
Release Management Tooling

Maven Renewed
for a new release world

John Engelke
Senior Data Systems Software Development Specialist

March 7, 2020

jpl.nasa.gov

Release Management Tooling: Maven Renewed

Partners

2

jpl.nasa.gov

Maven Renewed?
(Why renew something that works?)

jpl.nasa.gov

Release Management Tooling: Maven Renewed

Why renew something that works?

• Practical solution to make Maven fast!
• Modernize legacy installations
• Relatively quick and easy implementation!
• Bring Maven into the 2020s
• Runway Transparency – It’s all clear now!

4

jpl.nasa.gov

Release Management Tooling: Maven Renewed

Why renew something that works?
Runway Transparency

• SREs can say:
• “This issue came from this exact commit (hash)!”
• “This is from a developer’s desktop build!”
• “This is build <x> passed by QA on date <y>!”

• CI/CD system is recognized in release tags
• Every stage of release is demarcated by unique,

critical identifiers:
version, commit hash and build number

5

jpl.nasa.gov

Methods
(Brief Review of CI/CD Concepts)

jpl.nasa.gov

Release Management Tooling: Maven Renewed

Brief Review of CI/CD Concepts

• Continuous Integration (CI) / Continuous Delivery (CD)
• Decoupling (at all stages)
• Fail Fast, Fail Often (with Rapid Notification)
• Traceability

7

jpl.nasa.gov

Release Management Tooling: Maven Renewed

Brief Review of CI/CD Concepts
Continuous Integration (CI) / Continuous Delivery (CD)

• Validate Software Works when Combined
• Developers work in silos, software just builds + works

• Code Freeze
• Bundle software into reusable packages

• Automate Whenever Possible
• Validate functional requirements w/ Test Automation

• Every Build is a Potential Release
• “The Eternal Beta Strategy” (some companies live it!)

8

jpl.nasa.gov

Release Management Tooling: Maven Renewed

Brief Review of CI/CD Concepts
Decoupling (at all stages)

• Components Work Independently
• Software AND Release Management!

• A Given System is Not Required for Process
Completion

• Minimize:
• Interdependency
• Coordination
• Information Flow

9

jpl.nasa.gov

Release Management Tooling: Maven Renewed

Brief Review of CI/CD Concepts
Fail Fast, Fail Often (with Rapid Notification)

• Know the Domain
• Stop failing processes before errors manifest

• Iterations Help Fix Errors
• Discovering errors early isolates the cause
• Repairing errors early prevents costly propagation

• Constant Feedback from CI/CD Systems
• Software engineering is looped into release process

10

jpl.nasa.gov

Release Management Tooling: Maven Renewed

Brief Review of CI/CD Concepts
Traceability

• noun, “The quality of having an origin or course of
development that may be found or followed.”

• Semantic Versioning
• SemVer.org (MAJOR.MINOR.PATCH)

• Stepwise processes contribute coordinates
• Output can be precisely correlated with inputs
• Mechanisms: Counters, Hashes, Coordinates

11

jpl.nasa.gov

Release Management Stack
(How Release Management Software Helps!)

jpl.nasa.gov

Release Management Tooling: Maven Renewed

How Release Management Software Helps!

• Repeatable Process for Build/Release Automation
• Shared semantics and commands with development

• Predictable Outcomes
• Automate routine processes, like cleaning or packaging

• Versioning Automation
• Artifact Management and Deployment
• Value Added Benefits

13

jpl.nasa.gov

Release Management Tooling: Maven Renewed

How Release Management Software Helps!
Components of a Release Management Stack

14

jpl.nasa.gov

Maven
(Brief Review of Maven Paradigm)

jpl.nasa.gov

Release Management Tooling: Maven Renewed

Brief Review of Maven Paradigm

• Project Object Model (POM)
• Standard Directory Layout
• Build Lifecycle
• Dependency Management

• Project AND Plugins
• Extensible

• Release Management (Maven-Release-Plugin)

16

jpl.nasa.gov

Release Management Tooling: Maven Renewed

Brief Review of Maven Paradigm

Apache Maven is 15 years old, yet remains one of the
most widely used build management systems with 2.3
million dependencies published (and used routinely) in
Maven Central1.

