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The Promise of the Data Lake
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- Recommendation Engines

. Risk, Fraud Detection

- loT & Predictive Maintenance
- Genomics & DNA Sequencing
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Evolution of a Cutting-Edge Data Lake
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Challenge #1: Historical Queries?
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Challenge #2: Messy Data?
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Challenge #3: Mistakes and Failures?
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Challenge #4: Updates?
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Wasting [1ime & Money
Solving Systems Problems

Instead of Extracting Value From Data



Data Lake Distractions
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No atomicity means failed production jobs
leave data in corrupt state requiring tedious
recovery

No quality enforcement creates inconsistent and
unusable data

No consistency /isolation makes it almost impossible
to mix appends and reads, batch and streaming



Let’s try it instead with
DELTA LAKE



Challenges of the Data Lake
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The 4\ DELTA LAKE
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Delta Lake allows you to incrementally improve the
quality of your data until it is
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*Dumping ground for raw data
*Often with long retention (years)
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Intermediate data with some cleanup applied.
Queryable for easy debugging!
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Clean data, ready for consumption.
Read with Spark or Presto”
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The DELTA LAKE

§€ xafka Bronze Gold

o Streaming
= Kmesz @ @ @ Analytics

Raw Filtered, Cleaned Business-level |

Data Lake Ingestion A ted Aggoregates
,,,,,, 5 HEMENte BEIEE Al & Reporting

Streams move data through the Delta Lake
L ow-latency or manually triggered
Eliminates management of schedules and jobs
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Delta Lake also supports batch jobs
and standard DML

 Retention
e Corrections
e GDPR

Streaming
Analytics

Al & Reporting



§g kafka

:M Kinesis

 csv,
\ JSON,

X
Data Lake

AAAAAA

DELTA LAKE
Bronze Gold whﬂ
~\a Streaming
@ & @ Analytics
Raw Filtered, Cleaned Business-level \ Lo}
Ingestion Augmented Aggregates

Al & Reporting

Easy to recompute when business logic changes:
 Cleartables
e Restart streams



Who is using £\ pELTA LAKE?



Used by 1000s of organizations world wide

> 1 exabyte processed last month alone
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SESSIONIZATION WITH DELTA LAKE

Single Job
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FASTER QUERIES, RELIABLE PIPELINES, 10X REDUCTION IN COMPUTE! ""O‘\%AST

Improved reliability:
Petabyte-scale jobs

10x lower compute:
640 instances to 64!

Simpler, faster ETL:
84 jobs — 3 jobs
halved data latency
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Easier transactional
updates:

No downtime or
consistency issues!

Simple CDC:
Fasy with MERGE

Improved performance:

Queries run faster
>l hr-><6sec

.
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How do | use £\ peELTA LAKE ?



Get Started with Delta using Spark APIs
Add Spark Package Maven

<dependency>
<groupld>io.delta</groupld>
<artifactld>delta-core_2.12</artifactld>

pyspark --packages io.delta:delta-core_2.12:0.1.0

bin/spark-shell --packages io.delta:delta-core_2.12:0.1.0 <version>0.1.0</version>
</dependency>
Instead of parquet... Slmply say
dataframe dataframe
.write .write
.format ("parquet") .format (" ")

.save ("/data") .save ("/data")



How does £\ beELTA LAKE \WOrk?



Delta On Disk

my table/
_delta log/
I:@@@@@ .json
©00B1. json
date=2019-01-01/
l.file—l.parquet



Table = result of a set of actions

- name, schema, partitioning, etc
— adds a file (with optional statistics)
- removes a file

Current Metadata, List of Files, List of Txns, Version



Implementing Atomicity

Changes to the table
are stored as

ordered, atomic units .
called commits ©00001. json

000000 . json



Ensuring Serializablity

Need to agree on the order
of changes, even when
there are multiple writers.

00000 . json
User 1 User 2

©0001. json
000002 . json



Solving Conflicts Optimistically

il S

Record start version
Record reads/writes
Attempt commit

If someone else wins,
check if anything you
read has changed.
Try again.

Userl

<«— 000000.json —» User 2
©00O1. json
000002 . json



Handling Massive Metadata

Large tables can have millions of files in them! How do we scale
the metadata? Use Spark for scaling!
Checkpoint

AAAAAAAAAAAA



Road Map

«0.2.0 - Released!

« S3 Support
« Azure Blob Store and ADLS Support

«0.3.0 Released!
- UPDATE (Scala)
« DELETE (Scala)
- MERGE (Scala)
- VACUUM (Scala)

«Rest of Q3

« DDL Support / Hive
Metastore



Build your own
al

Delta Lake




