get more/bigger disks, implement RAID solutions, ...
● What about the database??

■ More servers?
● Ok but what about the data?

■ I want all my web servers to see the same data.
● Writing it on all the servers? Overhead!

History

12© The Pythian Group Inc., 2020© The Pythian Group Inc., 2020 12

MySQL replication

● Writing to master
● Reading from replica’s (slaves)

History

13© The Pythian Group Inc., 2020© The Pythian Group Inc., 2020 13

Million dollar questions

● How do we know what server is the master?
● How do we know which servers are the replica’s?
● How do we manage this replication topology?
● What if the master goes down?
● What about maintenance?
● …

History

14© The Pythian Group Inc., 2020

Database-as-a-Service

Frontend Solution

15© The Pythian Group Inc., 2020© The Pythian Group Inc., 2020 15

ProxySQL

16© The Pythian Group Inc., 2020© The Pythian Group Inc., 2020 16

ProxySQL is a high performance layer 7 proxy application for MySQL.

● It provides ‘intelligent’ load balancing of application requests onto
multiple databases

● It understands the MySQL traffic that passes through it, and can split
reads from writes.

● It understands the underlying database topology, whether the
instances are up or down

● It shields applications from the complexity of the underlying
database topology, as well as any changes to it

● ...

ProxySQL: What?

17© The Pythian Group Inc., 2020© The Pythian Group Inc., 2020 17

● Hostgroup
All backend MySQL servers are grouped into hostgroups. These “hostgroups” will be used
for query routing.

● Query rules
Query rules are used for routing, mirroring, rewriting or blocking queries. They are at the
heart of ProxySQL’s functionalities

● MySQL users and servers
These are configuration items which the proxy uses to operate

ProxySQL: terminology

18© The Pythian Group Inc., 2020© The Pythian Group Inc., 2020 18

ProxySQL: Basic design (1)

19© The Pythian Group Inc., 2020© The Pythian Group Inc., 2020 19

ProxySQL: Basic design (2)

20© The Pythian Group Inc., 2020© The Pythian Group Inc., 2020 20

ProxySQL: Internals

21© The Pythian Group Inc., 2020© The Pythian Group Inc., 2020 21

ProxySQL will be configured to share configuration values with its peers.
Currently, all instances are equal and can be used to reconfigure, there is
no “master” or “leader”. This is a feature on the roadmap
(https://github.com/sysown/proxysql/wiki/ProxySQL-Cluster#roadmap).

Helps to:

● Avoid your ProxySQL instance to be the single point of failure
● Avoid having to reconfigure every ProxySQL instance on the

application server
● Helps to (auto-)scale the ProxySQL infrastructure

ProxySQL: Clustering

https://github.com/sysown/proxysql/wiki/ProxySQL-Cluster#roadmap

22© The Pythian Group Inc., 2020© The Pythian Group Inc., 2020 22

ProxySQL exists between the application and the database.

● It hides the complexity of the database topology to the application
● It knows which server is the master and which are the slaves
● It will not make changes to the topology so topology management

is not solved with this product.
● It has support for gracefully taking a server out of service
● It is easy to configure
● It can be clustered for not being a single-point-of-failure

ProxySQL: Conclusions

23© The Pythian Group Inc., 2020

Question about
ProxySQL?

24© The Pythian Group Inc., 2020

Database-as-a-Service

Backend management

25© The Pythian Group Inc., 2020© The Pythian Group Inc., 2020 25

Orchestrator

26© The Pythian Group Inc., 2020© The Pythian Group Inc., 2020 26

Orchestrator is a High Availability and replication management tool.
Originally developed by Shlomi Noach, currently developed by the Database Infrastructure Team at GitHub

It can be used for:

● Discovery of a topology
● Visualisation of a topology
● Refactoring of a topology
● Recovery of a topology

Orchestrator: What?

27© The Pythian Group Inc., 2020© The Pythian Group Inc., 2020 27

Orchestrator can (and will) discover your entire replication technology as
soon as you connect it to a single server in the topology.

It will use SHOW SLAVE HOSTS, SHOW PROCESSLIST, SHOW
SLAVE STATUS to try and connect to the other servers in the topology.