1 - Analyzing 2.3 Million Maven Dependencies to Reveal an Essential Core in APIs. Harrand,
et. al. 2019 August. Retrieved from ARXIV at https://arxiv.org/pdf/1908.09757.pdf

17

https://arxiv.org/pdf/1908.09757.pdf

jpl.nasa.gov

Release Management Tooling: Maven Renewed

Brief Review of Maven Paradigm
Project Object Model (POM)

18

jpl.nasa.gov

Release Management Tooling: Maven Renewed

Brief Review of Maven Paradigm
Standard Directory Layout

19

jpl.nasa.gov

Release Management Tooling: Maven Renewed

Brief Review of Maven Paradigm
Build Lifecycle

20

jpl.nasa.gov

Release Management Tooling: Maven Renewed

Brief Review of Maven Paradigm
Dependency Management

21

jpl.nasa.gov

Release Management Tooling: Maven Renewed

Brief Review of Maven Paradigm
Extensible

• Central Repository: Maven.org
• Dependency mechanism applies to both

projects and Maven itself
• Core functionality extends via build plugins

• packaging (maven-assembly-plugin)
• scripting (groovy-maven-plugin)
• software tag/push (maven-release-plugin)

22

jpl.nasa.gov

Maven Renewed
(An Old Friend Reworked for a New Release World)

jpl.nasa.gov

Release Management Tooling: Maven Renewed

Reworked for a New Release World
Release Plugin

• Maven’s de-facto standard mechanism for tagging
and artifact publishing

• Map Group-Artifact-Version coordinates
• Of four core plugins the Release Plugin evolved

over a 15 year history, but methodology remains
• Series of synchronous steps execute to test

compilation, test software, package code, modify
source code and tag plus push new packages

24

jpl.nasa.gov

Release Management Tooling: Maven Renewed

Reworked for a New Release World
Release Plugin: The Challenge

• Synchronous steps mean repeat processing
• Source code changes (POM version insertion)

require expensive pushes
• Minor changes (PATCH) versions result in complete

rebuilds

• Is this valuable for modern release management
systems? … NO!

25

jpl.nasa.gov

Release Management Tooling: Maven Renewed

Reworked for a New Release World
Release Plugin: The Challenge

• Costly recompiles violate FAIL FAST
• Multiple Recompiles over source code changes tie

systems together, violating DECOUPLING
• Strict Semantic Versioning requires multiple lookups

to reconnect the dots for TRACEABILITY
• CI/CD is beholden to a rigid multi-tiered process that

extends release times over multiple compiles!
• Consider the case of a 15-minute compile. …

26

jpl.nasa.gov

Release Management Tooling: Maven Renewed

Reworked for a New Release World
Release Plugin: Legacy Approach – OUCH!

27

From Don’t use maven release plugin, attributed to “admin”. 2019 April 27. Retrieved from Tech
Luminary at https://techluminary.com/discard-maven-release-plugin-with-a-new-approach/

https://techluminary.com/discard-maven-release-plugin-with-a-new-approach/

jpl.nasa.gov

Release Management Tooling: Maven Renewed

Reworked for a New Release World
Release Plugin: Legacy Approach – OUCH!

• `mvn --batch-mode release:prepare release:perform`

• For a 15-minute compile, THREE total
clean/compile/test cycles

• A simple 15-minute software release is extended to
50-minute plus!

• Correlation to source-build coordinates requires
research

28

jpl.nasa.gov

Release Management Tooling: Maven Renewed

Reworked for a New Release World
Introducing CI-friendly Maven

• Goodbye Release Plugin
• Remove maven-release-plugin from all POMs

• Introducing Flexible Versioning Properties
• Bug free and stable since Apache-Maven 3.6.3
• revision, sha1 and changelist2

• Say Hello to the Maven Flatten Plugin
• Set tag syntax in the Maven SCM Plugin

29

2 – Maven CI Friendly Versions, unattributed. 2020 March 04. Retrieved from The Apache
Maven Project at https://maven.apache.org/maven-ci-friendly.html

https://maven.apache.org/maven-ci-friendly.html

jpl.nasa.gov

Release Management Tooling: Maven Renewed

Reworked for a New Release World
Introducing CI-friendly Maven: Properties

30

jpl.nasa.gov

Release Management Tooling: Maven Renewed

Reworked for a New Release World
Introducing CI-friendly Maven: Flatten Plugin

31

jpl.nasa.gov

Release Management Tooling: Maven Renewed

Reworked for a New Release World
Introducing CI-friendly Maven: SCM Plugin

32

jpl.nasa.gov

Putting It All Together
(Develop, Build, Release and Push)

jpl.nasa.gov

Release Management Tooling: Maven Renewed

34

Develop, Build, Release and Push
Release Implementation

• Build versioning is controlled with Maven property
injection using the `-Dproperty=“”` CLI flag

