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1. Collect 
Everything

• Recommendation Engines
• Risk, Fraud Detection
• IoT & Predictive Maintenance
• Genomics & DNA Sequencing

3. Data Science & 
Machine Learning

2. Store it all in 
the Data Lake

The Promise of the Data Lake

Garbage In Garbage Stored Garbage Out
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What does a typical 
data lake project look like?
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Challenge #1: Historical Queries?
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Challenge #2: Messy Data?
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Reprocessing

Challenge #3: Mistakes and Failures?
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Reprocessing

Challenge #4: Updates?
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Wasting Time & Money

Solving Systems Problems

Instead of Extracting Value From Data



Data Lake Distractions

No atomicity means failed production jobs 
leave data in corrupt state requiring tedious 
recovery

✗

No quality enforcement creates inconsistent and 
unusable data 

No consistency / isolation makes it almost impossible 
to mix appends and reads, batch and streaming



Let’s try it instead with



Reprocessing

Challenges of the Data Lake
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Data Lake
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JSON, 
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Kinesis

Quality

Delta Lake allows you to incrementally improve the 
quality of your data until it is ready for consumption.

*Data Quality Levels *
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•Dumping ground for raw data
•Often with long retention (years)
•Avoid error-prone parsing
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Intermediate data with some cleanup applied.
Queryable for easy debugging!
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Clean data, ready for consumption.
Read with Spark or Presto*

*Coming Soon
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Streams move data through the Delta Lake
•Low-latency or manually triggered
•Eliminates management of schedules and  jobs
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Delta Lake also supports batch jobs 
and standard DML

UPDATE

DELETE
MERGE

OVERWRITE

• Retention
• Corrections
• GDPR
• UPSERTS

INSERT
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Easy to recompute when business logic changes:
• Clear tables
• Restart streams

DELETE DELETE



Who is using                       ?



Used by 1000s of organizations world wide

> 1 exabyte processed last month alone
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Improved reliability: 

Petabyte-scale jobs

10x lower compute: 

640 instances to 64! 

Simpler, faster ETL: 

84 jobs → 3 jobs

halved data latency
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Easier transactional 
updates: 
No downtime or 
consistency issues! 

Simple CDC: 
Easy with MERGE

Improved performance: 
Queries run faster
>1 hr → < 6 sec



How do I use                       ?



dataframe
.write
.format("delta")
.save("/data")

Get Started with Delta using Spark APIs

dataframe
.write
.format("parquet")
.save("/data")

Instead of parquet... … simply say delta

Add Spark Package
  pyspark --packages io.delta:delta-core_2.12:0.1.0

  bin/spark-shell --packages io.delta:delta-core_2.12:0.1.0

 

<dependency>
  <groupId>io.delta</groupId> 
  <artifactId>delta-core_2.12</artifactId> 
  <version>0.1.0</version>
</dependency> 

Maven



How does                        work?



Delta On Disk

my_table/

  _delta_log/

    00000.json

    00001.json 

  date=2019-01-01/

    file-1.parquet

Transaction Log
Table Versions

(Optional) Partition Directories
Data Files



Table = result of a set of actions

Change Metadata – name, schema, partitioning, etc
Add File – adds a file (with optional statistics)
Remove File – removes a file

Result: Current Metadata, List of Files, List of Txns, Version



Implementing Atomicity

Changes to the table 
are stored as 
ordered, atomic units 
called commits

Add 1.parquet

Add 2.parquet

Remove 1.parquet

Remove 2.parquet

Add 3.parquet

000000.json

000001.json

…



Ensuring Serializablity

Need to agree on the order 
of changes, even when 
there are multiple writers.

000000.json

000001.json

000002.json

User 1 User 2



Solving Conflicts Optimistically

1. Record start version
2. Record reads/writes
3. Attempt commit
4. If someone else wins, 

check if anything you 
read has changed.

5. Try again.

000000.json

000001.json

000002.json

User 1 User 2
Write: Append
Read: Schema

Write: Append
Read: Schema



Handling Massive Metadata

Large tables can have millions of files in them! How do we scale 
the metadata? Use Spark for scaling!

Add 1.parquet

Add 2.parquet

Remove 1.parquet

Remove 2.parquet

Add 3.parquet

Checkpoint



Road Map

• 0.2.0 – Released!
• S3 Support
• Azure Blob Store and ADLS Support

• 0.3.0 Released!
• UPDATE (Scala)
• DELETE (Scala)
• MERGE (Scala)
• VACUUM (Scala)

• Rest of Q3
• DDL Support / Hive 

Metastore



Build your own Delta Lake
at  https://delta.io