Requirement: the orchestrator_topology_user needs to be created
on every server in the cluster so it can connect.

Orchestrator: Discovery

28© The Pythian Group Inc., 2020© The Pythian Group Inc., 2020 28

Orchestrator comes with a web interface that visualizes the servers in the
topology.

Orchestrator: Visualization

29© The Pythian Group Inc., 2020© The Pythian Group Inc., 2020 29

Orchestrator can be used to refactor the topology.

This can be done from the command line tool, via the API or even via the
web interface by dragging and dropping.

You can do things like

● Repoint a slave to a new master
● Promote a server to a (co-)master
● Start / Stop slave
● ...

Orchestrator: Refactoring

30© The Pythian Group Inc., 2020© The Pythian Group Inc., 2020 30

All of these features are nice, but they still require a human to execute
them. This doesn’t help you much when your master goes down at 3AM
and you get paged to resolve this.

Orchestrator can be configured to automatically recover your topology
from an outage.

Orchestrator: Recovery

31© The Pythian Group Inc., 2020© The Pythian Group Inc., 2020 31

To be able to perform a recovery, Orchestrator first needs to detect a
failure.

As indicated before Orchestrator connects to every server in the topology
and gathers information from each of the instances.

Orchestrator uses this information to make decisions on the best action to
take. They call this the holistic approach.

Orchestrator: How recovery works?

32© The Pythian Group Inc., 2020© The Pythian Group Inc., 2020 32

Orchestrator: Failure detection example

33© The Pythian Group Inc., 2020© The Pythian Group Inc., 2020 33

Orchestrator was written with High Availability as a basic concept.

You can easily run multiple Orchestrator instances with a shared MySQL
backend. All instances will collect all information but they will allow only
one instance to be the “active node” and to make changes to the
topology.

To eliminate a single-point-of-failure in the database backend you can
use either master-master replication (2 nodes) or Galera synchronous
replication (3 nodes).

Orchestrator High Availability

34© The Pythian Group Inc., 2020© The Pythian Group Inc., 2020 34

Since version 3.x of Orchestrator there is “Orchestrator-on-Raft”.

Orchestrator now implements the ‘raft consensus protocol’. This will

● Ensure that a leader node is elected from the available nodes
● Ensure that the leader node has a quorum (majority) at all times
● Allow to run Orchestrator without a shared database backend
● Allow to run without a MySQL backend but use a sqlite backend

Orchestrator High Availability

35© The Pythian Group Inc., 2020© The Pythian Group Inc., 2020 35

A common example of a High Availability setup

● 3 Orchestrator nodes in different DC’s
● Often one primary DC, one backup DC and one “arbitrator” node in a

cloud DC.
● Orchestrator developers have made changes to raft protocol to allow

■ leader to step down
■ other nodes to yield to a certain node to become the leader

● Shlomi Noach from GitHub will definitely go into more detail on how
they implemented this at GitHub.

Orchestrator High Availability

36© The Pythian Group Inc., 2020

Questions about
Orchestrator?

37© The Pythian Group Inc., 2020

Overview

38© The Pythian Group Inc., 2020© The Pythian Group Inc., 2020 38

Architecture overview

APP(S)

Leader

39© The Pythian Group Inc., 2020

Communication

Default behaviour

40© The Pythian Group Inc., 2020© The Pythian Group Inc., 2020 40

● Using the read only flag monitoring in ProxySQL by adding a hostgroup-pair to
mysql_replication_hostgroups table

Admin> SHOW CREATE TABLE mysql_replication_hostgroups\G
*************************** 1. row ***************************
 table: mysql_replication_hostgroups
Create Table: CREATE TABLE mysql_replication_hostgroups (
 writer_hostgroup INT CHECK (writer_hostgroup>=0) NOT NULL PRIMARY KEY,
 reader_hostgroup INT NOT NULL CHECK (reader_hostgroup<>writer_hostgroup AND reader_hostgroup>0),
 comment VARCHAR,
 UNIQUE (reader_hostgroup)
)

1 row in set (0.00 sec)

