
Lars Kurth
Cat Herder, Xen Project

Chairman, Xen Project Advisory Board

lars_kurth

4.3 4.4 4.5 4.6

12

20

36

38

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

2013 2014 2015

Xen 4.x Number of New Major Features

• Developed per month (y axis via)

• Absolute number (number beside)

0

500

1000

1500

2000

2500

3000

3500

2011 2012 2013 2014 2015

While quality and security requirements
are increasing simultaneously

with a twist

HW
CPUsMemoryI/O

VM1

Guest OS

Applications

VM0 (or Dom0)

Dom0 Kernel

Drivers

VM2 VMn

Applications

Guest OS

Applications

Guest OS

Toolstack

Scheduler MMU Timers InterruptsConfig

back PV front

Density: It's thin
Excellent for supporting many very small workloads (e.g. unikernels)

Scalability: It can support huge numbers of VMs
Terrific for highly dense workloads (e.g. unikernels, disaggregation, …)

Security: Host OS isolated within a VM
This makes it harder to attack the Host OS

Scheduling: Can use dedicated scheduler
Enables specialized workload profiles (mix and match schedulers on one host)

Paravirtualization: Simplified interface
Easy to implement a unikernel base
Enables fast boot times necessary for unikernels

Virtualisation Modes
The Future of Virtualization Modes
Implications for Unikernel bases

Shortcut Mode With

HVM / Fully Virtualized HVM

HVM + PV drivers HVM PV Drivers

PVHVM HVM PVHVM Drivers

PVH PV pvh=1

PV PV

3.0

4.0

4.4/4.5

Xen

Unikernel Bases:

Primarily depend on PV

E.g. rumprun and Mini-OS

Will work on Xen based

clouds and hosting services

Shortcut Mode With

HVM / Fully Virtualized HVM

HVM + PV drivers HVM PV Drivers

PVHVM HVM PVHVM Drivers

PVH PV pvh=1

PV PV

Poor Performance

Scope for Improvement

Optimal Performance

VS VS VS VH

PV VS VS VH

PV PV VS VH

PV PV PV VH

PV PV PV P

PV = Paravirtualized

VS = Software Virtualized

VH = Hardware Virtualized

The motivation behind PVH

– HVM (like) Dom0: performance & Dom0 modification

– PVH as fast or faster than HVM

– PVH runs a PV guest within a HVM container (essentially a mix of PV & HVM)

BUT: PVH inherits all the PV limitations, e.g.

– Paging restrictions, lack of access to emulated devices (if needed), …

– Concept designed prior to “additional quality and security requirements”

Solution: HVMlite to eventually replace PVH

– A lot simpler to implement: less code to maintain and thus to keep secure

– Behaves exactly like PVH (but internal implementation different)

– HVM without QEMU

Shortcut Mode With

HVM / Fully Virtualized HVM

HVM + PV drivers HVM PV Drivers

PVHVM HVM PVHVM Drivers

PVH / HVMlite HVM pvh=1 / …

PV PV

VS VS VS VH

PV VS VS VH

PV PV VS VH

PV PV PV VH

PV PV PV P

Currently:

builder = "hvm"

device_model_version="none”

There will need to be some

sort of migration strategy from

pvh=1

Xen 4.7 (June 2016)

–HVMlite DomU support in xen.git

–Agree on config file changes and naming (PVH or HVMlite)

Ongoing

–HVMlite Dom0 prototype for FreeBSD

–No Linux implementation yet

–Some clean-up required

– Interfaces not yet declared stable (but almost there)

–Benchmarks already very impressive

PVH / HVMlite not currently used as unikernel base

–Unikernel developers make sure the architecture works for you
(before APIs are declared stable)

–MiniOS / Rumprun not yet ported to HVMlite
(some different approaches needed compared to pure PV)

Opportunity: Avoid Duplication

–There was a bit of duplication of unikernel bases in the early days of
unikernel development (MiniOS clones)

Focus on significant performance and scalability
improvements since Xen 4.5+

Examples

HPET: Better and faster resolution values
Parallel memory scrubbing on boot (large machines)
Lower interrupt latency for PCI passthrough (machines > 2 sockets)
Soft affinity for non-NUMA machines
Multiple IO-REQ services for guests
(remove bottlenecks for HVM guests by allowing multiple QEMU back-ends)

SandyBridge: VT-d posted interrupts for HVM
(I/O intensive workloads)

Grant table scalability by using finer grained locks
Ticket locks for improved fairness and scalability
…

Xen clearly wins

Xen marginally wins

KVM marginally wins

KVM clearly wins

Source: http://www.phoronix.com/scan.php?page=article&item=ubuntu-1510-virt

http://www.phoronix.com/scan.php?page=article&item=ubuntu-1510-virt

Overview
Possibilities

Resources:

Docs: bit.do/xen-schedulers

http://bit.do/xen-schedulers

HW
CPUsMemoryI/O

Dom0

Dom0 Kernel

Drivers

The Xen Project Hypervisor supports several

different schedulers with different properties.

