How Container Schedulers and Software-Defined Storage will Change the Cloud

David vonThenen
{code} by Dell EMC
@dvonthenen
http://dvonthenen.com
github.com/dvonthenen
Agenda

- Review of Software-Defined Storage
- Container Schedulers
- Schedulers + Software-Defined Storage = Awesome!
- To the Cloud!!
- Demo
Software-Defined Storage
What are they?

• Many definitions… most agree on:
• Software-Defined Storage (SDS) serve as abstraction layer above underlying storage
• Provides a (programmatic) mechanism to provision storage
• Varying degrees of SDS: NFS, VMware VSAN
What makes them unique?

- Operational - Manage provisioning process and data independent of underlying hardware
- Physical - Abstract consumed logical storage from underlying physical storage
- Policy - Automation of policy driven both external (users) and internal (platform)
- Day 2 Operations - Maintenance is inherently different
Example: NFS
Example: VSAN
NFS & VSAN are different…

• What makes NFS and VSAN special?
• They are both Software-based Storage Platforms!
• No special hardware, purpose built appliance, storage array, storage controller
What is a Scheduler?

• Fair and efficient workload placement
• Adhering to a set of constraints
• Quickly (and deterministically) dispatch jobs
• Robust and tolerates errors
Scheduling Work

- Containers like...
 - Docker
 - Mesos Unified Containerizer
 - rkt (CoreOS)
- Cluster Manager
- Task placement based on resource
- Operational constraints
Custom Scheduling

• Many allow creation of own custom Scheduler
• Customization for your application:
 – Run-Time?
 – Availability?
 – Fault Tolerance?
 – Hardware Accel?
 – Location?
Apache Mesos
Mesos Frameworks

- Ability to schedule tasks based on Application needs
- Framework implements a Scheduler and Executor
 - Scheduler – Accepts/Denies resources
 - Executor – Application
- Offer / Accept Mechanism
- Multiple Frameworks run within the cluster
Framework / Offer Mechanism
Schedulers and Software
Defined Storage
Better Together

- Let’s create a Software-Defined Storage Framework
- ScaleIO + Mesos Framework = Awesome Sauce!
- First released in Sept 2016. Now on version 0.3.1
- https://github.com/codedellemc/scaleio-framework
Let’s take a look: ScaleIO

• Software-based Storage Platform
• Scale-out block storage
• Linear performance
• Elastic architecture
• Infrastructure agnostic
• Try ScaleIO. It’s a free download!

SDS Framework = Mind Blown

- Framework installs and configures Storage Platform on all Scheduler’s compute nodes
- Persistent storage **native** to scheduling platform
- Globally accessible storage
- What Storage array? Reduce complexity
- Deploy Anywhere!
Containers Today

- Many container workloads are long running
- Many have state: user data, configuration, and etc
- Top 7 of 12 Apps in Docker Hub are persistent applications
Death of a Container

- Where does my data go?
- Turned to the compute node’s local disk to store data
- What happens on a node failure?
- Production applications require high availability
- External Storage!

/etc /var
/bin /opt
/data
External Storage Enablement

- **REX-Ray**
 - Vendor agnostic storage orchestration engine
 - AWS, GCE, ScaleIO, VirtualBox, many more
 - https://github.com/codedellemc/rexray

- **mesos-module-dvdi**
 - Hook for Mesos nodes to manage external storage
 - https://github.com/codedellemc/mesos-module-dvdi
 - Contributed back to and is apart of Mesos proper
What this Means for your Apps

• Tolerates node failures

• Highly Available containers and Apps!

• Insulates changes with:
 – container scheduler (APIs, etc)
 – storage platform (workflows, APIs, etc)

• Production ready!

SO MUCH WIN
To the Cloud!
Moving towards the Cloud

- Applications with management APIs
- Cloud is perfect to enable DevOps
- What makes these cloud accessible?
Self Monitoring Apps

- Framework deploy and configure applications.
- Enable application monitoring via Management APIs.
- Determine health and remediate!
- Can fix themselves, but to what end?
Self-aware Applications

- AWS SDK – 10 Language bindings
- Software-based Storage Platform with a Cloud Platform driven by APIs
- Applications that change their environment
 - Maintenance, Remediation, Performance, etc
- Self-aware applications! Skynet!
Premise: Self Managing

• Framework can monitor and self remediate this Software-based Storage Platform

• The Scenario:
 - ScaleIO has a Storage Pool that is approaching full
 - Identifies the health check warning
 - Creates new EBS volumes in EC2 to expand the Storage Pool
Configuration

• Mesos Configuration
 - 3 Node Mesos Cluster (Management)
 - 3 Mesos Agent nodes (Compute)

• ScaleIO Cluster (Scale-out storage)
 - Will install on top of 3 Mesos Agent nodes
 - 180 GB local disks on each node to make up this Storage Pool
• ScaleIO Framework
 – GitHub: https://github.com/codedellemcSCALEIO-framework

• Persistent External Storage
 – Using REX-Ray
 › GitHub: https://github.com/emccode/REX-Ray
 – Using mesos-module-dvdi
 › GitHub: https://github.com/emccode/mesos-module-dvdi
Thank you

codedellelemc.com