
Measuring Distributed
Databases across the Globe

Matt Davis
Site Reliability Engineer, OpenX
SCaLE x13, 2015

what is a measure…?

Measure

● Formal rule that helps assess relationships
● Quantity of a substance
● Unit of time defining a collection of beats or events
● Dimensions and capacity of a given thing

In distributed systems we try to perfect the rules by
which we store, process, and deliver mass quantities of
data. We are solving puzzles, estimating capacity, and
maintaining structure all at once, while workloads and use
cases evolve over time.

John Cage (1912-1992)

Sonatas and Interludes
for Prepared Piano

“micro/macro-cosmic” method
placed importance on
rhythmic structure over
harmony and melody

in computer science these
rhythms and waveforms are in
evidence all the time

become familiar with the
structure of rhythmic
patterns in data feedback, it
will give important clues to
how your distributed
ecosystem is behaving!

aaah, measure is evidence of structure!

measure -> visualization -> aggregation -> intelligence -> win!

Like a musical improviser learning scales
and beats and time signatures, the system
operator must become aware of inherent
real-time relationships.

Well-placed measures help the admin
internalize how data flows through the
system, illuminating the structures of
both architectural and operational
rhythms.

In terms of our distributed data, this means...

● Combined gateways measure over 400,000 connections/sec at peak
● Over 6PB across all US Hadoop clusters
● 5000+ physical devices between 5 datacenters
● Reporting data totaling over 133TB
● Over 40 billion unique keys between five differently sized and variously

connected Riak Enterprise and CS clusters with hundreds of nodes
spread between Asia, Europe, and US datacenters.

Technology Highlights at OpenX

Ad exchange (including real-time
bidding), publisher monetization
(SSP), and ad server all combine
to enable over a billion daily ad
impressions across the US, Europe
and Asia.

Distributed Data at OpenX

globally connected riak clusters provide realtime stores to front-end services

Riak is a highly available,
distributed key/value store.

mandala

मÖडल

Maṇḍala

circle

a spiritual and ritual
symbol representing

the Universe
the well

distributed
system is also

balanced, where
all parts are
matched and

behaving as one.

Mandalas often
exhibit radial

balance;
elements are

arranged so that
no one part

seems heavier
than any other

part.

attention

+

awareness

Pauline
Oliveros (1932)

Deep Listening

Like the Cage sonata,
relationships of client
to code to data to
partitions to nodes
to clusters to world-
wide mesh are
complex and
overlapping.

micro- and macro-
cosmic, requiring both
attention and
awareness...

...we listen to our
machines

Monitoring:
the art of staying attentive and being aware

❖ Instrumentation of OS & application statistics

❖ Visualization of OS and hardware health

❖ Aggregation of stats and logs, OS & application

and here’s the bonus!

all contribute to intelligently documented procedures
essential for NOC and oncall operations

Instrumentation:
Icinga
The name Icinga is a Zulu word meaning "it looks for", "it browses" or "it examines" and is
pronounced with a click consonant. It is a fork of the popular Nagios system.

➔ system resource monitoring
➔ application endpoint health
➔ alert history and histograms

Instrumentation:
MonDemand

● High performance instrumentation library
● Most used with erlang and java
● An enabled application emits LWES events

to the mondemand server, which can write
to several backends for graphing and
aggregation (e.g.: rrd, riemann, graphite,
opentsdb, quorra)

Good Instrumentation gives way to great visibility.

Visualization:
Munin
In Norse mythology Hugin and Munin are the ravens of the god king Odin. They flew all over
Midgard for him, seeing and remembering, and later telling him. "Munin" means "memory".

Long-term rhythmic patterns in
memory usage gives clues about
what’s going on with bitcask.

This pattern shows the perfect storm:
erlang’s history-based memory

allocation, keys expiring while they’re
being merged, but without ample time

to complete before running out of heap
and getting in the way of garbage

collection.

Because of the key density compounded with expiration, the merge worker basically never goes
idle, never gets its heap size reduced, runs out of memory, erlang allocates more than is physically
available, and the beam process is killed by linux with an OOM message. A long startup ensues due
partially to corrupt hint files.

Through working with Basho, gathering data, having reliable graphing
systems and log retention, we were able to pinpoint the issue and facilitate

improvements for v1.4

Aggregation:
rsyslog + SumoLogic

Some examples we use:

● Direct-to-syslog services like erlang’s lager (e.g. Riak)
● File-tailing with rsyslog (e.g. namenodes, tasktrackers, kafka/storm status)
● Linux system events (sysinfo, /var/log/messages)

The search language is java-regex and fairly robust, meeting the requirements of
most log parsing. There are also built-in libraries aid in creating fields from
standard log formats (e.g. apache WC3, nginx, mysql).

The Rocket-fast SYStem for LOG processing: high-performance and modular, accepts a wide range of
inputs including syslog facilities and simple file tailing, provides caching.

SumoLogic enables Ops teams to perform rapid root cause analysis of critical infrastructure;

Dev teams to quickly analyze and troubleshoot production application issues;

and Security teams to uncover security incidents buried in terabytes of log data.

things we can only see in logs… illuminated!

homogeneity

it must be as easy to replace nodes
as it is to let them fail

how do we “manage” these “configurations”?
how do we guarantee high availability and avoid manual

processes and human error?

Sonatas and Interludes for Prepared Piano:
Table of Preparations (excerpt)

“[mutes of various materials are placed
between the strings of the keys used, thus

effecting transformations of the piano sounds
with respect to all their characteristics.]”

- John Cage

...we build
architectural
structure

Salt Stack
Structure Management and Orchestration

Orchestration is a compositional art in itself: understanding the components,
the way they interact, their ranges and capacities, the way processes and
jobs and textures and sonorities are layered and synchronized, pipelined in
and harmonized.

Instrumentation provides the raw materials, and giving responsibility to an
instrument means expecting a continuously reliable result, and that’s the
goal with large-scale distributed clusters: guaranteeing the micro-level be the
macrocosm, in the same way, every time.

Configure intelligently, repeatably, and elegantly.

Give the data every chance to be awesome by making management easy.

Salt provides a
structure to ensure
configurations are
consistent and
repeatable, upholding a
homogenous approach
to cluster management

identical hardware
provides a predictable
balance of resources!

and easily replaceable
hardware upholds the
“let-it-die” mantra of
distributed systems

this example shows the
layout of a riak-cs system,

providing configuration
management and service

orchestration

the rhythmic structure of the data is supported by
 the architectural structure of solid configuration management

When
Elephants

Attack
or

The Curse of Hosting
Multiple Distributed Systems

Resolution by correlation:
What are those spikes?
It should always look like this…

Then began looking like this…

and thanks to well architected configuration management,

we know all things must be equal…?

then one day…

After many weeks of troubleshooting nodes, making sure all hardware was operating correctly,
actually finding some about-to-fail nodes and replacing them, I happen to catch the following display
exactly when a spike in latency occurred...

… and comparing with Cacti, our network monitoring tool,
 plus sumologic reporting errors from the frontend,
 i found the culprit: hadoop network saturation

lesson learned: don’t let your elephant beat up your ninjas

★ Instrumentation at the right places allowed
collection of important data points

★ Visualization of these data points showed the
stark contrasts seen in data rhythms

★ Log Aggregation illuminated front-end errors
★ Configuration management guaranteed a

homogenized distributed cluster for ruling out
misconfiguration, and allowed for painless re-
deployment of nodes to address issues

By observation of Measure and Internalization of
data rhythms, the root cause was finally uncovered.

thanks!

Q & A