● Requires monitoring user to be configured correctly

ProxySQL read only flag monitoring

41© The Pythian Group Inc., 2020© The Pythian Group Inc., 2020 41

● Orchestrator will flip the read-only flag on master failover
● Setting ApplyMySQLPromotionAfterMasterFailover

● default value was false (Orchestrator version < 3.0.12)
● since 3.0.12 default is true

● Recommendation has always been to enable this.
● Configure MySQL to be read-only by default (best practise)

Orchestrator ApplyMySQLPromotionAfterMasterFailover

42© The Pythian Group Inc., 2020© The Pythian Group Inc., 2020 42

● What happens on network partitions?
● Orchestrator sees master being unavailable and promotes a new
● Old master still is writeable (Orchestrator can not reach it to toggle the

flag)
● ProxySQL will move the new master (writable) to the writer hostgroup
● ProxySQL will place old master as SHUNNED.
● When network partition gets resolved it will still be writable so it will

return to ONLINE.
● this will lead to split brain

Default behaviour: Caveats

43© The Pythian Group Inc., 2020© The Pythian Group Inc., 2020 43

● Solutions to prevent this split brain scenario
● STONITH (shoot the other node in the head)
● Run script in ProxySQL scheduler that deletes any SHUNNED writers

from the configuration (both from the writer and reader hostgroups)

Default behaviour: Caveats / workarounds

44© The Pythian Group Inc., 2020

Communication

Orchestrator hooks

45© The Pythian Group Inc., 2020© The Pythian Group Inc., 2020 45

● Orchestrator implements hooks on various stages of the recovery
process

● These "hooks" are like events that will be called and you can
configure your own scripts to run

● This makes Orchestrator highly customisable and scriptable
● Default (naive) configuration will echo text to /tmp/recovery.log
● Use the hooks! If not for scripting then for alerting / notifying you

that something happened

Orchestrator hooks: What?

46© The Pythian Group Inc., 2020© The Pythian Group Inc., 2020 46

● Instead of relying on ProxySQL's monitoring of the read-only flag we
can now actively push changes to ProxySQL using the hooks.

● Whenever a planned or unplanned master change takes place we
will update the ProxySQL.

● Pre-failover:
■ Remove {failedHost} from the writer hostgroup

● Post-failover:
■ If the recovery was successful: Insert {successorHost} in the writer

hostgroup

● WARNING: test test test test test test !!!!!
(before enabling automated failovers in production)

Orchestrator hooks: Why?

47© The Pythian Group Inc., 2020

Communication

Decouple communication (between ProxySQL and Orchestrator)

48© The Pythian Group Inc., 2020© The Pythian Group Inc., 2020 48

● Orchestrator hooks are great but...
● ... what happens if there is no communication possible between

Orchestrator and ProxySQL?
● Hooks are only fired once
● What if ProxySQL is not reachable? Stop failover?
● You need ProxySQL admin credentials available on Orchestrator

The problem

49© The Pythian Group Inc., 2020© The Pythian Group Inc., 2020 49

● Decouple Orchestrator and ProxySQL
● Use Consul as key-value store in between both
● Orchestrator has built-in support to update master coordinates in the

K/V store (both for Zookeeper and Consul)
● Configuration settings

● "KVClusterMasterPrefix": "mysql/master",
● "ConsulAddress": "127.0.0.1:8500",
● "ZkAddress": "srv-a,srv-b:12181,srv-c",

The solution

50© The Pythian Group Inc., 2020© The Pythian Group Inc., 2020 50

● KVClusterMasterPrefix is the prefix to use for master discovery
entries. As example, your cluster alias is mycluster and the master
host is some.host-17.com then you will expect an entry where:

● The Key is mysql/master/mycluster
● The Value is some.host-17.com:3306

● Additionally following key/values will be available automatically
● mysql/master/mycluster/hostname , value is some.host-17.com
● mysql/master/mycluster/port , value is 3306
● mysql/master/mycluster/ipv4 , value is 192.168.0.1
● mysql/master/mycluster/ipv6 , value is <whatever>

Which keys and values?

