Heather Os



Who am [?

Heather Osborn

25+ years in system engineering, devops and
management.

e Private cloud/on prem
e Public cloud

Crazy cat lady
Distance runner

Immersive camping enthusiast




What's the story?

Creating an organic mess
Background spaghetti

Do you really know what’'s wrong?
Woah, that’s a big problem

Yeet the whole thing

Tools for fun and profit

Heather Osborn Organic Isn’'t Always Good for you https://www.linkedin.com/in/heather-osborn/



STARTUP LIFE

What people What it's
think it's like actually like

Heather Osborn Organic Isn’t Always Good for you https://www.linkedin.com/in/heather-osborn/



Set up an application in a day!

Front-End Web & Mobile Development

Build and deploy secure, scalable mobile and web apps fast

Quickly launch web applications

Websites
Reliable, highly scalable, and low cost website and web application

hosting Deploy scalable web applications in minutes

without the complexity of provisioning and
managing underlying infrastructure.

Heather Osborn Organic Isn’t Always Good for you https://www.linkedin.com/in/heather-osborn/



Background - Organic Spaghetti is especially bad for you.

Slow drled

FOR A SUPERIOR QUALITY PASTA

4576

Spaghetti no. 12 B 120z (3409) @

MADE IN ITALY CODKING TIME 12 MIN - AL DENTE 11 MIN MACARONI PRODUCT

Heather Osborn Organic Isn’'t Always Good for you https://www.linkedin.com/in/heather-osborn/



WHAT'S WRONGD.

Let’s figure out what the
problems are...

Heather Osborn Organic Isn’'t Always Good for you https://www.linkedin.com/in/heather-osborn/



Team 1

ODE has old monolith calendaring,
not microservice

Environment variables are difficult to
track down (some in onepass, but
not consistent)

Time to seed db - always needed
with data migration

Server build times

Documentation fo commonly
encountered problems (seeding and
ODE troubleshooting)

Local testing usually used for e2e

Competition to use release which
makes ODEs more appealing. Most
people test locally unless it's
sensitive

Microfrontends cherry pick from beta
branch

Takes a while to stand up release

Data on release is better, ODE and
FF aren't useful/current

Release would be better with data
closer to master

Heather Osborn

Testing done locally for e2e
ODE tests server code
seperately, then needs to test
microservices in the release

Microfrontends have multiple
devlopers contributing so release
doesn't stay consistent

Changes in main and beta,
dependencies are not merged, so
release experiences drift

Microservice tags are changed
with every merge to main,
requiring re-verification

Release environment adds days
to cycle which causes more drift

Ideal would be flexible ODE
where you can choose your

Mobile

Snyk doesn't fail pipelines for
security vulnerabilities (allows
tech debt to accrue)

Deployments too infrequent
(currently one week, want to be
10 minutes)

Cutting a release is manual,
oncall person kicks it off on
Friday via GHA

Cl more complicated than it
should be - every PR runs
unit/integration/e2e tests and
deploys a test build

Unable to determine change
failure rate because e2e testing
is currently broken

MTTR is currently 48 hours.
Deployment is using a
developer mac to GHA, but
requires appstore deploy and
review

Native deployment too frequent
(refreshes version of app which
code push doesn't)

Backend

Waiting on cypress jobs

Releasing to release

Team 3

Too many unused feature
flags - recommend to eng
removing when done

Deploy by copy is painful
because of no ability to roll

envi is not like ing
to prod

Working with microsevices is
complex, need to provide PAT,
understand Istio, right version of
client app

Testing microservice dev with
ODE needs to have the same
policies with Istio/CORS
Microservice base template -
come conventions make it
difficult to track - tagging uses
2nd to last SHA and you need to
manually compare. Script could
be updated to tag properly

If deploy fails using helm, it will
try indefinitely (out of sync error)

Retain logs for longer (eng
should check logs immediately
after release)

No standard for local testing

No slack alerts for microservice
deploy failures on prod

back like b Ik of k8s,
only redeploy

Team 4

Critical mass of total tests

“"waiting in line" to release
client or server to prod

Lint rules are inconsistent

Different runtime/build
envrionments - differing
versions of react, etc.

