Q Making Apache Spark™
Better with Delta Lake
DELTA LAKE

Steven Yu, Senior Solutions Architect

The Promise of the Data Lake

1. Collect 2. Store it all in 3. Data Science &
Everything the Data Lake Machine Learning

n". Il

- Recommendation Engines

. Risk, Fraud Detection

- loT & Predictive Maintenance
- Genomics & DNA Sequencing

Garbage In Garbage Stored Garbage Out

A

What ¢
data lake

oes a typical

Oroject look

ike?

Evolution of a Cutting-Edge Data Lake

Events —— §gkqfkq 1 h | H
e

Streaming

Analytics

= am

Data Lake Al & Reporting

Evolution of a Cutting-Edge Data Lake
cvents > BBkafka —— SEEKS — |l

Streaming
Analytics

= am

Data Lake Al & Reporting

Challenge #1: Historical Queries?

—’u_h_LLu

Data Lake

Streaming
Analytics

Al & Reporting

1 A-arch

Challenge #2: Messy Data?

Data Lake

1 A-arch
. > 1 ‘| I H 2 Validation
Streaming
Analytics

Al & Reporting

Challenge #3: Mistakes and Failures?

<’\Z 1 A-arch
Fvents ——>§3kafka i Spark” — |l |.H 2 Validation
l j Streaming (3 Reprocessing

AAAAAA o e Analytics

Data Lake Al & Reporting

Challenge #4: Updates?
Fvents —-—>§gkqfkq _)SPQI"”(\Z — |y ‘ll H

l A Streaming

AAAAAA <’\Z 5 Analytics
D ——

\
Data Lake 3@5:4 Al & Reporting

1 A-arch
2 Validation
3 Reprocessing

4 Updates

Wasting [1ime & Money
Solving Systems Problems

Instead of Extracting Value From Data

Data Lake Distractions

VY

@’
- &
°

g1y

No atomicity means failed production jobs
leave data in corrupt state requiring tedious
recovery

No quality enforcement creates inconsistent and
unusable data

No consistency /isolation makes it almost impossible
to mix appends and reads, batch and streaming

Let’s try it instead with
DELTA LAKE

Challenges of the Data Lake

1 A-arch
Events §€|€3fkq 1~ Spark. 2 Validation
1 Streaming 3 Reprocessing
Sb”b”ﬂ(Analytics D Updates
2
3 4
Spark

Data Lake 4 Al & Reporting

The 4\ DELTA LAKE
§€ — *Data Quality Levels * M

Bronze Gold - _
e i o reaming
= Kmesz @ @ @ Analytics
Raw Filtered, Cleaned Business-level p|
Ingestion Augmented Aggregates Al & Rebortin
Spark: POTHINg
Quality

Delta Lake allows you to incrementally improve the
quality of your data until it is

§g kafka

:M Kinesis

 csv,
\ JSON,

X
Data Lake

AAAAAA

DELTA LAKE
Bronze Gold
Raw Filtered, Cleaned Business-level
Ingestion Augmented Aggregates

*Dumping ground for raw data
*Often with long retention (years)
*Avoid error-prone parsing

Streaming
Analytics

7| Ll
Al & Reporting

§g kafka

:M Kinesis

 csv,
\ JSON,

T
Data Lake

AAAAAA

DELTA LAKE
Bronze Gold WM.“
, Streaming
= = 8
| .
Raw Filtered, Cleaned Business-level \
Ingestion Augmented Aggregates

Al & Reporting

Intermediate data with some cleanup applied.
Queryable for easy debugging!

§g kafka

:M Kinesis

 csv,
\ JSON,

T
Data Lake

AAAAAA

DELTA LAKE
Bronze Gold
|
= — =
Raw Filtered, Cleaned Business-level
Ingestion Augmented Aggregates

Clean data, ready for consumption.
Read with Spark or Presto”

Streaming
Analytics

Al & Reporting

*Coming Soon

The DELTA LAKE

§€ xafka Bronze Gold

o Streaming
= Kmesz @ @ @ Analytics

Raw Filtered, Cleaned Business-level |

Data Lake Ingestion A ted Aggoregates
,,,,,, 5 HEMENte BEIEE Al & Reporting

Streams move data through the Delta Lake
L ow-latency or manually triggered
Eliminates management of schedules and jobs