Different schedulers can be assigned to…
… an entire host

e.g. Credit2 Scheduler

HW
CPUsMemoryI/O

Dom0

Dom0 Kernel

Drivers

The Xen Project Hypervisor supports several

different schedulers with different properties.

Different schedulers can be assigned to…
… an entire host

… a pool of physical CPU’s (=CPU Pool) on a host
(VMs need to be assigned to a pool or pinned to a CPU)

e.g. RTDS Scheduler e.g. Credit Scheduler

HW
CPUsMemoryI/O

Dom0

Dom0 Kernel

Drivers

VM1

Guest OS

RT App

VMn

Guest OS

RT App

e.g. RTDS Scheduler

VMn+1

Apps

Guest OS

VMm

Apps

Guest OS

e.g. Credit Scheduler

Scheduler parameters can be modified per …

Host

CPU Pool

VM

Scheduler Use-cases Xen 4.6 Plans for 4.7+

Credit General Purpose Supported

Default

Supported

Default

Credit 2 General Purpose

Optimized for lower latency, higher VM density

Experimental Supported

RTDS Soft & Firm Real-time

Multicore

Embedded, Automotive, Graphics & Gaming in

the Cloud, Low Latency Workloads

Hardening

Optimizations

Better XL support

Experimental

Adaptive granularity

Supported

ARINC 653 Hard Real-time

Single core

Avionics, Drones, Medical

Supported

Compile time

No change

Legend:

likely in 4.7

possible in 4.7

Embedded & automotive

Latency sensitive workloads

Guaranteed QoS

Cloud based gaming, video,

TV delivery, …

Guaranteed QoS
(Price SLAs QoS)

Hardware Support
Graphics
Security: VMI
Security: QEMU and Isolation
Security: xSplice
Security: Configurability
…

Intel Platform QoS technologies
(CMT, CAT, MBM, …)
Virtual Performance Monitoring Unit
vTPM v2.0

Code/Data Prioritization
Memory Protection Keys
VMX TSC scaling
Intel PState Drivers
Posted Interrupts
…

Tracking ARM/ARM-partner server roadmap
Hardening (more 64 bit servers in Test Lab)
Live Migration

Watch the demo at

https://www.youtube.com/

watch?v=V2i8HCcAnY8

Virtual GPU per VM

Performance critical resources

directly assigned to VM

https://www.youtube.com/watch?v=V2i8HCcAnY8

GVT-g support is partly out-of-tree

In use by XenClient 5.5 and XenServer Dundee

Most Xen patches are part of xen.git

BUT: some Linux and QEMU patches that are still in progress
Motivation: create a common code base for Xen & KVM

Similar approach for embedded developed by GlobalLogic
(for ARM based architectures)

Watch the demo at

https://www.youtube.com/watc

h?v=ZJPHfpDiN4o

Credit: Tamas K Lengyel

https://www.youtube.com/watch?v=ZJPHfpDiN4o

VM3

Guest OS

App

VMn

Guest OS

App

VM2

Guest OS

App

Dom0

Dom0 Kernel

Drivers Agent(s) Agent(s) Agent(s)

Installed in-guest agents, e.g. anti-virus software,

VM disk & memory scanner, network monitor, etc.

Anti virus storm, deployment/maintenance, …

Several

VM3 VMnVM2Dom0

Dom0 Kernel

Drivers

VM3

Guest OS

App

VMn

Guest OS

App

VM2

Guest OS

App

Security

Appliance

VM1

Introspection
Engine

Protected area

Agent Agent Agent

Hybrid approach: no need to move

everything outside (chose best trade-off)

XSM/Flask

QEMU and Emulation for Xen secure by default (4.7)

– Response to Venom and other QEMU bugs as an alternative to Stub Domains

– Defense in depth mechanisms to secure the execution of QEMU + Inbuilt Emulation

Hot Patching or x-splice (4.7+)

– Response to “Cloud Reboots” of 2014 and 2015

– Hypervisor and Workload generation Tooling

– Start with some use-cases and successively add less common ones

Better Configurability (4.7+)

– Response to criticism from Invisible Things Labs

– Use KCONFIG to disable Hypervisor functionality

– A more wholesome approach to disable and remove undesired functionality

The project has a history of proactively innovating

The rate of innovation is increasing
(e.g. more features, more quickly)

The demands on the project are shifting
(e.g. quality and security, conflicting requirements)

The project has a track record of adapting
(e.g. to criticism, challenges, …)

Best Platform for Unikernels in the Cloud
(e.g. reach, innovation, unique features)