• Keys to a development build
• Developers build without any flags, yielding defaults
• Revision is ‘b0’; Changelist is ‘-SNAPSHOT’; SHA1 is

unset
• CI/CD builds are setup to inject CI/CD properties,

such as the actual build number and SCM hash

jpl.nasa.gov

Release Management Tooling: Maven Renewed

35

Develop, Build, Release and Push
Release Implementation

• The release management pipeline optimizes
• Single Maven execution
• Single Clean/Compile/Test phase
• Single SCM publish and artifact repo publish

• Complete traceability!
• Retrieve the exact build from the CI/CD server
• Tie back to the exact source code commit without

additional research correlating tags/timing
• Developers control the entire Semantic Version and

completely own .PATCH updates

jpl.nasa.gov

Release Management Tooling: Maven Renewed

• Developers install default builds locally
• group:artifact:<semantic_version>b0-SNAPSHOT
• Example: org.openjax:jetty:9.4.18b0-SNAPSHOT

yields org/openjax/jetty-9.4.18b0-SNAPSHOT.jar in
the local repo

• CI/CD server tags and publishes successful builds to
the artifact repository (Nexus/Jfrog/etc.)

• group:artifact:<semantic_version>b<x>-<SHA1>
• Example: org.openjax:jetty:9.4.18b1170-ade7923

yields org/openjax/jetty-9.4.18b1170-ade7923.jar
in the artifact repository

36

Develop, Build, Release and Push
Release Implementation

jpl.nasa.gov

Release Management Tooling: Maven Renewed

Develop, Build, Release and Push
Build and Tag Commands

• Developers: Make a local '-SNAPSHOT' build (at the
specified version):

• `mvn -U clean package`
• # 1.0.0b0-SNAPSHOT given Semantic Version set at 1.0.0

37

jpl.nasa.gov

Release Management Tooling: Maven Renewed

Develop, Build, Release and Push
Build and Tag Commands

• Developers also own SNAPSHOT deployment:
• `mvn -U clean install deploy -Drevision=35 -Dsha1=-$(git rev-

parse --verify --short HEAD)`

38

jpl.nasa.gov

Release Management Tooling: Maven Renewed

Develop, Build, Release and Push
Build and Tag Commands

• Release Engineers own releases and configure CI/CD
servers to tie builds to a specific commit hash:

• `mvn -U clean scm:tag install deploy -Dchangelist=
-Drevision=“${BUILD_NUMBER}” -Dsha1=-$(git rev-parse --verify --
short HEAD)`

• # 1.0.0b377-<hash>

39

jpl.nasa.gov

Release Management Tooling: Maven Renewed

Develop, Build, Release and Push
Build and Tag Commands

• Developers: Make a local '-SNAPSHOT' build (at the
specified version):

• mvn -U clean package
• # 1.0.0b0-SNAPSHOT given Semantic Version set at

1.0.0

40

2 – Maven CI Friendly Versions, unattributed. 2020 March 04. Retrieved from The Apache
Maven Project at https://maven.apache.org/maven-ci-friendly.html

https://maven.apache.org/maven-ci-friendly.html

jpl.nasa.gov

Release Management Tooling: Maven Renewed

41

Develop, Build, Release and Push
CI/CD Pipeline Implementation

• On successful build, the CI/CD server tags and
pushes the built artifact to a repository

• Webhooks or build variables are used to notify
subsequent pipeline processes

• On release, software is completely traceable by
SREs charged with troubleshooting and remediating
production issues

• It’s all in the filename!

jpl.nasa.gov

Release Management Tooling: Maven Renewed

Develop, Build, Release and Push
Summary

• Build time is reduced by at least 67 percent
• Maven versus Gradle?

• “The Eternal Beta Strategy” implementors find it
attractive

• Initially faster but requires a steep learning curve
• Much less automated out of the box

• The improved build timing and workflow
optimizations of CI-friendly Maven make it an
attractive option to maintain into the future

42

jpl.nasa.gov

Release Management Tooling: Maven Renewed

References and Further Reading

43

Analyzing 2.3 Million Maven Dependencies to Reveal an Essential Core in APIs. Harrand, et. al.
2019 August. Retrieved from ARXIV at https://arxiv.org/pdf/1908.09757.pdf

Maven CI Friendly Versions, unattributed. 2020 March 04. Retrieved from The Apache Maven
Project at https://maven.apache.org/maven-ci-friendly.html

Maven Release Plugin: Dead and Buried, Fontaine, Axel. 2016 April 15. Retrieved from Blog at
AxelFontaine.com at https://axelfontaine.com/blog/dead-burried.html

https://arxiv.org/pdf/1908.09757.pdf
https://maven.apache.org/maven-ci-friendly.html
https://axelfontaine.com/blog/dead-burried.html

jpl.nasa.gov

Release Management Tooling: Maven Renewed

Additional Information

44

• Questions or Comments?

jpl.nasa.gov