51© The Pythian Group Inc., 2020© The Pythian Group Inc., 2020 51

● Recommended setup for Orchestrator is to run 3 nodes with their
own local datastore (MySQL or SQLite)

● Communication between nodes happens using the RAFT protocol.
● This is also the preferred setup for the Consul K/V store
● We install Consul "server" on each Orchestrator nodes
● Consul "server" comes also with an "agent"
● We let the Orchestrator leader send it's updates to the local Consul

agent.
● Consul agent updates the Consul leader node and the leader

distributes the data to all 3 nodes using the RAFT protocol.

Avoiding single-point-of-failures (1)

52© The Pythian Group Inc., 2020© The Pythian Group Inc., 2020 52

● We now have our HA for Orchestrator and Consul.
● We have avoided network partitioning

● Majority vote is required to be the leader on both applications
● If our local Consul agent is unable to reach the Consul leader node, then

Orchestrator will not be able to reach its peers and thus not be the
Leader node.

● Optional: Orchestrator extends RAFT to implement a yield option to
yield to a specific leader. We could implement a cronjob for
Orchestrator to always yield Orchestrator leadership to the Consul
leader for faster updates but this not a requirement.

Avoiding single-point-of-failures (2)

53© The Pythian Group Inc., 2020© The Pythian Group Inc., 2020 53

● Orchestrator really doesn't care all that much for slaves
● Masters are important for HA

● the native support for the K/V store ends with updating the masters to it
("KVClusterMasterPrefix": "mysql/master")

● API to the rescue!
● We can create a fairly simple script that runs in a cron
● pull ALL the servers from the API (get JSON response)
● compare the slave entries with values in Consul (for example keys

starting with mysql/slaves)
● update Consul if needed

What about the slaves?

54© The Pythian Group Inc., 2020© The Pythian Group Inc., 2020 54

● Now Orchestrator is updating Consul K/V (master via native support,
slaves via our script)

● Let's install a Consul "agent" on every ProxySQL machine.
● We can now query Consul data via this local agent

root@proxysql-1:~ $ consul members
Node Address Status Type Build Protocol DC Segment
orchestrator-1 10.0.1.2:8301 alive server 1.4.3 2 default <all>
orchestrator-2 10.0.2.2:8301 alive server 1.4.3 2 default <all>
orchestrator-3 10.0.3.2:8301 alive server 1.4.3 2 default <all>
proxysql-1 10.0.1.3:8301 alive client 1.4.3 2 default <default>
proxysql-2 10.0.2.3:8301 alive client 1.4.3 2 default <default>

How to configure ProxySQL?

55© The Pythian Group Inc., 2020© The Pythian Group Inc., 2020 55

● First option is to use the scripted approach
● Run a script in a cronjob or in the ProxySQL scheduler
● Crawl the Consul K/V store
● Update ProxySQL config

How to configure ProxySQL?

Pro Con

Fairly easy A lot of wasted CPU cycles

Fairly quick (ProxySQL scheduler works on
a millisecond base)

56© The Pythian Group Inc., 2020© The Pythian Group Inc., 2020 56

● Use consul-template
● Registers as listener to the Consul values
● Every time a value is changed it will re-generate a file from a template
● Example:

{{ if keyExists "mysql/master/testcluster/hostname" }}
DELETE FROM mysql_servers where hostgroup_id = 0;
REPLACE into mysql_servers (hostgroup_id, hostname) values (0, "{{ key
"mysql/master/testcluster/hostname" }}");
{{ end }}

{{ range tree "mysql/slave/testcluster" }}
REPLACE into mysql_servers (hostgroup_id, hostname) values (1, "{{ .Key }}{{ .Value }}");
{{ end }}

LOAD MYSQL SERVERS TO RUNTIME;
SAVE MYSQL SERVERS TO DISK;

How to configure ProxySQL?

57© The Pythian Group Inc., 2020© The Pythian Group Inc., 2020 57

Architecture

58© The Pythian Group Inc., 2020

Questions?

59© The Pythian Group Inc., 2020

Contact
Matthias Crauwels

crauwels@pythian.com

+1 (613) 565-8696 ext. 1215

Twitter @mcrauwel

We're hiring!!

 https://pythian.com/careers

mailto:crauwels@pythian.com

