
Making Apache Spark™
Better with Delta Lake
Steven Yu, Senior Solutions Architect

1. Collect
Everything

• Recommendation Engines
• Risk, Fraud Detection
• IoT & Predictive Maintenance
• Genomics & DNA Sequencing

3. Data Science &
Machine Learning

2. Store it all in
the Data Lake

The Promise of the Data Lake

Garbage In Garbage Stored Garbage Out

��

��

��

����

��

��

What does a typical
data lake project look like?

Evolution of a Cutting-Edge Data Lake

Events

?
AI & Reporting

Streaming
Analytics

Data Lake

Evolution of a Cutting-Edge Data Lake

Events

AI & Reporting

Streaming
Analytics

Data Lake

Challenge #1: Historical Queries?

Data Lake

λ-arch

λ-arch

Streaming
Analytics

AI & Reporting

Events
 λ-arch1

1

1

Challenge #2: Messy Data?

Data Lake

λ-arch

λ-arch

Streaming
Analytics

AI & Reporting

Events

Validation

 λ-arch

Validation

1

21

1

2

Reprocessing

Challenge #3: Mistakes and Failures?

Data Lake

λ-arch

λ-arch

Streaming
Analytics

AI & Reporting

Events

Validation

 λ-arch

Validation

Reprocessing

Partitioned

1

2

3

1

1

3

2

Reprocessing

Challenge #4: Updates?

Data Lake

λ-arch

λ-arch

Streaming
Analytics

AI & Reporting

Events

Validation

 λ-arch

Validation

Reprocessing

Updates

Partitioned

UPDATE &
MERGE

Scheduled to
Avoid
Modifications

1

2

3

1

1

3

4

4

4

2

Wasting Time & Money

Solving Systems Problems

Instead of Extracting Value From Data

Data Lake Distractions

No atomicity means failed production jobs
leave data in corrupt state requiring tedious
recovery

✗

No quality enforcement creates inconsistent and
unusable data

No consistency / isolation makes it almost impossible
to mix appends and reads, batch and streaming

Let’s try it instead with

Reprocessing

Challenges of the Data Lake

Data Lake

λ-arch

λ-arch

Streaming
Analytics

AI & Reporting

Events

Validation

 λ-arch

Validation

Reprocessing

Updates

Partitioned

UPDATE &
MERGE

Scheduled to
Avoid
Modifications

1

2

3

1

1

3

4

4

4

2

Data Lake

AI & Reporting

Streaming
Analytics

Business-level
Aggregates

Filtered, Cleaned
Augmented

Raw
Ingestion

The

Bronze Silver Gold

CSV,
JSON,
TXT…

Kinesis

Quality

Delta Lake allows you to incrementally improve the
quality of your data until it is ready for consumption.

*Data Quality Levels *

Data Lake

AI & Reporting

Streaming
Analytics

Business-level
Aggregates

Filtered, Cleaned
Augmented

Raw
Ingestion

The

Bronze Silver Gold

CSV,
JSON,
TXT…

Kinesis

•Dumping ground for raw data
•Often with long retention (years)
•Avoid error-prone parsing

��

Data Lake

AI & Reporting

Streaming
Analytics

Business-level
Aggregates

Filtered, Cleaned
Augmented

Raw
Ingestion

The

Bronze Silver Gold

CSV,
JSON,
TXT…

Kinesis

Intermediate data with some cleanup applied.
Queryable for easy debugging!

Data Lake

AI & Reporting

Streaming
Analytics

Business-level
Aggregates

Filtered, Cleaned
Augmented

Raw
Ingestion

The

Bronze Silver Gold

CSV,
JSON,
TXT…

Kinesis

Clean data, ready for consumption.
Read with Spark or Presto*

*Coming Soon

Data Lake

AI & Reporting

Streaming
Analytics

Business-level
Aggregates

Filtered, Cleaned
Augmented

Raw
Ingestion

The

Bronze Silver Gold

CSV,
JSON,
TXT…

Kinesis

Streams move data through the Delta Lake
•Low-latency or manually triggered
•Eliminates management of schedules and jobs

Data Lake

AI & Reporting

Streaming
Analytics

Business-level
Aggregates

Filtered, Cleaned
Augmented

Raw
Ingestion

The

Bronze Silver Gold

CSV,
JSON,
TXT…

Kinesis

Delta Lake also supports batch jobs
and standard DML

UPDATE

DELETE
MERGE

OVERWRITE

• Retention
• Corrections
• GDPR
• UPSERTS

INSERT

Data Lake

AI & Reporting

Streaming
Analytics

Business-level
Aggregates

Filtered, Cleaned
Augmented

Raw
Ingestion

The

Bronze Silver Gold

CSV,
JSON,
TXT…

Kinesis

Easy to recompute when business logic changes:
• Clear tables
• Restart streams

DELETE DELETE

Who is using ?

Used by 1000s of organizations world wide

> 1 exabyte processed last month alone

23

Improved reliability:

Petabyte-scale jobs

10x lower compute:

640 instances to 64!

Simpler, faster ETL:

84 jobs → 3 jobs

halved data latency

24

Easier transactional
updates:
No downtime or
consistency issues!

Simple CDC:
Easy with MERGE

Improved performance:
Queries run faster
>1 hr → < 6 sec

How do I use ?

dataframe
.write
.format("delta")
.save("/data")

Get Started with Delta using Spark APIs

dataframe
.write
.format("parquet")
.save("/data")

Instead of parquet... … simply say delta

Add Spark Package
 pyspark --packages io.delta:delta-core_2.12:0.1.0

 bin/spark-shell --packages io.delta:delta-core_2.12:0.1.0

<dependency>
 <groupId>io.delta</groupId>
 <artifactId>delta-core_2.12</artifactId>
 <version>0.1.0</version>
</dependency>

Maven

How does work?

Delta On Disk

my_table/

 _delta_log/

 00000.json

 00001.json

 date=2019-01-01/

 file-1.parquet

Transaction Log
Table Versions

(Optional) Partition Directories
Data Files

Table = result of a set of actions

Change Metadata – name, schema, partitioning, etc
Add File – adds a file (with optional statistics)
Remove File – removes a file

Result: Current Metadata, List of Files, List of Txns, Version

Implementing Atomicity

Changes to the table
are stored as
ordered, atomic units
called commits

Add 1.parquet

Add 2.parquet

Remove 1.parquet

Remove 2.parquet

Add 3.parquet

000000.json

000001.json

…

Ensuring Serializablity

Need to agree on the order
of changes, even when
there are multiple writers.

000000.json

000001.json

000002.json

User 1 User 2

Solving Conflicts Optimistically

1. Record start version
2. Record reads/writes
3. Attempt commit
4. If someone else wins,

check if anything you
read has changed.

5. Try again.

000000.json

000001.json

000002.json

User 1 User 2
Write: Append
Read: Schema

Write: Append
Read: Schema

Handling Massive Metadata

Large tables can have millions of files in them! How do we scale
the metadata? Use Spark for scaling!

Add 1.parquet

Add 2.parquet

Remove 1.parquet

Remove 2.parquet

Add 3.parquet

Checkpoint

Road Map

• 0.2.0 – Released!
• S3 Support
• Azure Blob Store and ADLS Support

• 0.3.0 Released!
• UPDATE (Scala)
• DELETE (Scala)
• MERGE (Scala)
• VACUUM (Scala)

• Rest of Q3
• DDL Support / Hive

Metastore

Build your own Delta Lake
at https://delta.io