No way to manually test the
onboarding flow (can't inject
partway throguh to
troubleshoot specific config
states)

Product manager and design
use release because feature
flags are closter to production
(otherwise you need to
recreate from scratch)

Would be nice to have a
dockerfile that proxies nginx
to run locally

Would it be possible -
deterministic caching (build
over time and replace every
time with new code)

Queue is manually
managed - can't
automatically pause when
there's an issue

Seeding - what are we
seeding, how frequently,
when is it reset

Feature flags - need to
sync with prod

Accessing beanstalk
container in prod

Team ownership of RDS
updtes

Lack of
documentation/runbooks

Dependencies on Auth
for microservices - where
you need it changes how
you access it (local,
release, etc)

Eng should add more
logging, use of postman,
and endpoints

Data

Data is a full distinct
platform from app
platform

Unit testing for
microservices

Do not have ability to test
against app Y

Security

Account configuration
doesn't allow
cross-account AWS
keys

Tech debt - no
follow-up (versions
out of date)

AWS best practice for
IaC not followed (error

DevOps Al

Databases configured
differently per
environment, cannot test
changes consistently
incduing fivetran, to configure
snowflake, MSK, related local
networking

Inconsistent processes
(deploy to dev means
different things to different
teams)

Inconsistent terraform
abstractions (managed in
different repos, different
per environment - many
duplicates and some

Can spin up client/server

g In pip

Lack of consistent
environent to test

locally but not firewall, routing
Database upgrades take Overlapping subnets
out data ecosystem in dev

App team changing

schemas has caused
multiple PO breaks, no
integration testing, alerts
on changes, but reactive
instead of preemptively
testing

Need testing parity in the

Flux doesn't work to
deploy 3rd party tools

No tagging of
T

app

API contract testing has
been written but teams
don't use it

Want ODE with
monolith+microservices
Want normalized API
ingress controller using
Istio

T configured)

Modules per repo instead
of global causing
inconsistent updates

No consistent source of
truth for config and keys

Lacking disaster recovery
plan

Unlabeled or mislabled

infrastructure
Implementation of
firewall for compliance
complicated by No
current network decommissioning/offboar
design ding considerations/EOL
Engineer access of
production resources
needs process for
manager approval Out of date
and time limits documentation

No cohesive
Lack of runbooks for  documentaton for tracking
failover back | icati
Complicated

networking prevents
new software from
being implemented

Archived logs not easily
viewable

No load testing

Multiple ways

environment

Legend

Wait time

Consistency

Documentation/

Policy

Test
Environment

Complexity

Release
process/Testing
process

Organic Isn’t Always Good for you

https://www.linkedin.com/in/heather-osborn/



What was DevOps going to do?

Choice 1: Greenfield?

Choice 2: Upgrade/clean up prod, copy to dev for parity, update
prod, repeat

Choice 3: Improve in place

Heather Osborn Organic Isn’'t Always Good for you https://www.linkedin.com/in/heather-osborn/



Greenfield Go Ahead

A
Ty ..,\l'
NAAAZ SR

Heather Osborn Organic Isn’'t Always Good for you https://www.linkedin.com/in/heather-osborn/



What do we want?

Never ever do anything that’s not in code
Validate validate validate

Keep documentation close to code
Simplify product engineer life

Testability

Consistent environments

Low touch release process with visibility
o Consistent promotion process

e NO SPAGHETTI

Heather Osborn Organic Isn’t Always Good for you https://www.linkedin.com/in/heather-osborn/



It's so clean...

Platform cluster (tools)

e Alpha
e Beta
e Stable

App cluster

e Alpha
e Beta
e Stable




Visualize Consumption of Applica‘t}on Templa‘tes

= Terraform Actions for
application-base-template

Vil

/

rAr?oCI)

B apich tenbasewedlule o e et sl auth-service Project-Specific Artifact Storage

I« ¢
Ar7° ApPMCD\t‘»O" Stores
- Helm Actifacts

- Docker Images

Helm Values

Docker Imog

o\( 0
emplate ‘ application-go-template

tm-@x ion-next-t.
J

[7 Argo pulls Harbor stored Helm :mcsj\

twingate

: O} { Argo App‘]catlon
auth-service
) 5 )

- Helm Values
Docker Image (Harbor
o) / - Helm Chart (Harbor)
po!ar;ytw\f,ate - Set Namespace . | - Dockerhub (Proxy)

te..

- Aryo applies k¥'s resources
based off helm charts From

k harbor to desiced namespace

‘@appluca't-on o\lpka\ /\

auth-service (hamespace) twingate (ramespace)
O GitHub Repo he

@Inpo(‘ma'tion Bubble ——= Pull u ! | @a.

@ Helw Artifoct ~—3 Push (Dq:loc/) - Pod defntions come online andl Then
oull From harbor.cersbralcom’ and
Docker Imoge Potentio

Heather Osborn Organic Isn’'t Always Good for you https://www.linkedin.com/in/heather-osborn/



Validate EVERYTHING

Validate in local - pre-commit hooks
Validate in Cl - conftest
Deployment validation - Gatekeeper/OPA

Validate cluster runtime - GuardDuty

Heather Osborn Organic Isn’t Always Good for you https://www.linkedin.com/in/heather-osborn/



Tools Tools Tools

Amazon
EKS

Heather Osborn Organic Isn’t Always Good for you https://www.linkedin.com/in/heather-osborn/



Any Questions?

Heather Osborn Organic Isn’t Always Good for you https://www.linkedin.com/in/heather-osborn/