§g kafka

:M Kinesis

 csv,
\ JSON,

T
Data Lake

AAAAAA

DELTA LAKE
Bronze Gold
|
= — =
Raw Filtered, Cleaned Business-level
Ingestion Augmented Aggregates

Delta Lake also supports batch jobs
and standard DML

 Retention
e Corrections
e GDPR

Streaming
Analytics

Al & Reporting

§g kafka

:M Kinesis

 csv,
\ JSON,

X
Data Lake

AAAAAA

DELTA LAKE
Bronze Gold whﬂ
~\a Streaming
@ & @ Analytics
Raw Filtered, Cleaned Business-level \ Lo}
Ingestion Augmented Aggregates

Al & Reporting

Easy to recompute when business logic changes:
 Cleartables
e Restart streams

Who is using £\ pELTA LAKE?

Used by 1000s of organizations world wide

> 1 exabyte processed last month alone

(172}
COMCAST Wm

NBCUNIVERSAL ¥, o],
CISCO. s g

--------- Barracuda

viacom TuiI‘ner NVIDIA.

2
COMCAST

SESSIONIZATION WITH DELTA LAKE

Single Job
AR 64 Machines Ao oBtim Sl
Job 1 uto _p imize e uto ,E imize Job 3 Auto Optimize
Data Ingest -_,/ Sessmmze k_s_/ Enrich & Optimize @I
_ﬁv:f:>f—} :’)”f\‘ [:()E :>Css @E sy (T
=tc: Streaming '...é.. n.é» Aén. A o s
Enable Random Prefiies Enable Random Prefoes
f:"r1 = == =
BEEEE e Tad
semns LU S [T e e fer
o, RN R N
e T e 3 [g = e o
No more Key
management

FASTER QUERIES, RELIABLE PIPELINES, 10X REDUCTION IN COMPUTE! ""O‘\%AST

Improved reliability:
Petabyte-scale jobs

10x lower compute:
640 instances to 64!

Simpler, faster ETL:
84 jobs — 3 jobs
halved data latency

23

p
. Sams Club. Walmart

on-premise data sources

s =
i L E@

SAP

N

+ CrliErbep

Apache
Airflow

Swift Object
Storage

A\ Azure
k-

Ature Blob
USY Storage

databricks :

>

Users

v o\v

(

Easier transactional
updates:

No downtime or
consistency issues!

Simple CDC:
Fasy with MERGE

Improved performance:

Queries run faster
>l hr-><6sec

.

24

How do | use £\ peELTA LAKE ?

Get Started with Delta using Spark APIs
Add Spark Package Maven

<dependency>
<groupld>io.delta</groupld>
<artifactld>delta-core_2.12</artifactld>

pyspark --packages io.delta:delta-core_2.12:0.1.0

bin/spark-shell --packages io.delta:delta-core_2.12:0.1.0 <version>0.1.0</version>
</dependency>
Instead of parquet... Slmply say
dataframe dataframe
.write .write
.format ("parquet") .format (" ")

.save ("/data") .save ("/data")

How does £\ beELTA LAKE \WOrk?

Delta On Disk

my table/
_delta log/
I:@@@@@ .json
©00B1. json
date=2019-01-01/
l.file—l.parquet

Table = result of a set of actions

- name, schema, partitioning, etc
— adds a file (with optional statistics)
- removes a file

Current Metadata, List of Files, List of Txns, Version

Implementing Atomicity

Changes to the table
are stored as

ordered, atomic units .
called commits ©00001. json

000000 . json

Ensuring Serializablity

Need to agree on the order
of changes, even when
there are multiple writers.

00000 . json
User 1 User 2

©0001. json
000002 . json

Solving Conflicts Optimistically

il S

Record start version
Record reads/writes
Attempt commit

If someone else wins,
check if anything you
read has changed.
Try again.

Userl

<«— 000000.json —» User 2
©00O1. json
000002 . json

Handling Massive Metadata

Large tables can have millions of files in them! How do we scale
the metadata? Use Spark for scaling!
Checkpoint

AAAAAAAAAAAA

Road Map

«0.2.0 - Released!

« S3 Support
« Azure Blob Store and ADLS Support

«0.3.0 Released!
- UPDATE (Scala)
« DELETE (Scala)
- MERGE (Scala)
- VACUUM (Scala)

«Rest of Q3

« DDL Support / Hive
Metastore

Build your own
al

Delta Lake

